UNDERSTANDING

SQL

Martin Gruber

The Easiest Introduction to
SQL, with Useful Tasks
Explained From Scratch

Covers Everything From
How to Manipulate Values,
Tables & Queries, to
Handling Implied Range
Variables & Correlated
Subqueries

L

[|

The SELECT Command

SELECT *| { [DISTINCT| ALL] <value expression>.,.. }
FROM {<table name> [<alias>]}.,..
[WHERE <predicate>]
[GROUP BY { <column name> | <integer> }.,..]
[HAVING <predicate>]
[ORDERBY { <column name> | <integer> }.,..]

[{ UNION [ALL]

SELECT * | { [DISTINCT | ALL] <value expression>.,.. }
FROM {<table name> [<alias>]} .,..
[WHERE <predicate>
GROUP BY { <column name> | <integer> }.,..]
HAVING <predicate>]
ORDER BY { <column name> | <integer> }.,..]

The Elements Used in the SELECT Command

ELEMENT DEFINITION

<wvalue expression> An expression that produces a value. It may include or
consist of a <column name> .

<table name> A name of or synonym for a table or view.

<ahas> : A temporary synonym for <table name>, defined here and
usable only in this command.

< predicate> A condition that can be true or false for each row or
combination of rows from the table(s) in the FROM clause.

< column name> A name of a column of the table.

<integer> A number with no decimal point. In this case, it indicates a

<uwalue expression> in the SELECT clause by identifying its
placement in that clause.

The Update Commands

UPDATE

UPDATE <table name>
SET {| }.,..<column name> = <value expression>
[WHERE < predicate>
| WHERE CURRENT OF <cursor name>
(*embedded only*) J;

INSERT

INSERT INTO < table name> [(<column name> .,..)]
{ VALUES (<value expression> .,..) }
| <query>;
DELETE

DELETE FROM <table name >
[WHERE < predicate>
| WHERE CURRENT OF <cursor name>
(*embedded only*) |;

The Elements Used in the Update Gommands

ELEMENT

DEFINITION

<cursor name> Name of a cursor used in this program.

<query>

A valid SELECT command.

For other elements, see the SELECT command.

The Symbols Used in Syntax Statements

SYMBOL

EXPLANATION

{J

Whatever precedes this symbol may optionally be replaced by whatever
follows it. This is a symbolic way of saying “or”.

Everything enclosed in curly brackets is treated as a unit for the purposes
of evaluating |, .,.. or other symbols.

Everything enclosed in square brackets 1s optional.
Whatever precedes this may be repeated any number of times.

Whatever precedes this may be repeated any number of times with the
individual vecurrences separated by cormmas.

CONTENTS AT A GLANCE

Introduction

Introducing Relational Databases

SQL: An Overview

Using SQL to Retrieve Information from Tables

Using Relational and Boolean Operators to Create More Sophisticated Predicates
Using Special Operators in Conditions

Summarizing Data with Aggregate Functions

Formatting Query Output

Querying Multiple Tables at Once

Joining a Table to Itself

O 00N Ok N =

—
o

Placing Queries Inside One Another

—
[

Correlated Subqueries

Using the EXISTS Operator

Using the Operators ANY, ALL, and SOME
Using the UNION Clause

Entering, Deleting, and Changing Field Values

ek ek ek b
DG N

Using Subqueries with Update Commands

[y
N |

Creating Tables

—
==}

Constraining the Values of Your Data

—
O

Maintaining the Integrity of Your Data

N
(=]

Introducing Views

N
[y

Changing Values Through Views

Determining Who Can Do What

Global Aspects of SQL

How a SQL Database Is Kept in Order

Using SQL with Other Languages (Embedded SQL)
Answers to Exercises

SQL Data Types

Some Common Nonstandard SQL Features

N N
N

Syntax and Command Reference

Tables Used in Examples

Index

Chapter 4:

Chapter 5:

Chapter 6:

Column Reordering

Eliminating Redundant Data
Qualified Selection—the WHERE Clause
Summary
Putting SQL to Work

USING RELATIONAL AND BOOLEAN
OPERATORS TO CREATE MORE
SOPHISTICATED PREDICATES

Relational Operators
Boolean Operators
Summary

Putting SQL to Work

USING SPECIAL OPERATORS IN CONDITIONS

The IN Operator
The BETWEEN Operator
The LIKE Operator
Working with NULL Values
The IS NULL Operator
Using NOT with Special Operators
Summary

Putting SQL to Work

SUMMARIZING DATA WITH AGGREGATE
FUNCTIONS

What Are the Aggregate Functions?
How Do You Use Aggregate Functions?
Special Attributes of COUNT
Aggregates Built on Scalar Expressions
The GROUP BY Clause
The HAVING Clause
Don’t Nest Aggregates

Summary

Putting SQL to Work

26
27
29
B2
33

35

36
37
43
45

61

62
62
64
67
67
69
72
73
74

Chapter 20:

Chapter 21:

The FOREIGN KEY Constraint
How to Declare Fields as Foreign Keys
FOREIGN KEY as a Table Constraint
FOREIGN KEY as a Column Constraint
Onmitting Primary Key Column Lists

How Referential Integrity Restricts Parent Key Values

Primary vs. Unique Parent Keys
Foreign Key Restrictions
What Happens When You Perform Update Commands
Implications of the Table Definitions
The Effects of the Constraints
Foreign Keys That Refer Back to Their Own Tables
Summary

Putting SQL to Work

INTRODUCING: VIEWS

What Are Views?

The CREATE VIEW Command
Updating Views
Naming Columns

Combining the Predicates of Views and Queries Based on Views

Grouped Views

Views and Joins

Views and Subqueries

What Views Cannot Do

Dropping Views
Summary

Putting SQL to Work

CHANGING VALUES THROUGH VIEWS

Updating Views
Determining If a View Is Updatable
Updatable vs. Read-Only Views
Telling Which Are Updatable Views
Checking the Values Placed in Views
Predicates and Excluded Fields
Checking Views That Are Based on Other Views

xuil

236
236
238
239
239
240
240
241
241
242
243
246
248
250

251

252
252
254
255
256
257
258
260
261
262
262
263

265

266
268
269
270
271
272
274

Chapter 24:

Chapter 25:

HOW A SQL DATABASE IS KEPT IN ORDER

The System Catalog
A Typical System Catalog
Using Views on Catalog Tables
Commenting on the Catalog Contents
The Rest of the Catalog
SYSTEMINDEXES—Indexes in the Database
SYSTEMUSERAUTH—Users and System Privileges in the
Database
SYSTEMTABAUTH—ODbject Privileges That Are Not
Column Specific
SYSTEMCOLAUTH—Object Privileges That Are Column
Specific
SYSTEMSYNONS - Synonyms for Tables in the Database
Other Uses of the Catalog
Summary

Putting SQL to Work

USING SQL WITH OTHER LANGUAGES
(EMBEDDED SQL)

What Is Involved in Embedding SQL
Why Embed SQL?
How Do You Embed SQL?
Using Host Language Variables with SQL
Declaring Variables
Retrieving Values into Variables
The Cursor
SQLCODE
Using SQLCODE to Control Loops
WHENEVER
Updating Cursors
Indicator Variables
Using Indicator Variables to Emulate SQL NULLs
Other Uses of Indicator Variables
Summary

Putting SQL to Work

313

314
315
317
319
322
322

323

324

326
328
329
330
332

333

334
334
335
336
339
339
410
343
345
345
346
349
351
352

xxi

INTRODUCTION

SQL (USUALLY PRONOUNCED “SEQUEL’) STANDS
for Structured Query Language. It is a language that enables
you to create and operate-on relational databases, which are sets of
related information stored in tables.

The database world is becoming increasingly integrated, and
this has led to a clamor for a standard language that can be used
to operate in many different kinds of computer environments. A
standard language allows users to learn one set of commands and
use it to create, retrieve, alter, and transfer information regardless
of whether they are working on a personal computer, a worksta-
tion, or a mainframe. In our increasingly interconnected com-
puter world, a user equipped with such a language has tremen-
dous power to utilize and integrate information from a variety of
sources 1n a great number of ways.

Because of its elegance and independence from machine spe-
cifics, as well as its support by the industry leaders in relational-
database technology, SQL has become, and will for the foresee-
able future remain, that standard language. For this reason,
anyone who expects to work with databases in the nineties needs
to know SQL.

The SQL standard is defined by ANSI (American National
Standards Institute) and is currently accepted as well by ISO
(International Standards Organization). However, most commer-
cial database programs extend SQL beyond the ANSI definition,
adding other features that they think will be useful. Sometimes they
violate the standard in minor ways, although good ideas tend to be
copied and become “defacto” or “marketplace” standards. In this
book, we will basically be following the ANSI standard, but with an
eye towards the most common variations. You should consult the
documentation on the software package(s) you will be using to see
where they vary from the standard.

xx1l

WHO CAN USE THIS BOOK?

This book requires no more than a minimal knowledge of
computers and databases. SQL is actually considerably easier to
use than many languages that are less compact because you
don’t have to define the procedures used to achieve the desired
results. This book will lead you through the language step by
step, providing examples along the way and exercises for each
chapter to sharpen your comprehension and skills. You will be
able to perform useful tasks almost immediately; then you will
build more complex skills layer by layer.

Because SQL is part of so many programs that run on so
many different computers, no assumptions can be made about
the specific context in which you are using it. This book is
designed to be as general purpose as possible. You will be able to
apply what you learn here directly to any context in which SQL
is used.

Although this book 1s designed to be accessible to database
beginners, it presents SQL in considerable depth. Examples are
designed to reflect a variety of situations, many of which com-
monly occur in business environments. Certain examples are
fairly complex in the interest of showing all the implications of a
particular feature. The discussion of SQL is not restricted to
what is technically correct, but also explores the implications of
various features and approaches. We believe you will not find
another book on SQL which has the accessibility and the depth
of this one.

HOW IS THIS BOOK ORGANIZED?

The chapters of this book are arranged so that each one will
introduce a new group of related concepts and features. Every
chapter builds on what came before and concludes with practice
questions to sharpen and solidify your understanding. (Answers
to the practice questions are in Appendix A.)

The first seven chapters introduce the basic concepts of rela-
tional databases and of SQL, and then proceed to lay out the
basics of queries. Queries are commands used to retrieve informa-
tion from a database; they are the most common and, at times,

xxui

probably the most complex aspect of SQL. Chapters 8 through 14
introduce more advanced query techniques, specifically how to
query more than one table at a time, and how to combine queries
in various ways. Other aspects of SQL—how to create tables, how
to enter values into them, and how to grant and deny access to
tables that you create—are covered in Chapters 15 through 23.
Chapter 24 shows you how to access information about the struc-
ture of your database. In Chapter 25, you will learn how to put
SQL into programs written in other languages.

Depending on how you will be using SQL, some of the later
information may be unnecessary for you to study. Not all users
create tables or even enter values into them. As a tutorial, this
book is written so that one chapter will flow into the next, but
you can feel free to skim sections that you may not need to use.
This is one reason we put all the query instruction together at
the beginning. Queries are basic; you will need to understand
them in order to use most of the other functions of SQL. But the
reverse 1s not necessarily true.

We will use a single set of tables to derive the bulk of the
book’s examples. You will become quite familiar with these
tables, and thus be able to understand clearly the points being
made with them.

Here is a chapter-by-chapter summary of the contents of this
book:

¢ Chapter 1 shows you what a relational database is,
including the important concept of the primary key, and
gives examples similar to real-life situations. It also con-
tains the three tables from which we will derive the bulk
of our examples in this book and explains their contents.

* Chapter 2 orients you to the world of SQL. It covers such
general issues as: the structure of the language, the dif-
ferent types of data recognized by SQL, and some com-
mon SQL conventions and terminology.

¢ Chapter 3 shows you how to create queries and intro-
duces several techniques to refine them. After reading
this chapter, you will be able to do useful work with SQL.

XX10

Chapter 4 illustrates how two types of standard mathe-
matical operators, relationals (=, <, > =, and so on)

and Booleans (AND, OR, NOT), are used in SQL.

Chapter 5 introduces some operators that are used in a
manner similar to the relational operators but are specific
to the SQL language. Also in this chapter, the issue of
missing data is brought up and NULL values are defined.

Chapter 6 teaches you about a set of operators that derive
data from tables, rather than simply extracting it. This
enables you to have summary data about the values in
your tables that is up to the second.

Chapter 7 shows some things you can do to the output of
a query, such as performing mathematical operations on
it, inserting text in it, and ordering it in various ways.

Chapter 8 shows how a single query can draw information
from more than one table at a time. This process defines a
relationship between the tables, extending the ways in
which you can interrelate the data in your database.

Chapter 9 demonstrates that the same technique that
enables you to query multiple tables at once can enable
you to define special interrelationships between the items
of data in a single table.

In Chapter 10, you will learn how to execute one query and
have its output control what happens to another query.

Chapter 11 extends the technique introduced in Chap-
ter 10. Here you will learn how to have one query control
another by being executed repeatedly.

Chapter 12 introduces a new kind of SQL special opera-
tor. EXISTS is an operator that acts on an entire query
rather than on a simple value.

Chapter 13 introduces the operators ANY, ALL, and
SOME. These operators, like EXISTS, operate on entire

queries.

XXU

Chapter 14 introduces the command that enables you to
combine the output of multiple queries directly, rather
than having one control another.

Chapter 15 introduces the commands that determine
what the values are in a database—that is, the commands
to insert, delete, and update values.

Chapter 16 extends the power of the commands intro-
duced in the previous chapter by showing how they can
be controlled by queries.

Chapter 17 shows you how to create a table.

Chapter 18 elaborates on the creation of tables by show-
ing you how you can make them reject certain kinds of
changes automatically.

Chapter 19 explores the relationships built into your data-
base when, for a logical reason, a value located somewhere
in a table has to be the same as a value located elsewhere.

Chapter 20 talks about the view, a “window” that shows
the partial contents of some other table. Even if you do
not expect to create tables as such, you may want to look
over views, because they are quite useful, and are com-
monly created by many users who don’t create tables.

Chapter 21 concentrates on the complex issue of changing
the values in a view. When you change the values in a
view, you actually change them in the underlying table.
This brings up some special problems that are also treated
in this chapter.

Chapter 22 talks about privileges—who has the ability to
query tables, who has the ability to change their con-
tents, how these abilities can be given to and taken from
users, and so on.

Chapter 23 is something of a catchall for general features
that don’t fit in anywhere else. Specifically, we will dis-
cuss when changes to the database become permanent,
and how SQL deals with simultaneous actions.

xxul

¢ Chapter 24 describes how SQL databases keep your
database structured, and shows you how to access and
use this information.

e Chapter 25 focuses on the special problems and proce-
dures associated with putting SQL commands inside
other languages. It includes SQL features relevant only
to the embedded form, such as cursors and the FETCH

command.

The appendices of this book contain the answers to the sample
problems (Appendix A), an extra copy of the sample tables
(Appendix E), some detailed information on different types of data
(Appendix B) and on common nonstandard features (Appendix C),
as well as a reference guide to SQL commands (Appendix D).

CONVENTIONS OF THIS BOOK

SQL consists of instructions you give a database program, tell-
ing 1t to perform some action. Although these are commonly
called “‘statements” in database jargon, we shall, for the most
part, use the term ‘““‘commands” to emphasize that these are
directions that have effects.

Words 1n i1talics are terminology. In the text, terms are itali-
cized when they are first explained; in the syntax of commands,
they are italicized to indicate that they stand for something
besides themselves.

In our examples, we will show you the text you should enter
into your database program, and then show you the output as it
appears in one database product (FirstSQL, a database program
for the IBM PC). Output from other products may look differ-
ent, but the content will be the same.

2 UNDERSTANDING SQL

CH. 1

BEFORE YOU CAN USE SQL, YOU MUST UNDERSTAND
what relational databases are. In this chapter, we will explain this,
and show you how relational databases are useful. We won’t be
discussing SQL specifically here, so if you already understand
these concepts fairly well, you may wish.to merely skim this chap-
ter. In any case, you should look at the three tables that are intro-
duced and explained at the chapter’s end; these will be the basis of
most of our examples in this book. A second copy of them is avail-
able in Appendix E, and we recommend copying them for your
referenes.

WHAT IS A RELATIONAL DATABASE? —

A relational database is a body of related information stored in
two-dimensional tables. Think of an address book. There are
many entries in the book, each of which corresponds to a given
individual. For each individual, there may be several indepen-
dent pieces of data, such as name, telephone number, and
address. Suppose you were to format this address book as a table
with rows and columns. Each row (also called a record) would
correspond to a certain individual; each column would contain a
value for each type of data—name, telephone number, and

address represented in each row. The address book might look
like this:

NAME TELEPHONE ADDRESS

Gerry Farish ~ (415)365-8775 127 Primrose Ave., SF
Celia Brock (707)874-3553 246 #4 3rd St., Sonoma
Yves Grillet (762)976-3665 778 Modernas, Barcelona

What you have here is the foundation of a relational database as
defined at the beginning of this discussion—a two-dimensional
(row and column) table of information. Relational databases sel-
dom consist of a single table, however. Such a table is little more
than a filing system. By creating several tables of interrelated infor-
mation, you can perform more complex and powerful operations
on your data. The power of the database lies in the relationships

INTRODUCING RELATIONAL DATABASES 3

that you can construct between the pieces of information, rather
than in the pieces of information themselves.

RELATING TABLES TO EACH OTHER

Let us use the example of our address book to discuss a data-
base that would actually be used in a business situation. Suppose
the individuals in our first table (the address book) are patients
in a hospital. In another table, we could store additional infor-
mation about these patients. The columns of the second table
might be labelled Patient, Doctor, Insurer, and Balance.

PATIENT DOCTOR INSURER BALANCE
Farish Drume B.C./B.S. $272.99
Grillet Halben None $44.76
Brock Halben Health, Inc. $9077.47

Many powerful functions could be performed by extracting
information from these tables according to specific criteria, espe-
cially when the criteria involve relating pieces of information
from different tables to one another. For example, suppose Dr.
Halben wanted the phone numbers of all of his patients. To
extract this information, he could relate the table with the phone
numbers of patients (the address book) to the table that shows
which patients are his. Although, in this simple example, he
could also do this in his head and produce the phone numbers of
patients Grillet and Brock, these tables could easily be larger and
more complex. Relational-database programs were developed to
process large and complex collections of data of this kind, which
obviously are quite common in the business world. Even if the
hospital database contained hundreds or thousands of names—as
is probably the case in practice—a single SQL command could
give Dr. Halben the information he needed almost instantly.

THE ORDER OF THE ROWS IS ARBITRARY

To maintain maximum flexibility, the rows of a table are, by
definition, in no particular order. This is an aspect of database

4 UNDERSTANDING SQL

CH. 1

that differs from our address book. The entries in an address
book are usually ordered alphabetically. In relational-database
systems, one powerful capability that users have is the ability to
order the information however they want to as they retrieve it.

Consider the second table. Sometimes you might want to see
this information ordered alphabetically by name, sometimes by
the balance in ascending or descending order, and sometimes
grouped by doctor. Imposing a set order on the rows would
interfere with the user’s ability to be flexible, so the rows are
always considered to be unordered. For this reason, you cannot
simply say, “I want to look at the fifth row of a table”” Regard-
less of the order in which the data is entered or of any other crite-
ria, there is, by definition, no such fifth row. The rows of the
table are considered to be in no particular sequence.

IDENTIFYING ROWS (THE PRIMARY KEY)

For this and other reasons, you need to have a column in your
table that uniquely identifies each row. Typically, this column
contains a number—a patient number assigned to each patient,
for example. Of course, you could also use the patient’s name,
but it is possible to have several Mary Smiths; in that case, you
would have no simple way to distinguish these patients from one
another. This is why numbers are more commonly used. This
unique column (or unique group of columns), used to identify
each row and keep all rows distinct, is referred to as the primary
key of the table.

The primary key of a table is vital to the structure of the data-
base. It is the heart of your filing system; when you want to find
a specific row in a table, you refer to it by the primary key. In
addition, primary keys guarantee that your data has a certain
integrity. If the primary key is properly used and maintained,
you will know that no row of a table is empty and that every row
is different from every other row. We will discuss keys further
when we talk about referential integrity in Chapter 19.

COLUMNS ARE NAMED AND NUMBERED

Unlike the rows, the columns (also called fields) of a table are
ordered and named. Thus, in our address-book table, it is possible

INTRODUCING RELATIONAL DATABASES 5

3

to refer to the ‘“‘address column’ or to ‘“‘column 3”’. Naturally,
this means that each column of a given table must have a
different name to avoid ambiguity. It is best if these names indi-
cate the content of the field. In the sample tables in this book, we
will use some abbreviations as column names, such as ¢name for
customer name, and odate for order date. We have also given
each table a single numeric column as a primary key. The next
section will explain these tables and their keys in detail.

A SAMPLE DATABASE

Tables 1.1, 1.2, and 1.3 constitute a relational database that is
small enough to follow easily, but complex enough to illustrate
the major concepts and practices involved in using SQL. These
tables are printed in this chapter and also in Appendix E. Since
they will be used to illustrate the various features of SQL
throughout this book, we recommend you copy them for easy
reference.

You will notice that the first column of each table contains
numbers whose values are different for every row. As you may
have guessed, these are the primary keys of the tables. Some of
these numbers also appear in columns of other tables. There is
nothing wrong with this. It indicates a relationship between the
rows that use a value taken from a primary key, and the row
where that value is used in the primary key itself.

Table 1.1: Salespeople

SNUM SNAME City CoMM
1001 Peel London 12
1002 Serres San Jose .13
1004 Motika London 11
1007 Rifkin Barcelona alls
1003 Axelrod New York .10

6 UNDERSTANDING SQL

CH. 1

Table 1.2: Customers

CNUM CNAME CITY RATING SNUM
2001 Hoffman London 100 1001
2002 Giovanni Rome 200 1003
2003 Liu San Jose 200 1002
2004 Grass Berlin 300 1002
2006 Clemens London 100 1001
2008 Cisneros San Jose 300 1007
2007 Pereira Rome 100 1004

Table 1.3: Orders

ONUM AMT ODATE CNUM SNUM
3001 18.69 10/03/1990 2008 1007
3003 767.19 10/03/1990 2001 1001
3002 1900.10 10/03/1990 2007 1004
3005 5160.45 10/03/1990 2003 1002
3006 1098.16 10/03/1990 2008 1007
3009 1713.23 10/04/1990 2002 1003
3007 75.75 10/04/1990 2004 1002
3008 4723.00 10/05/1990 2006 1001
3010 1309.95 10/06/1990 2004 1002
3011 9891.88 10/06/1990 2006 1001

For example, the snum field of the Customers table indicates
to which salesperson a customer is assigned. The snum number
relates to the Salespeople table, which gives information about
these salespeople. Obviously, the salespeople to whom the cus-
tomers are assigned should exist—that is to say, the snum values
in the Customers table should also be present in the Salespeople

INTRODUCING RELATIONAL DATABASES 7

table. If this is the case, we say that the system is in a state of ref-
erential integrity. This issue will be more thoroughly and formally
explained in Chapter 19.

The tables themselves are intended to resemble a real-life busi-
ness situation, where you would use SQL to keep track of the
salespeople, their customers, and the customers’ orders. Let’s
take a moment to look at these three tables and the meaning of
their various fields.

Here’s an explanation of the columns in Table 1.1:

FIELD CONTENT

snum A unique number assigned to each salesperson
(an “employee number’).

sname The name of the salesperson.

city The location of the salesperson.

comm The salesperson’s commission on orders in
decimal form.

Table 1.2 contains the following columns:

FIELD CONTENT

cnum A unique number assigned to each customer.
cname The name of the customer.

city The location of the customer.

rating A numeric code indicating level of preference
given this customer. Higher numbers indicate
greater preference.

snum The number of the salesperson assigned to this
customer (from the Salespeople table).

And here are the columns in Table 1.3:

FIELD CONTENT
onum A unique number given to each purchase.

amt The amount of the purchase.

8 UNDERSTANDING SQL

CH. 1

odate The date of the purchase.

cnum The number of the customer making the purchase
(from the Customers table).

snum The number of the salesperson credited with the
sale (from the Salespeople table).

SUMMARY

Now you know what is meant by a relational database, a con-
cept that sounds more complicated than it really is. You also
have learned some fundamental principles about how tables are
structured—how rows and columns work, how primary keys dis-
tinguish rows from one another, and how columns can refer to
values in other columns. You are aware that record 1s a synonym

for row, and that field is a synonym for column. Both terminolo-

gies are encountered in discussions of SQL, and we will use
them interchangeably in this book.

You are now familiar with the sample tables. Brief and simple
as they are, they are adequate to demonstrate most of the fea-
tures of the language, as you shall see. On occasion, we will
introduce another table or postulate some different data in one of
these tables to show you some other possibilities.

Now you are ready to dive into SQL itself. The next chapter
gives you a bird’s-eye view of the language, orienting you to the
terrain and putting a lot of the material you may need to refer
back to in one familiar place.

12 UNDERSTANDING SQL

CH. 2

THIS CHAPTER WILL ACQUAINT YOU WITH THE
structure of the SQL language as well as with certain general
issues, such as the types of data that fields can contain and some
of the areas of ambiguity that exist in SQL. It is intended to pro-
vide a context for the more specific information in subsequent
chapters. You do not need to remember every detail mentioned
in this chapter. The overview presented here consolidates, in one
easily located area, many of the details that you may have to
refer back to as you proceed to master the language. We have
put all this at the beginning of the book to orient you to the
world of SQL without oversimplifying it and to give you a famil-
1ar place to refer back to when you have questions. This material
will become much clearer when we move into the specifics of
SQL commands, starting in Chapter 3.

HOW DOES SOL WORK?

SQL is a language oriented specifically around relational data-
bases. It eliminates a lot of the work you would have to do if you
were using a general-purpose programming language, such as
C. To build a relational database in C, you would have to start
from scratch. You would have to define an object called a table
that could grow to have any number of rows, and then create
step-by-step procedures for putting values in it and retrieving
them. If you wanted to find some particular rows, you would
have to enumerate each step of the process like this:

1. Look at a row of the table.
2. Perform a test to see if it is one of the rows you want.
3. If so, store it somewhere until the whole table i1s examined.
4. See if there are any more rows in the table.
5. If there are more rows, go back to step 1.

6. If there are no more rows, output all values stored in step 3.
(Of course, this is not an actual set of C instructions, just an

English-language rendition of the logical steps that would be
involved.)

SQL: AN OVERVIEW 13

SQL, however, spares you all this. Commands in SQL can
operate on entire groups of tables as single objects and can treat
any quantity of information extracted or derived from them as a
single unit as well.

HOW DOES ANSI FIT IN?

As we mentioned in the Introduction, the SQL standard is
defined by ANSI (the American National Standards Institute).
SQL was not invented by ANSI. It is essentially a product of IBM
research. But other companies picked up on SQL right away; in
fact, at least one company (Oracle) beat IBM to the punch with a
marketable SQL product.

After there were a number of competing SQL products on the
market, ANSI defined the standard to which they would all con-
form (defining such standards is ANSI’s function). Doing this
after the fact, however, presents some problems. The resulting
ANSI standard is somewhat limited; also what ANSI specifies is
not always what is found most useful in practice, so products
attempt to conform to the ANSI standard without letting it limit
them too much. This, in turn, leads to occasional inconsistencies
that we will explain as we encounter them. Database products
usually give ANSI SQL additional features and frequently relax
many of its more limiting restrictions. Therefore, common varia-
tions from ANSI will be explored as well. Although we obviously
cannot cover every exception or variation, successful ideas tend
to be copied and used similarly in different products even when
they are not specified by ANSI. ANSI is sort of minimum stan-
dard—you can do a lot more than it does, but you should pro-
duce the results it specifies when performing a task it defines.

INTERACTIVE VS EMBEDDED SQL

In a sense, there are two SQLs: interactive and embedded.
For the most part, the two forms operate the same way, but they
are used differently.

Interactive SQL is used to operate directly on a database to
produce output for human consumption. In this form of SQL,

14 UNDERSTANDING SQL

CH. 2

you enter a command now, it is executed now, and you can see
the output (if any) immediately.

Embedded SQL consists of SQL commands put inside of pro-
grams that are mostly written in some other language (such as
COBOL or Pascal). This can make these programs more power-
ful and efficient. However, enabling these languages to deal with
SQULs structure and its style of data management does require
some extensions to interactive SQL. The output of SQL com-
mands in embedded SQL is “passed off”” to variables or param-
eters usable by the program in which it is embedded.

In this book, we will present SQL in its interactive form. This
will enable us to discuss commands and their effects without
worrying about how they interface with other languages. Inter-
active SQL 1s also the form most useful to nonprogrammers.
What you learn about interactive SQL basically applies as well
to the embedded form. The changes needed to use the embedded
form will be dealt with in the last chapter of this book.

THE SUBDIVISIONS OF SQL

In both the interactive and the embedded forms of SQL., there
are multiple sections, or subdivisions. Since you are hkely to
encounter this terminology when reading about SQL, we will
provide some explanation. Unfortunately, these terms are not
used consistently in all implementations. They are emphasized
by ANSI and are useful on a conceptual level, but many SQL
products do not treat them separately in practice, so they essen-
tially become functional categories of SQL commands.

Data Definition Language (or DDL, also called Schema Defi-
nition Language in ANSI) consists of those commands that cre-
ate the objects (tables, indexes, views, and so on) in the data-
base. Data Manipulation Language (DML) is a set of
commands that determine which values are present in the tables
at any given time. Data Control Language (DCL) consists of
features that determine whether a user is permitted to perform a
particular action. This is considered part of DDL in ANSI.
Don’t let these names put you off. These are not different lan-
guages per se, but divisions of SQL commands into groups
according to their functions.

SQL: AN OVERVIEW 15

THE VARIOUS TYPES OF DATA

Not all the types of values that can occupy the fields of a table
are logically the same. The most obvious distinction is between
numbers and text. You can’t put numbers in alphabetical order
or subtract one name from another. Since relational-database
systems are based on the relationships between pieces of infor-
mation, the various types of data must be clearly distinguished
from one another, so that the appropriate processes and compari-
sons can be applied.

In SQL, this is done by assigning each field a data type that
indicates the kind of value the field will contain. All of the values
in a given field must be of the same type. In the Customers
table, for example, cname and city are strings of text, whereas
rating, snum, and cnum are numbers. For this reason, you
could not enter Highest or None into the rating field, which has
a numeric data type. This limitation is fortunate because it
imposes some structure on your data. You frequently will be
comparing some or all of the values in a given field, so that you
can perform an action on some rows and not on others. You
could not do this if the field’s values had mixed data types.

Unfortunately, the definition of these data types is a major area in
which many commercial database programs and the official SQL
standard are not always in synch. The ANSI SQL standard recog-
nizes only text and number types, whereas many commercial pro-
grams use other special types as well. Notably, DATE and TIME are
almost defacto standard types (although the exact format varies).
Some packages also support types such as MONEY and BINARY.
(Binary is a special number system used by computers. All of the
information in a computer is represented by binary numbers and
then converted to other systems so we can more easily use and under-
stand it.)

ANSI defines several different types of number values, the dis-
tinctions between which are frequently subtle and sometimes con-
fusing. The exact ANSI data types are enumerated in Appendix B.
The complexity of the ANSI numeric types can, at least in part, be
explained by the effort to make embedded SQL compatible with a
variety of other languages.

16 UNDERSTANDING SQL

CH. 2

Two ANSI number types, INTEGER and DECIMAL (which
can be abbreviated as INT and DEC, respectively), will be ade-
quate for our purposes, as well as the purposes of many practical
business applications. Of course, an INTEGER can be thought of
as a DECIMAL that allows no digits to the right of the (implied)
decimal point.

The type for text is CHAR (or CHARACTER), which refers
to a string of text. A field of type CHAR has a definite length,
which is the maximum number of characters that can be entered
into that field. Most implementations also have a nonstandard
type called VARCHAR, which is a text string that can be of any
length up to an implementation-defined maximum (typically 254
characters). CHARACTER and VARCHAR values are enclosed
in single quotes such as ’text’. The difference between CHAR
and VARCHAR is that CHAR has to reserve enough memory
for the maximum length of the string. VARCHAR allocates
memory as needed.

The character types consist of all the printable characters,
including the numbers. However, the number 1 is not the same
as the character '1’. The character '1’ is just another printable
piece of text, not recognized by the system as having the numeric
value 1. 1 + 1 = 2, but’1’ + 1’ does not equal '2’. CHAR-
ACTER values are stored in the computer as binary values, but
appear to the user as printable text. The conversion follows a for-
mat defined by the system you are using. This conversion format
will be one of the two standard types (possibly with extensions)
used in computer systems: ASCII (used in all personal and most
small computers) and EBCDIC (used in some larger computers).
Certain operations, such as alphabetical ordering of field values,
will vary with the format. Implications of these two formats will
be discussed in Chapter 4.

We shall follow the market, not ANSI, in using the type called
DATE. (In an implementation that did not recognize the DATE
type, you could declare a date as a character or numeric field, but
this makes many operations more difficult.) You should refer to the
documentation on the software package you will be using to find
out exactly what data types it supports.

SQL: AN OVERVIEW 17

SQL INCONSISTENCIES

As you may have gathered from the preceding discussion, there
are inconsistencies within the world of SQL itself. SQL emerged
from the commercial database world as a tool, and was later
turned into an ANSI standard. Unfortunately, what ANSI speci-
fies 1s not always what is found most useful in practice, so prod-
ucts attempt to conform to the ANSI standard without letting it
limit them too much. ANSI is a sort of minimum standard—you
can do a lot more than it does, but you should be able to produce
the same results as it does when performing the same task.

WHAT IS A USER?

SQL is mostly found in computer systems that have more than
one user, and need to differentiate between them (your family
PC may have any number of users, but it usually has no way of
distinguishing one from another). Typically, in such a system,
each user has some sort of authorization code that identifies him
or her (the terminology varies). When beginning a session with
the computer, the user logs on, which tells the computer which
user, identified by an authorization ID, is speaking. Any number
of people using the same authorization ID are a single user as far
as the computer 1s concerned; likewise, a person can be many
users (generally at different times) by using different authoriza-
tion ID’s.

SQL follows this pattern. Actions in most SQL environments
are credited to a specific authorization ID, which usually corre-
sponds to a user. A table or other object i1s owned by a user, who
has authority over what happens to it. A user may or may not
have the privilege to perform an action on an object he or she
does not own. For our purposes, we will assume any user has the
privileges needed to perform any action, until we get around to
discussing privileges specifically in Chapter 22.

The special value USER can be used as an argument to a
command. It indicates the authorization ID of the user issuing
the command.

18 UNDERSTANDING SQL

CH. 2

CONVENTIONS AND TERMINOLOGY

Keywords are words that have a special meaning in SQL. They
are understood to be instructions, not text or names of objects.
We will indicate keywords by printing them in all CAPS. You
should take care not to confuse keywords with terminology. SQL
has certain special terms that are used to describe it. Among
these are such words as query, clause, and predicate, which are
important in describing and understanding the language but do
not mean anything to SQL itself.

Commands, or statements, are instructions given by you to a SQL
database. Commands consist of one or more logically distinct
parts called clauses. Clauses begin with a keyword for which they
are generally named, and consist of keywords and arguments.
Examples of clauses you will encounter are “FROM Salespeople”
and “WHERE city = 'London’.” Arguments complete or modify
the meaning of a clause. In the examples above, “Salespeople” is
the argument, and FROM is the keyword of the FROM clause.
Likewise, “city = ’London’ ” is the argument of the WHERE
clause. Objects are structures in the database that are given names
and stored in memory. They include base tables, views (the two
kinds of tables), and indexes.

When we show you how commands are formed, we will gener-
ally do so by example. There is, however, a more formal method
of describing commands using standardized conventions. We
will make some use of this in later chapters, it is good for you to
understand these conventions in case you encounter them in
other SQL documents. Square brackets ([]) will indicate por-
tions that can optionally be omitted, and ellipses (. ..) will indi-
cate that the preceding may be repeated any number of times.
Words indicated in angle brackets (<>) are special terms that
will be explained as they are introduced. We have simplified the
standard SQL terminology considerably, but without changing
the effect.

SUMMARY

Whew! You have quickly covered a lot of ground in this chap-
ter. But our intention has simply been to fly high over the SQL

SQL: AN OVERVIEW 19

territory, so you could have an idea of its overall shape. When we
return to the ground in the next chapter, things will become
much more concrete. Now you know a fair amount about SQL
—how it is structured, how it is used, how it conceives of data,
how and by whom it is defined (and some inconsistencies emerg-
ing from that), and some of the conventions and terminology
used to describe it. This is a lot of information for a single chap-
ter; we don’t expect you to remember all of the details, but you
can refer to details as you need to. The important thing is the big
picture.

In Chapter 3, we will go hands-on, showing exactly how com-
mands are formed and what they do. We will introduce the SQL
command used to extract information from tables, which is eas-
ily the most widely used command in SQL. By the end of that
chapter, you will be able to extract highly specific information
from your database.

22 UNDERSTANDING SQL

CH. 3

IN THIS CHAPTER WE WILL SHOW YOU HOW TO
retrieve information from tables. You will learn how to omit or to
reorder columns and how to eliminate redundant data from your
output automatically. Finally, you will learn how to define a con-
dition—a test, if you will—that you can use to determine which
rows of a table are used to derive output. This last feature, to be

further described in later chapters, is one of the most elegant and
powerful in SQL.

MAKING A QUERY

As we pointed out before, SQL stands for Structured Query
Language. Queries are probably the most frequently used aspect
of SQL. In fact, there is a category of SQL users who are
unlikely to ever use the language for anything else. For this rea-
son, we will begin our discussion of SQL with a discussion of the
query and how it is implemented in this language.

What is a query? A query is a command you give your data-
base program that tells it to produce certain specified informa-
tion from the tables in its memory. This information is usually
sent directly to the screen of the computer or terminal you are
using, although, in many cases, it can also be sent to a printer,
stored 1n a file (as an object in the computer’s memory), or given
as input to another command or process.

WHERE DO QUERIES FIT IN?

Queries are usually considered as part of DML. However,
because a query does not change the information in the tables at
all, but merely shows it to the user, we shall consider queries a
category unto themselves and define DML commands as those
that affect, rather than simply reveal, the contents of a database.

Queries in SQL are all constructed from a single command.
The structure of this command is deceptively simple, because
you can extend it enough to allow some highly sophisticated

evaluating and processing of data. This command is called
SEEEET.

USING SQL TO RETRIEVE INFORMATION FROM TABLES 23

THE SELECT COMMAND

In its simplest form, the SELECT command simply instructs
the database to retrieve information from a table. For example,
you could produce the Salespeople table by typing the following:

SELECT snum, sname, city, comm
FROM Salespeople;

The output for this query is shown in Figure 3.1.

SQL Execution Logmm——eovx-71——"—auouor
SELECT snum, sname, city, comm
FROM Salespeople;

—soum J___ same B city L com]
1681 Peel London .
1982 Serres San Jose
18064 Motika London
1887 Rifkin Barcelona
1883 Axelrod New York

Browse : tle¢> PgDn PgUp —)

Figure 3.1: The SELECT command

In other words, this command simply outputs all of the data in
the table. Most programs will also provide column headings as
above, and some allow elaborate formatting of the output, but
that is beyond the specifications of the standard. Here is an
explanation of each part of the command:

SELECT A keyword that tells the database
this command is a query. All queries
begin with this word followed by a
space.

24 UNDERSTANDING SQL

CH. 3

snum, sname . ..

FROM Salespeople

This is a list of the columns from the
table that are being selected by the
query. Any columns not listed here
would not be included in the output
of the command. This, of course,
would not delete them or their
information from the tables because
a query does not affect the
information in the tables; it only
exhibits the data.

FROM i1s a keyword, like SELECT,
which must be present in every
query. It is followed by a space and
then the name of the table being
used as the source of the
information. In this case that table
1s Salespeople.

The semicolon is used in all
interactive SQL commands to tell
the database that the command is
complete and ready to be executed.
A substitute on some systems is a
backslash (\) on a line by itself after
the end of the command.

It is worth noting here that a query of this nature will not nec-

essarily order its output in any particular way. The same com-
mand executed on the same data at different times may not even
produce the same ordering. Usually, the rows come out in the
order in which they are found in the table but, as we stated in
the previous chapter, that order is arbitrary. It will not necessar-
ily be the order in which the data is entered or stored. You can
order output from SQL commands directly through the use of a
special clause. Later, we will explain how to do this. For now,
simply recognize that, in the absence of explicit ordering, there
is no definite order to your output.

USING SQL TO RETRIEVE INFORMATION FROM TABLES 25

Our use of the return (the Enter key) is arbitrary. We could
just as easily have typed the query on one line as follows:

SELECT snum, sname, city, comm FROM Salespeople;

Since SQL uses the semicolon to indicate the end of a com-
mand, most SQL programs treat the return (made by pressing
the Return or Enter key) as a space. It 1s a good idea to use
returns and indentation as we did previously to make your com-
mands easier to read and correct.

SELECTING EVERYTHING THE EASY WAY

If you want to see every column of a table, there i1s an optional
abbreviation you can use. The asterisk (*) can be substituted for
a complete list of the columns as follows:

SELECT *
FROM Salespeople;

This will produce the same result as our previous command.

SELECT IN BRIEF

In summation, the SELECT command begins with the key-
word SELECT, followed by a blank. After this comes a list of the
names of the columns you wish to see, separated by commas. If
you wish to see all of the columns of a table, you can replace this
list with an asterisk (*). The keyword FROM is next, followed
by a space and the name of the table that is being queried.
Finally, a semicolon (;) must be used to end the query and indi-
cate that the command is ready to be executed.

LOOKING ONLY AT
CERTAIN COLUMNS OF A TABLE

The power of the SELECT command lies in its ability to
extract highly specific information from a table. First, we will

26 UNDERSTANDING SQL

CH. 3

introduce the ability to look only at specified columns of a table.
This is done easily by simply omitting the columns you do not
wish to see from the SELECT portion of the command. For
example, this query

SELECT sname, comm
FROM Salespeople;

will produce the output shown in Figure 3.2.

SELECT sname, comm
FROM Salespeople;

Peel
Serres
Motika
Rifkin
Axelrod

Browse : tile¢> PgDn PgUp —b|

Figure 3.2: Selecting certain columns

There may be tables that have a large number of columns con-
taining data, not all of which is relevant to the purpose at hand.
Therefore, you will find the ability to pick and choose your
columns quite useful.

COLUMN REORDERING

Even though the columns of a table are, by definition, ordered,
this does not mean that you have to retrieve them in that order.
An asterisk (*) will produce all the columns in their proper order,
but if you indicate the columns separately, you can put them in
any order you want. Let’s look at the Orders table, placing the

USING SQL TO RETRIEVE INFORMATION FROM TABLES 27

order date first, followed by the salesperson number, the order
number, and the amount:

SELECT odate, snhum, onum, amt
FROM Orders;

This query’s output is shown in Figure 3.3.

2380l Execution Log
SELECT odate, snum, onum, amt

FROM Orders;

1Q/%3/199¢

10/83/1999
18/83/1999
19/93/1998

10/83/1998
10/04/1998
110/04/1990
18/85/ 1958
10/06/19990
18/86/1998

Figure 3.3: Rearranging columns

As you can see, the structure of the information in the tables is
merely a foundation for its active restructuring with SQL.

ELIMINATING REDUNDANT DATA

DISTINCT is an argument that provides a way for you to
eliminate duplicate values from your SELECT clause. Suppose
you want to know which salespeople currently have orders in the
Orders table. You don’t need to know how many orders each one
has; you need only a list of salesperson numbers (snum’s). You
could enter

SELECT snum
FROM Orders;

to get the output shown in Figure 3.4.

28

UNDERSTANDING SQL

CH.3

SQL Execution Log—m————————
SELECT snum
FROM Orders;

Browse : tl¢> PgDn Pgup —bP| |4— Home=}—I

|
i
|
|
1

Figure 3.4: SELECT with duplicates

To produce a list without duplications, which would be easier
to read, you could enter the following:

SELECT DISTINCT snum
FROM Orders;

The output for this query is shown in Figure 3.5.

In other words, DISTINCT keeps track of which values have
come up before, so they will not be duplicated on the list. This is
a useful way to avoid redundant data, but it is important that
you be aware of what you are doing. If you should not have
redundant data, you should not use DISTINCT, because it can
hide a problem. For example, you might assume that all your
customers’ names are different. If someone put a second Cle-
mens in the Customers table, however, and you use SELECT
DISTINCT cname, you would not even see evidence of the
duplication. You might get the wrong Clemens. Since you don’t
expect redundancy in this case, you shouldn’t use DISTINCT.

THE PARAMETERS OF DISTINCT DISTINCT can be
specified only once in a given SELECT clause. If the clause

USING SQL TO RETRIEVE INFORMATION FROM TABLES 29

f=——————————2=SQL Execution Log———————
SELECT DISTINCT snum
FROM Orders;

Browse : tle¢> PgDn PgUup —»| | 4— Home

Figure 3.5: SELECT without duplicates

selects multiple fields, DISTINCT eliminates rows where all of
the selected fields are identical. Rows in which some values are
the same and some different will be retained. DISTINCT, in
effect, applies to the entire output row, not a specific field
(except when used within aggregate functions, as explained in
Chapter 6), so it makes no sense to repeat it.

DISTINCT VS ALL As an alternative to DISTINCT, you
may specify ALL. This has the opposite effect: duplicate output
rows are retained. Since this is also what happens if you specify
neither DISTINCT nor ALL, ALL is essentially a clarifier,

rather than a functional argument.

QUALIFIED SELECTION—
THE WHERE CLAUSE

Tables tend to get very large as time goes on, and more and
more rows are added. As it is usually only certain rows that
interest you at a given time, SQL enables you to define criteria
to determine which rows are selected for output. The WHERE

30 UNDERSTANDING SQL

CH. 3

clause of the SELECT command allows you to define a predicate,
a condition that can be either true or false for any row of the
table. The command extracts only those rows from the table for
which the predicate is true. For example, suppose you want to
see the names and commissions of all salespeople in London. You
could enter this command:

SELECT sname, city
FROM Salespeople
WHERE city = 'London’;

When a WHERE clause is present, the database program
goes through the entire table one row at a time and examines
each row to determine if the predicate 1s true. Therefore, for the
Peel record, the program will look at the current value of the city
column, determine that it is equal to 'London’, and include this
row in the output. The Serres record will not be included, and so
on. The output for the above query is shown in Figure 3.6.

Notice that the city column is not included in the output, even
though its value is used to determine which rows are selected.
This is perfectly alright. It is not necessary for the columns used

SELECT sname, city
FROM Salespeople
WHERE city = 'London’;

Peel London
Motika London

Browse : ti¢> PgDn PgUp —»P

Figure 3.6: SELECT with a WHERE clause

USING SQL TO RETRIEVE INFORMATION FROM TABLES 31

in the WHERE clause to be present among those selected for
output.

Let’s try an example with a numeric field in the WHERE
clause. The rating field of the Customers table is intended to sep-
arate the customers into groups based on some criteria that can
be summarized by such a number. Perhaps it is a form of credit
rating or a rating based on the volume of previous purchases.
Such numeric codes can be useful in relational databases as a
way of summarizing complex information. We can select all cus-
tomers with a rating of 100, as follows:

SELECT *
FROM Customers
WHERE rating = 100;

The single quotes are not used here because rating is a numeric field.
The results of the query are shown in Figure 3.7.

The WHERE clause is compatible with the previous material in
this chapter. In other words, you can still use column numbers, elimi-

nate duplicates, or reorder columns in SELECT commands that use
WHERE.

SQL Execution Log

SELECT =
FROM Customers
WHERE rating = 100:

(l_crum N cname N city [rating N snum |
‘ 20091 Hoffman London 190 1981
2@@6 Clemens London 190 1981
2007 Pereira Rome 100 1904

Browse : td¢»> PgDn PgUup —P| |4— Home

Figure 3.7: SELECT with a numeric field in the predicate

36 UNDERSTANDING SQL

CH. 4

IN CHAPTER 3, YOU LEARNED THAT PREDICATES CAN
evaluate an equals statement as true or false. They can also evalu-
ate other kinds of relationships besides equalities. This chapter will
explore the other relational operators used in SQL. You will also
learn how to use Boolean operators to change and combine predi-
cate values. With Booleans, a single predicate can contain any
number of conditions. This allows you to produce quite sophisti-
cated predicates. The use of parentheses to structure these complex
predicates will also be explained.

RELATIONAL OPERATORS

A relational operator 1s a mathematical symbol that indicates a
certain type of comparison between two values. You have already
seen how equalities, such as 2 + 3 = 5 orcity = 'London’, are
used. But there are other relational operators as well. Suppose
you want to see all Salespeople with commissions above a certain
amount. You would use a greater-than type of comparison.
These are the relational operators that SQL recognizes:

= Equal to

Greater than

>

< Less than
> = Greater than or equal to
<

= Less than or equal to

<> Notequalto

These operators have the standard meanings for numeric val-
ues. For character values, their definition depends on the con-
version format, ASCII or EBCDIC, that you are using. SQL
compares character values in terms of the underlying numbers as
defined in the conversion format. Even character values, such as
’1’, which represent numbers, do not necessarily equal the num-
ber they represent.

You can use relational operators to represent alphabetical
order—for example, ’a’ < ’n’ means a precedes n in alphabeti-
cal order—but this is limited by the parameters of the conversion

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATE MORE SOPHISTICATED PREDICATES 37

format. In both ASCII and EBCDIC, characters are less than all
other characters that they precede in alphabetical order, pro-
vided all are of a single case (upper or lower). In ASCII, all
uppercase characters are less than all lowercase characters, so
that 'Z’ < ’a’, and all numbers are less than all characters, so
that ’1’ < ’Z’. Both of these are reversed in EBCDIC. To keep
the discussion simple, we will assume from here on that you are
using the ASCII format. Consult your system documentation if
you are unsure of which format you are using or how it works.

The values being compared here are called scalar values. Scalar
values can be produced by scalar expressions; 1 + 2 is a scalar
expression that produces the scalar value 3. Scalar values can be
characters or numbers, although obviously only numbers are
used with arithmetic operators, such as + or *. Predicates typi-
cally compare scalar values using either relational operators or
special SQL operators to see if the comparison is true. Some
SQL operators are explained in Chapter 5.

Suppose you wanted to see all customers with a rating above
200. Since 200 is a scalar value, as are the values in the rating
column, you would use a relational operator to compare them:

SELECITE
FROM Customers
WHERE rating > 200;

The output for this query is shown in Figure 4.1.
Of course, if we also wanted to see the customers with a rating
equal to 200, we would use the predicate

rating > = 200

BOOLEAN OPERATORS

Basic Boolean operators are also recognized in SQL. Boolean
expressions are those that are either true or false, like predicates.
Boolean operators relate one or more true/false values and pro-
duce a single true/false value. The standard Boolean operators
recognized in SQL are AND, OR, and NOT. Other, more com-
plex, Boolean operators exist (such as “exclusive or’’), but these

38

UNDERSTANDING SQL

CH. 4

SQL Execution Log

SELECT *
FROM Customers
WHERE rating > 200:;

| _cnum | | _snum |
2004 Grass Berlin 300 1002
2908 Cisneros San Jose 300 1887

Figure 4.1: Using greater than (>)

can be built from our three simple pieces. As you may be aware,
Boolean true/false logic is the entire basis of digital computer
operation; so, actually, everything SQL (or any other language)
does can be reduced to Boolean logic. These are the Boolean
operators and how they work:

¢ AND takes two Booleans (in the form A AND B) as
arguments and evaluates to true if they are both true.

¢ OR takes two Booleans (in the form A OR B) as argu-

ments and evaluates to true if either is true.

e NOT takes a single Boolean (in the form NOT A) as an
argument and changes its value from false to true or from
true to false.

By relating predicates with Boolean operators, you can greatly
increase their sophistication. Suppose you want to see all cus-
tomers in San Jose who have a rating above 200:

SELECT *
FROM Customers
WHERE city = 'San Jose’
AND rating > 200;

40 UNDERSTANDING SQL

CH. 4

SELECT =

FROM Customers

WHERE city = ’San Jose’
OR rating > 200;

cname T

2003 Liu San Jose 1902
2094 Grass Berlin BQG 10082
2¢0@8 Cisneros San Jose 300 1087

Browse : ti€>

xecution Log
SELECT *
FROM Customers
WHERE city = ’San Jose’
OR NOT rating > 200;

| __city N rating W snum |

1 Hoffman London 100 1881
Giovanni Rome 209 1903
Liu San Jose 209 1992
Clemens London 100 1981
Cisneros San Jose 300 1087
Pereira 1004

Figure 4.4: SELECT using NOT

All of the records except Grass were selected. Grass was not in
San Jose, and his rating was greater than 200, so he failed both
tests. Each of the other rows met one or the other (or both) of these
criteria. Notice that the NOT operator must precede a Boolean

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATE MORE SOPHISTICATED PREDICATES 41

whose value it is to change, not be located before the relational
operator as you might do in English. It is incorrect to enter

rating NOT > 200

as a predicate, even though that is how we would say it in
English. This brings up another point. How would SQL evalu-
ate the following?

SELECT *
FROM Customers
WHERE NOT city = 'San Jose’
OR rating > 200;

Does the NOT apply only to the city = ’San Jose’ expression,
or to both that and the rating > 200 expression? As written, the
correct answer would be the former. SQL will apply NOT only
to the Boolean expression immediately following it. You could
obtain another result with this command:

SELECT *
FROM Customers
WHERE NOT (city = 'San Jose’
OR rating > 200);

SQL understands parentheses to mean that everything inside
them will be evaluated first and treated as a single expression by
everything outside them (which is the standard interpretation in
mathematics). In other words, SQL takes each row and deter-
mines if the city = ’San Jose’ or the rating > 200. If either con-
dition is true, the Boolean expression inside the parentheses is
true. However, if the Boolean expression inside the parentheses
is true, the predicate as a whole is false, because NOT turns the
trues into falses and vice versa. The output for this query is
shown in Figure 4.5.

Here is a deliberately complex example. See if you can follow
its logic (the output is shown in Figure 4.6):

SELECT *
FROM Orders

42 UNDERSTANDING SQL

CH. 4

xecution Log

SELECT =

FROM Customers

WHERE NOT (city = ’'San Jose’
OR rating > 200);

| cname N city | rating | Iliﬂﬁlll]
2081 Hoffman London 169 1991
2992 Giovanni Rome 200 1983
2PP6 Clemens London 199 1991
2087 Pereira Rome 100 1004[

=—SQL Execution Log

IWHERE NOT ((odate = 106/83/1998 AND snum > 1002)
‘OR amt > 2000.00):

[_onum Q| amt

3003 767.19
3009 1713.23
3007 WEET5
3018 1389.95

odate
18/03/1990
16/064/1998
10/84/1998
16/86/1998

[_cnum |
2601
2882
2004
2094

Figure 4.6: A complex query

WHERE NOT ((odate = 10/03/1990 AND snum > 1002)
OR amt > 2000.00);

Although Boolean operators are simple individually, they are
not so simple when combined into complex expressions. The

T S M M. s ————

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATE MORE SOPHISTICATED PREDICATES 43

way to evaluate a complex Boolean is to evaluate the Boolean
expression(s) most deeply nested in parentheses, combine these
into a single Boolean value, and then combine this with the
higher nested values.

Here is a detailed explanation of how the example above was
evaluated. The most deeply nested Boolean expressions in the
predicate—odate = 10/03/1990 and snum > 1002—are joined
by an AND, forming one Boolean expression that will evaluate
to true for all rows that meet both of these conditions. This com-
pound Boolean expression (which we will call Boolean number 1,
or B1 for short) is joined with the amt > 2000.00 expression (B2)
by an OR, forming a third expression (B3), which is true for a
given row if either B1 or B2 is true for that row. B3 is wholly
contained in parentheses preceded by a NOT, forming the final
Boolean expression (B4), which is the condition of the predicate.
Thus B4, the predicate of the query, is true whenever B3 is false
and vice versa. B3 is false whenever B1 and B2 are both false. B1
1s false for a row if the order date of the row is not 10/03/1990 or
if its snum value 1s not greater than 1002. B2 is false for all rows
with an amount that is not above 2000.00. Any row with an
amount above 2000.00 would make B2 true; as a result, B3
would be true, and B4 false. Therefore, all such rows are elimi-
nated from the output. Of the remaining rows, those on October
3 with snum greater than 1002 (such as the row for onum 3001
on October 3 with snum of 1007), make B1 true, thereby making
B3 true, and the predicate of the query false. These are also
eliminated. The output shows the rows that are left.

SUMMARY

In this chapter, you have greatly extended your fluency with
predicates. Now you can find values that relate to a given value
in any one of a number of ways—all definable with the various
relational operators. You can also use the Boolean operators
AND and OR to combine multiple conditions, each of which
could stand alone in predicates, into a single predicate. The
Boolean operator NO'T, as you have scen, can reverse the mean-
ing of a condition or group of conditions. All of the Boolean and

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATE MORE SOPHISTICATED PREDICATES 45

T
E-'{. ‘.‘_c . s
R e S T

. Putting SQL to Work

1.

Write a query that will give you all orders for more than

$1,000.

Write a query that will give you the names and cities of
all salespeople in London with a commission above .10.

Write a query on the Customers table whose output will
exclude all customers with a rating < = 100, unless they
are located in Rome.

What will be the output from the following query?

SELECT *
FROM Orders
WHERE (amt < 1000 OR
NOT (odate = 10/03/1990
AND cnum > 2003));

What will be the output of the following query?

SELECT *
FROM Orders
WHERE NOT ((odate = 10/03/1990 OR shum
> 1006)
AND amt > = 1500);

What is a simpler way to write this query?

SELECT snum, sname, city, comm
FROM Salespeople
WHERE (comm > + .12 OR
comm < .14);

(See Appendix A for answers.)

48 UNDERSTANDING SQL
CH.

IN ADDITION TO THE RELATIONAL AND BOOLEAN
operators we discussed in Chapter 4, SQL uses the special opera-
tors IN, BETWEEN, LIKE, and IS NULL. In this chapter, you
will learn how to use them, as you would the relational opera-
tors, to produce more sophisticated and powerful predicates.
The discussion of IS NULL will involve the implications of miss-
ing data and of the NULL value that indicates data is missing.
You will also learn a variation in the usage of NOT that is appli-
cable to these operators.

THE IN OPERATOR

IN explicitly defines a set in which a given value may or may
not be included. Based on what you have learned up to now, if
you wanted to find all salespeople that were located in either
Barcelona or London, you would have to use the following query
(its output is shown in Figure 5.1):

SELECT *
FROM Salespeople
WHERE city = 'Barcelona’
OR city = 'London’;

Here is an easier way to get the same information:

SELECT *
FROM Salespeople
WHERE city IN ('Barcelona’, 'London’);

The output for this query is shown in Figure 5.2.

As you can see, IN defines a set by explicitly naming the
members of the set in parentheses, separated by commas. It then
checks the various values of the named field to try to find a
match. If it does, the predicate is true. When the set contains
numeric rather than character values, of course, the single
quotes are omitted. Let’s find all customers matched with sales-
people 1001, 1007, and 1004. The output for the following query

50 UNDERSTANDING SQL

CH.5

SQL Execution Log
SELECT =
FROM Customers
WHERE snum IN (1901, 1667, 1004);

Frating J snum |
2981 Hoffman London 109
2086 Clemens London 199
2¢¢8 Cisneros San Jose 3008

2087 Pereira Rome 100

Figure 5.3: SELECT using IN with numbers

THE BETWEEN OPERATOR

The BETWEEN operator is similar to IN. Rather than enu-
merating a set as IN does, BETWEEN defines a range that val-
ues must fall in to make the predicate true. You use the keyword
BETWEEN followed by the beginning value, the keyword AND
and the ending value. Unlike IN, BETWEEN is sensitive to
order, and the first value in the clause must be first in alphabetic
or numeric order. (Notice that, unlike English, SQL does not say
(value) ““is BETWEEN” (value) and (value), but simply (value)
“BETWEEN" (value) and (value). This applies as well to the
LIKE operator.) The following will extract from the Salespeople
table all salespeople with commissions between .10 and .12 (the
output is shown in Figure 5.4):

SELECT *
FROM Salespeople
WHERE comm BETWEEN .10 AND .12;

Notice that the BETWEEN operator is inclusive; that 1s, val-
ues matching either of the two boundary values (in this case, .10
and .12) cause the predicate to be true. SQL does not directly

USING SPECIAL OPERATORS IN CONDITIONS 51

SELECT *
FROM Salespeople
WHERE comm BETWEEN .10 AND .

1891 Peel

1624 Motika

1883 Axelrod
Browse : tTile-

Figure 5.4: SELECT using BETWEEN

support a noninclusive BETWEEN. You must either define your
boundary values so that an inclusive interpretation is acceptable,
or do something like this:

SELECT *
FROM Salespeople
WHERE (comm BETWEEN .10, AND .12)
AND NOT comm IN (.10, .12);

The output for this query is shown in Figure 5.5.

Admittedly, this is a bit clumsy, but it does show how these
new operators can be combined with Boolean operators to pro-
duce more complex predicates. Basically, you use IN and
BETWEEN just as you do relational operators to compare val-
ues, one of which happens to be a set (for IN) or a range (for
BETWEEN).

Also like relational operators, BETWEEN operates on charac-
ter fields in terms of the ASCII equivalents. This means you can
use it to select ranges from alphabetical ordering. It is important
when you do this to be consistent in your use of capitalization.

52 UNDERSTANDING SQL

CH. 5

SQL Execution Log

SELECT *

FROM Salespeople

WHERE (comm BETWEEN .18 AND .12)
AND NOT comm IN (.10, .12);

1904 Motika London 9.11
Browse : tie¢» PuDn PuUp —»| | ¢— Home

Figure 5.5: Making BETWEEN noninclusive

This query selects all customers whose names fall in a certain
alphabetical range:

SELECT *
FROM Customers
WHERE cname BETWEEN A’ AND 'G’;

The output for this query is shown in Figure 5.6.

Notice that Grass and Giovanni are omitted, even though
BETWEEN is inclusive. This is because of the way BETWEEN
compares strings of unequal length. The string ’G’ is shorter
than the string 'Giovanni’, so BETWEEN pads the G’ with
blanks. The blanks precede the letters in alphabetical order (in
most implementations), so Giovanni is not selected. The same
applies to Grass. It is important to remember this if you are
using BETWEEN to extract alphabetical ranges. You will usu-
ally go one letter beyond the last letter you want to include, or
add a z (several if necessary) after your second boundary value.

B

USING SPECIAL OPERATORS IN CONDITIONS 53

SQL Execution Log

SELECT *
FROM Customers
WHERE cname BETWEEN 'A’ AND 'G’;

| cname N city | rating W snum]
2906 Clemens London 199 1801
2¢@8 Cisneros San Jose 309 1087

Browse : ti¢> PgDn P

Figure 5.6: Using BETWEEN alphabetically

THE LIKE OPERATOR

LIKE can be applied only to fields of types CHAR or VAR-
CHAR, against which it is used to find substrings. In other words,
it searches a character field to see if part of it matches a string. To
do this, it uses wildcards, special characters that will match any-
thing. There are two types of wildcards used with LIKE:

¢ The underscore character (_) stands for any single char-
acter. For example, ’b_t" will match ’bat’ or ’bit’ but it
will not match ’brat’.

e The percent sign (%) stands for a sequence of any num-
ber of characters (including zero characters). "% p%¢t’
will match “put’, ’posit’, or ’opt’, but not ’spite’.

Let’s find all the customers whose names begin with G (the out-
put is shown in Figure 5.7):

SELECT *
FROM Customers
WHERE cname LIKE 'G%’;

54 UNDERSTANDING SQL

CH. 5

SQL Execution Log

SELECT *
FROM Customers
WHERE cname LIKE 'G%’;

cit | _snum |
2¢92 Giovanni Rome 209
2¢@4 Grass Berlin 300

Browse : tle>

Figure 5.7: SELECT using LIKE with %

LIKE can be handy if you are searching for a name or other
value, and you cannot remember all of it. Suppose you were
unsure whether to spell the name of one of your salespeople Peal
or Peel. You can simply use the part you know and the wildcards
will find all possible matches (the output of this query is shown in
Figure 5.8):

SELECT *
FROM Salespeople
WHERE sname LIKE 'P_ _1%’;

The underscore wildcards each represent a single character, so
a name like Prettel would not show up. The % wildcard at the
end of the string is necessary in many implementations if the
length of the sname field is greater than the number of characters
in the name Peel (which it obviously is here, because some of the
other sname values are longer than four characters). In such a
case, the sname field value is actually stored as the name Peel,
followed by a series of spaces. Therefore, the character I’ is not
considered the end of the string. The % wildcard simply matches
all the spaces. This would not be necessary if the sname field

were of type VARCHAR.

USING SPECIAL OPERATORS IN CONDITIONS 55

SQL Execution Log

SELECT *
FROM Salespeople
WHERE sname LIKE 'P_ 1%';

| ___city ___J§ ___ comm |
1091 Peel London g.12
Browse : ti¢> PgDn PgUp —»| | ¢— Home

Figure 5.8: SELECT using LIKE with _ (underscore)

So what do you do if you need to search for a percent sign or
an underscore in a string? In a LIKE predicate, you can define
any single character as an escape character. An escape character is
used immediately before a percent sign or underscore in the
predicate, and means that the percent sign or underscore will be
interpreted as a character rather than a wildcard. For example,
we could search our sname column for the presence of under-
scores, as follows:

SELECT™
FROM Salespeople
WHERE sname LIKE '%/_%’ESCAPE '/’;

With the current data there is no output, because we have not
included any underscores in our salespeople’s names. The
ESCAPE clause defines '/ as an escape character. The escape
character is used in the LIKE string, followed by a percent sign,
an underscore, or itself (to be explained shortly), which will be
searched for in the column, rather than treated as a wildcard.
The escape character must be a single character and applies only
to the single character immediately following it. In the example

56 UNDERSTANDING SQL

CH. 5

above, both the beginning and ending percent signs are still
treated as wildcards; only the underscore represents itself.

As mentioned above, the escape character can also be used on
itself. In other words, if you want to search the column for your
escape character, you will simply enter it twice. The first one acts
as an escape character meaning ‘“‘take the following character lit-
erally as a character,” and the second one is that character—the
escape character itself. Here is the preceding example revised to
search for occurrences of the string *_/’ in the sname column:

SELECT *
FROM Salespeople
WHERE sname LIKE '%/_//%’ESCAPE ’/’;

Again there 1s no output with the current data. The string being
matched consists of any sequence of characters (%), followed by
the underscore character (/_), the escape character (//), and any
sequence of trailing characters (%).

WORKING WITH NULL VALUES

Frequently, there will be records in a table that do not have
values for every field, either because the information is not com-
plete, or because the field simply does not apply to every case.
SQL provides for these instances by allowing you to enter a
NULL into the field in place of a value. A NULL is not in the
field at all, strictly speaking. When a field value is NULL, it
means that the database program has specially marked that field
as not having any value for that row (record). This is different
from simply assigning a field a value of zero or a blank, which
the database will treat the same as any other value. Also, since
NULL is technically not a value, it does not have a data type. It
can be placed in any type of field. Nonetheless, a NULL in SQL
is frequently referred to as a NULL value.

Suppose you have a new customer who has not yet been
assigned a salesperson. Rather than wait for the salesperson to
be assigned, you want to enter the customer into the database
now, so that he or she does not get lost in the shuffle. You can

USING SPECIAL OPERATORS IN CONDITIONS 57

enter a row for the customer with a NULL for snum and fill in
that field with a value later, when a salesperson is assigned.

THE IS NULL OPERATOR

Since NULL indicates missing values, you cannot know what
the result of any comparison involving a NULL would be. When
a NULL is compared to any value, even another NULL, the
result is neither true nor false, but unknown. An unknown Bool-
ean generally behaves the same as a false—a row that produces
an unknown value in the predicate will not be selected by the
query—with the notable exception that, while NOT (false)
equals true, NOT (unknown) still equals unknown. Therefore,
an expression such as “city = NULL’ or “city IN (NULL)”
will be unknown, regardless of the city value.

Often you will need to distinguish between false and unknown
—between rows containing column values that fail a predicate
condition and those containing NULL in those columns. For this
reason, SQL provides the special operator IS, which is used with
the keyword NULL to locate NULL values.

To find all records in our Customers table with NULL values
in the city column, we could enter:

SELECT *
FROM Customers
WHERE city IS NULL;

This currently produces no output because we have no NULL
values in our sample tables. NULL values are very important,
and we will be returning to them later.

USING NOT WITH SPECIAL OPERATORS

The special operators we have covered in this chapter can be
immediately preceded by the Boolean NOT. This is in contrast

58 UNDERSTANDING SQL

CH. 5

to relational operators, which must have the NOT before the
entire expression. For example, if we want to eliminate NULLSs
from our output, rather than finding them, we would use NOT
to reverse the meaning of the predicate:

SELECT *
FROM Customers
WHERE city IS NOT NULL;

In the absence of NULLs (which is currently the case), this
would produce the entire Customers table. It is the equivalent of
entering

SELECT *
FROM Customers
WHERE NOT city IS NULL;

which is also acceptable.
We can also use NOT with IN:

SELECT *
FROM Salespeople
WHERE city NOT IN ('London’, 'San Jose’);

This is another way of saying

SELECT *
FROM Salespeople
WHERE NOT city IN ('London’, 'San Jose’);

The output for this query is shown in Figure 5.9.
You can use NOT BETWEEN and NOT LIKE the same way.

USING SPECIAL OPERATORS IN CONDITIONS 59

SQL Execution Log
SELECT =

" FROM Salespeople
WHERE city NOT IN (’'London’, 'San Jose’);

| _snum B sname W city W comm|

1087 Rifkin Barcelona 2.15
I 10¢3 Axelrod New York 210
Browse : tle¢> PgDn PgUp —» | —

Figure 5.9: Using NOT with IN

SUMMARY

Now you can construct predicates in terms of relationships
specially defined by SQL. You can search for values in a certain
range (BETWEEN) or in an enumerated set (IN), or you can
search for character values that match text within parameters
that you define (LIKE).

You have also learned some things about how SQL deals with
missing data—a reality of the database world—by using NULLSs
in place of values. You can extract or exclude NULLSs from your
output by using the IS NULL (or IS NOT NULL) operator.

Now that you have an entire set of both standard mathematical

and special operators at your disposal, you are ready to move on
to special SQL functions that operate on entire groups of values,
rather than on single values. This is the subject of Chapter 6.

62

UNDERSTANDING SQL

CH. 6

IN THIS CHAPTER, YOU WILL MOVE BEYOND SIMPLY
using queries to extract values from the database and discover
how vou can use them to derive information from those values.
This is done with aggregate or summary functions that take
groups of values from a field and reduce them to a single value.
You will learn how to use these functions, how to define the
groups of values to which theyv will be applied, and how to deter-
mine which groups are selected for output. You will also see
under what conditions you can combine field values with this
derived information in a single query.

WHAT ARE THE
AGGREGATE FUNCTIONS?

Queries can produce generalizations about groups of values as
well as field values. It does this through the use of aggregate
functions. Aggregate functions produce a single value for an
entire group of table entries. Here is a list of these functions:

e COUNT produces the number of rows or nonNULL
field values that the query selected.

e SUM produces the arithmetic sum of all selected values
of a given field.

* AVG produces the average (mean) of all selected values
of a given field.

* MAX produces the largest of all selected values of a
given field.

e MIN produces the smallest of all selected values of a
given field.

HOW DO YOU USE AGGREGATE FUNCTIONS?

Aggregate functions are used like field names in the SELECT
clause of queries and. with one exception, take field names as
arguments. Only numeric fields can be used for SUM and AVG.
For COUNT, MAX, and MIN, numeric or character fields can

SUMMARIZING DATA WITH AGGREGATE FUNCTIONS 63

be used. When used with character fields, MAX and MIN will
translate to ASCII equivalents, which is to say that, generally
speaking, MIN will mean first, and MAX last, in alphabetical
order (the issue of alphabetical ordering is discussed in more
detail in Chapter 4).

To find the SUM of all of our purchases from the Orders
table, we could enter the following query, whose output is shown
in Figure 6.1:

SELECT SUM(amt)
FROM Orders;

SQL Execution Log
|SELECT SUM (amt)
FROM Orders;

[___)
26658 .4

Browse : td¢3> PgDn PgUp —»

Figure 6.1: Selecting a sum

This, of course, differs substantially from selecting a field in that
it returns a single value, regardless of how many rows are in the
table. Because of this, aggregate functions and fields cannot be
selected at the same time, unless the GROUP BY clause
(described shortly) is used.

Finding the average amount would be a similar operation (the
output of the following query is shown in Figure 6.2):

SELECT AVG(amt)
FROM Orders;

64 UNDERSTANDING SQL

CH. 6

SELECT AVG (amt)
FROM Orders;

-
2665 .84

Figure 6.2: Selecting an average

SPECIAL ATTRIBUTES OF COUNT

The COUNT function is slightly different. It counts the num-
ber of values in a given column, or the number of rows in a
table. When 1t is counting column values, it 1s used with DIS-
TINCT to produce a count of the number of different values in a
given field. We could use 1t, for example, to count the number of
salespeople currently listing orders in the Orders table (the out-
put is shown in Figure 6.3):

SELECT COUNT (DISTINCT snum)
FROM Orders;

THE USE OF DISTINCT Notice in the above example that
DISTINCT, followed by the name of the field it 1s being applied
to, is placed in parentheses, not immediately after SELECT as
we have seen before. This use of DISTINCT with COUNT
when applied to individual columns is required by the ANSI
standard, but many programs do not enforce this requirement.

SUMMARIZING DATA WITH AGGREGATE FUNCTIONS 65

SELECT COUNT (DISTINCT snum)
FROM Orders;

5

Browse : tid¢2> PgDn PgUp —b

Figure 6.3: Counting field values

You can select multiple COUNTSs of DISTINCT fields in a sin-
gle query, which, as we have seen in Chapter 3, is not the case
when you select DISTINCT rows.

DISTINCT can be used in this way with any aggregate func-
tion, but it is most often used with COUNT. With MAX and
MIN, it simply has no effect, and with SUM and AVG, you usu-
ally want to include repeated values, because these legitimately
affect the total and the average of all column values.

USING COUNT WITH ROWS RATHER THAN VALUES 'To
count the total number of rows in a table, use the COUNT func-
tion with an asterisk in place of a field name, as in the following
example, the output of which is shown in Figure 6.4:

SELECT COUNT(*)
FROM Customers;

COUNT with the asterisk includes both NULLs and dupli-
cates, so DISTINCT cannot be used. For this reason, it can pro-
duce a higher number than the COUNT of a particular field,

66

UNDERSTANDING SQL

CH. 6

SELECT COUNT (*)
FROM Customers;

Browse : tie>

Figure 6.4: Counting rows instead of values

which eliminates all rows that have redundant or NULL data in
that field.

DISTINCT has been eliminated for COUNT (*), because it
should have no effect in a well-designed and maintained data-
base. In such a database, there should be neither rows that are
entirely NULL nor duplicates (the former contain no data, and
the latter are completely redundant). If, on the other hand, fully
NULL or redundant rows are present, you probably don’t want
COUNT to suppress this information.

INCLUDING DUPLICATES IN AGGREGATE FUNCTIONS
Aggregate functions can also (in many implementations) take the
argument ALL, which is placed before the field name, like DIS-
TINCT, but means the opposite: to include duplicates. ANSI
technically doesn’t allow this for COUNT, but many implemen-
tations relax this restriction. The differences between ALL and *

when used with COUNT are

e ALL sull takes a fieldname as an argument.

o ALL will not count NULL values.

SUMMARIZING DATA WITH AGGREGATE FUNCTIONS 67

Since * is the only argument that includes NULLs and it is used
only with COUNT, functions other than COUNT disregard
NULL:s in any case. The following command will COUNT the
number of nonNULL rating fields in the Customers table
(including repeats):

SELECT COUNT (ALL rating)
FROM Customers;

AGGREGATES BUILT ON SCALAR EXPRESSIONS

Up until now, you have used aggregate functions with single
fields as arguments. You can also use aggregate functions with
arguments that consist of scalar expressions involving one or
more fields. (If you do this, DISTINCT is not allowed.) Suppose
the Orders table had another column that held the prior out-
standing balance (blnc) for each customer. You would find the
current balance by adding the order amount to the prior bal-
ance. You could find the largest outstanding balance as follows:

SELECT MAX (binc + amt)
FROM Orders;

For each row of the table, this query will add the blnc and the
amt for that customer and select the largest value it finds. Of
course, since customers may have multiple orders, their out-
standing balance is evaluated separately for each order. Presum-
ably, the order with the most recent date would have the greatest
outstanding balance. Otherwise, an old balance could be selected
by the above query.

In fact, there are many situations in SQL where you can use

scalar expressions with or in place of fields, as you will see in
Chapter 7.

THE GROUP BY CLAUSE

The GROUP BY clause allows you to define a subset of the
values in a particular field in terms of another field, and apply an
aggregate function to the subset. This enables you to combine

68 UNDERSTANDING SQL

CH. 6

fields and aggregate functions in a single SELECT statement. For
example, suppose you wanted to find the largest order taken by
each salesperson. You could do a separate query for each, select-
ing the MAX amt from the Orders table for each snum value.
GROUP BY, however, let’s you put it all in one command:

SELECT snum, MAX(amt)

FROM Orders
GROUP BY snum;

The output for this query is shown in Figure 6.5.

SQL Execution Log
SELECT snum, MAX (amt)
FROM Orders
GROUP BY snum;

|

9891 .88
5160 .45
1713.23
1909.18
1(698.16\i

Browse : tled

Figure 6.5: Finding maximum amounts for each salesperson

GROUP BY applies the aggregate functions independently to
a series of groups that are defined by having a field value in com-
mon. In this case, each group consists of all the rows with the
same snum value, and the MAX function is applied separately
to each such group. This means the field to which GROUP BY
applies has, by definition, only one value per output group, as
do the aggregate functions. The result is a compatibility that
allows aggregates and fields to be combined in this way.

You can also use GROUP BY with multiple fields. To refine

the above example further, suppose you wanted to see the largest

SUMMARIZING DATA WITH AGGREGATE FUNCTIONS 69

order taken by each salesperson on each date. To do this, you
would group the Orders by date within salesperson, and apply
the MAX function to each group, like this:

SELECT snum, odate, MAX(amt)
FROM Orders
GROUP BY snum, odate;

The output for this query is shown in Figure 6.6.

SQL Execution Log
SELECT snum, odate, MAX (amt)
FROM Orders
GROUP BY snum, odate;

[snin F odate |
! 10681 10/83/1999
1081 10/85/1990

1981 196/06/1990
16062 186/83/1999
1092 10/04/1999
1002 10/06/1998
1603 16/04/199¢9
1994 19/85/1999
1007 106/03/1999

Figure 6.6: Finding each salesperson’s largest orders for each day

Of course, empty groups—that is, dates when the current
salesperson had no orders—are not shown.

THE HAVING CLAUSE

Suppose, in the previous example, you had wanted to see just
the maximum purchases over $3000.00. You cannot use aggre-
gate functions in a WHERE clause (unless you use a subquery,
explained later), because predicates are evaluated in terms of a
single row, whereas aggregate functions are evaluated in terms

70 UNDERSTANDING SQL

CH. 6

of groups of rows. This means you could not do something like
the following:

SELECT snum, odate, MAX(amt)
FROM Orders
WHERE MAX(amt) > 3000.00
GROUP BY snum, odate;

This would be rejected in a strict ANSI interpretation. To see
the maximum purchases over $3000.00, you would use the
HAVING clause. The HAVING clause defines criteria used to
eliminate certain groups from the output, just as the WHERE
clause does for individual rows. The correct command would be
the following:

SELECT snum, odate, MAX(amt)
FROM Orders
GROUP BY snum, odate
HAVING MAX (amt) > 3000.00;

The output for this query 1s shown in Figure 6.7.

SQL Execution Log
SELECT snum, odate, MAX(amt)
FROM Orders
GROUP BY snum, odate
HAVING MAX(amt) > 3000.00;

1081 10765/1999 4723 .00
1861 16/86/1990 9891.88
1662 10/83/1998 5160.45

Browse : ti¢3> P

Figure 6.7: Eliminating groups of aggregate values

SUMMARIZING DATA WITH AGGREGATE FUNCTIONS 71

Arguments to the HAVING clause follow the same rules as
those to the SELECT clause of a command using GROUP BY.
They must have a single value per output group. The following
command would be illegal:

SELECT snum, MAX(amt)
FROM Orders
GROUP BY snum
HAVING odate = 10/03/1988;

The odate field cannot be referenced by the HAVING clause
because it can have (and indeed does have) more than one value
per output group. To avoid this situation, the HAVING clause
must reference only aggregates and fields chosen by GROUP
BY. Here is the correct way to state the above query (the output
is shown in Figure 6.8):

SELECT snum, MAX(amt)
FROM Orders
WHERE odate = 10/03/1990
GROUP BY snum;

SQL Execution Log
SELECT snum, MAX(amt)
FROM Orders
WHERE odate = 10/03/1990
GROUP BY snum;

——}
1001 767.19

1002 5160.45
1004 1900.19
1687 1698.16

Browse : tles

Figure 6.8: Each salesperson’s maximum for October 3

72 UNDERSTANDING SQL

CH. 6

Of course, since odate is not and cannot be a selected field, the
significance of this data is less self evident than in some other
examples. The output should probably include something that
says, ‘“these are the largest orders for October 3.” In Chapter 7,
we will show you how to insert text in your output.

As mentioned, HAVING can take only arguments that have a
single value per output group. In practice, references to aggre-
gate functions are the most common, but fields chosen by
GROUP BY are also permissible. For instance, we could look at
the largest orders for Serres and Rifkin:

SELECT snum, MAX(amt)
FROM Orders
GROUP BY snum
HAVING snum IN (1002, 1007);

The output for this query is shown in Figure 6.9.

SQL Execution Log
SELECT snum, MAX(amt)
FROM Orders
GROUP BY snum
HAVING snum IN (1082, 1007);

(——
1002 516845
1687 1098.16

Browse : 4¢3 PgDn PgU

Figure 6.9: Using HAVING with GROUP BY fields

DON’T NEST AGGREGATES

In a strict interpretation of ANSI SQL, you cannot take an
aggregate of an aggregate. Suppose you wanted to find out

SUMMARIZING DATA WITH AGGREGATE FUNCTIONS 73

which day had the higher total amount ordered. If you tried to
do this:

SELECT odate, MAX (SUM (amt))
FROM Orders
GROUP BY odate;

Your command would probably be rejected. (Some implemen-
tations don’t enforce this restriction, which is advantageous
because nested aggregates can be useful, even if they are some-
what problematic.) In the above command, for example, SUM
is to be applied to each odate group, and MAX to all of the
groups, producing a single value for all the groups. Yet the
GROUP BY clause implies that there should be one row of out-
put for each odate group.

SUMMARY

Now you are using queries a little differently. The ability to
derive, rather than simply locate, values is very powerful. It
means that you may not necessarily have to keep track of certain
information if you can formulate a query to derive it. A query will
give you up-to-the-minute results, whereas a table of totals or
averages will be only as good as the last time 1t was updated. This
1s not to suggest that aggregate functions can completely supplant
the need to track information such as this independently.

You can apply these aggregates to groups of values defined by
a GROUP BY clause. These groups have a field value in com-
mon, and they can reside within other groups that have a field
value in common. Meanwhile, predicates are still used to deter-
mine which rows the aggregate function is applied to. Com-
bined, these features make it possible to produce aggregates
based on tightly defined subsets of the values in the field. Then
you can define another condition to exclude certain of the result-
ing groups with the HAVING clause.

Now that you have become adept with many facets of how a
query produces values, we will show you, in Chapter 7, some
things that you can do with the values it produces.

76 UNDERSTANDING SQL

CH.7

THIS CHAPTER WILL EXTEND YOUR ABILITY TO
work with the output produced by queries. You will learn how to
insert text and constants among the selected fields, how to use the
selected fields in mathematical expressions, whose results will then
become the output, and how to make the values you output emerge
in a specified order. This last feature includes the ability to order your
output by any column or any values derived from a column.

STRINGS AND EXPRESSIONS

Many SQL-based databases provide special features that allow
you to refine the output from your queries. Naturally, these vary
greatly from product to product, and discussion of them is
beyond our scope here. However, there are a few features built
into the SQL standard that allow you to do more than simply
output field values and aggregate data.

SCALAR EXPRESSIONS WITH SELECTED FIELDS Let’s
suppose you want to perform simple numeric computations on
the data to put it in a form more appropriate to your needs. SQL
allows you to place scalar expressions and constants among the
selected fields. These expressions can supplement or replace
fields in the SELECT clauses, and they can involve one or more
selected fields themselves. For example, you might consider it
desirable to present your salespeople’s commissions as percent-
ages rather than decimal numbers. Simple enough:

SELECT snum, sname, city, comm * 100
FROM Salespeople;

The output from this query is shown in Figure 7.1.

OUTPUT COLUMNS The last column of the preceding example
is unlabeled because it is an output column. Qutput columns are
columns of data created by a query, rather than being directly
extracted from a table. You create them whenever you use

FORMATTING QUERY OUTPUT 77

SQL Execution Log
SELECT snum, sname, city, comm * 100
FROM Salespeople;

| snum B sname N city N |
1891 Peel London 12.900000
1982 Serres San Jose 13.000000
1004 Motika London 11.000000
1097 Rifkin Barcelona 15.000000
1993 Axelrod New York 10.000000

Browse : tle»

Figure 7.1: Putting an expression in your query

aggregate functions, constants, or expressions in a query’s
SELECT clause. Because the names of columns are one of the
attributes of a table, columns that do not come from tables have no
names. Other than the fact that they are unlabeled, output columns
can be treated the same as columns extracted from tables in almost
all situations.

PUTTING TEXT IN YOUR QUERY OUTPUT The letter A,
when signifying nothing but itself, is a constant, just as the num-
ber 1 is. You have the ability to insert constants in the SELECT
clause of a query, including text. However, character constants,
unlike numeric constants, cannot be used in expressions. You can
have the expression 1 + 2 in your SELECT clause, but you cannot
use an expression such as A’ + ’B’; this is reasonable if we keep in
mind that A’ and ’B’ here are simply letters, not variables or sym-
bols for anything besides themselves. Nonetheless, the ability to
insert text in the output from your queries is quite handy.

You could refine the previous example by marking the com-
missions as percentages with the percent sign (%). This enables
you to put such items as symbols and comments in the output, as

FORMATTING QUERY OUTPUT 79

: - SQL Execution Log
SELECT 'For ', odate, ', there are ',
COUNT (DISTINCT onum) ' orders.’
FROM Orders

GROUP BY odate;

-_—_

‘For 10/03/1990 there are orders.
{For 10/04/1998 , there are orders.
For 190/85/1998 , there are orders.
IFor 10/66/199@ , there are orders. |

Browse : ti¢> PgDn PgUp —)

Figure 7.3: Combining text, field values, and aggregates

which we will explain in Chapter 14.) As you can see, a single
unvarying comment for each row of a table can be helpful, but
has limitations. It is sometimes more elegant and useful to pro-
duce a single comment for the output as a whole, or different
comments for different rows.

The various programs using SQL often provide features, such
as report generators, which are designed to format and refine
output. Embedded SQL can also exploit the formatting capabili-
ties of the language it is embedded in. SQL itself is primarily
concerned with operating on data. Its output is essentially infor-
mation, and a program using SQL can often take that informa-
tion and put it in a more attractive form. This is, however,

beyond the scope of SQL itself.

ORDERING OUTPUT BY FIELDS

As we have emphasized, tables are unordered sets, and the
data that comes out of them does not necessarily emerge in any
particular sequence. SQL uses the ORDER BY command to

allow you to impose an order on your output. This command

80 UNDERSTANDING SQL

CH. 7

orders the query output according to the values in one or more
selected columns. Multiple columns are ordered one within
another, just as with GROUP BY, and you can specify ascending
(ASC) or descending (DESC) for each. Ascending is the default. |

Let’s look at our order table arranged by customer number !
(notice the values in the cnum column):

SELECT *
FROM Orders
ORDER BY cnum DESC;

The output 1s shown in Figure 7.4.

SQL Execution Log

SELECT *
FROM Orders
ORDER BY cnum DESC:

3001 . 10/03/1998
3006 . 19/83/1990
3002 . 19/83/19908
3008 . 18/85/1990
3011 . 10/06/1990
3007 . 106/64/1990
3010 . 16/066/1990
3005 . 19/83/1990
3009 . 16/04/1990

186/83/1999

Figure 7.4: Ordering output by a descending field

ORDERING BY MULTIPLE COLUMNS

We could also order the table by another column, amt for
example, within the cnum ordering (output shown in Figure 7.5):

SELECT *

FROM Orders
ORDER BY cnum DESC, amt DESC;

o F i B T e i

FORMATTING QUERY OUTPUT 81

SQL Execution Log

SELECT *
FROM Orders
ORDER BY cnum DESC, amt DESC;

| onum W amt N odate N cnum N snum]

3006 1098.16 10/03/1990 2098
3001 .69 18/83/1990 2008
3092 19 16/83/1999 2007
3811 .88 186/66/1999 2096
3008 .89 16/85/1990 2086
3610 .95 16/066/1990 2004
3607 .75 16/84/1990 2004
3095 .45 18/83/1990 2063
3669 .23 10/64/1998 2062
3863 767.19 10/63/1990

Figure 7.5: Ordering output by multiple fields

You can use ORDER BY in this manner with any number of
columns at once. Notice that, in all cases, the columns being
ordered are among the columns selected. This is an ANSI
requirement that most, but not all, systems enforce. The follow-
ing command, for instance, would be illegal:

SELECT cname, city
FROM Customers
ORDER BY cnum;

Since cnum was not a selected field, ORDER BY cannot find
it to use for ordering the output. Even if your system does allow
this, the significance of the ordering would not be evident from
the output, so including all columns used in the ORDER BY
clause 1s generally advisable.

ORDERING AGGREGATE GROUPS

ORDER BY can also be used with GROUP BY to order
groups. If so, ORDER BY always comes last. Here’s an exam-
ple from the last chapter with an added ORDER BY clause.
Before the output was grouped, but the order of the groups was

82 UNDERSTANDING SQL

CH.7

arbitrary; now we force the groups to be placed in sequence:

SELECT snum, odate, MAX(amt)
FROM Orders
GROUP BY snum, odate
ORDER BY snum;

The output is shown in Figure 7.6.

————— —SQL Execution Log=
|SELECT snum, odate, MAX (amt)
|FROM Orders

GROUP BY snum, odate
ORDER BY snum;

ifl_snum | I
1001 16/83/1998 767.19]
1681 19/85/19990 4723 .00
16061 10/86/1990 9891.88
1882 10/03/1998 5160.45
‘ 1002 19/84/1990 5. 75
; 1902 19/86/1998 1369.95
1063 19/864/1998 1713.23
1004 19/63/1998 19¢0.18]
1007 16/63/1999 1698.16|

Figure 7.6: Ordering by a group

Since we did not specify ascending or descending order, ascend-
ing is used by default.

ORDERING OUTPUT BY COLUMN NUMBER

In place of column names, you can use numbers to indicate the fields
being used to order the output. These numbers will refer, not to the
order of the columns in the table, but to their order in the output. In
other words, the first field mentioned in the SELECT clause 1s, for the
purposes of ORDER BY, field -1, regardless of where it is found
in the table. For example, you can use the following command to see

FORMATTING QUERY OUTPUT 83

certain fields of the Salespeople table, ordered in descending order of
commission (the output is shown in Figure 7.7):

SELECT sname, comm
FROM Salespeople
ORDER BY 2 DESC;

SELECT sname, comm
FROM Salespeople
ORDER BY 2 DESC;

Rifkin
Serres
Peel
Motika
Axelrod

Browse : tl¢3 PgDn Pgu

Figure 7.7: Ordering using numbers

One of the main purposes of this ORDER BY feature is to
enable you to use ORDER BY with output columns as well as
table columns. Columns resulting from aggregate functions, con-
stants, or expressions in the SELECT clause of a query are per-
fectly usable with ORDER BY, provided that they are referred
to by number. For example, let’s count the orders of each of our
salespeople, and output the results in descending order, as shown
in Figure 7.8:

SELECT snum, COUNT (DISTINCT onum)
FROM Orders
GROUP BY snum
ORDER BY 2 DESC;

FORMATTING QUERY OUTPUT 85

SUMMARY

In this chapter, you have learned how to make your queries do
more than produce field values or aggregate function data from a
table. You can take fields and use them in expressions: for exam-
ple, you can multiply a numeric field by 10 or even multiply it
by another numeric field. In addition, your ability to put con-
stants, including characters, in your output, allows you to put
text directly in a query and have it output with the table data.
This enables you to label or explain your output in various ways.

You have also learned how to impose an order on your output.
Even though the table itself remains unordered, the ORDER BY
clause enables you to control the order of the rows of a given
query’s output. Query output can be in ascending or descending
order, and columns can be nested one within another.

The concept of output columns was explained in this chapter.
You now know that output columns may be used to order query
output, but they are unnamed, and therefore must be referred to
by number in the ORDER BY clause.

Now that you have seen what can be done with the output
from a query based on a single table, it is time to move on to the
advanced query features and learn how to query any number of
tables in a single command, forging relationships between them
as you do so. This will be the subject of Chapter 8.

86 UNDERSTANDING SQL

CH. 7

. Putting SQL to Work

1. Assume each salesperson has a 12% commission. Write a
query on the Orders table that will produce the order
number, the salesperson number, and the amount of the
salesperson’s commission for that order.

2. Write a query on the Customers table that will find the
highest rating in each city. Put the output in this form:

For the city (city), the highest rating is: (rating).

3. Write a query that lists customers in descending order of
rating. Output the rating field first, followed by the cus-
tomer’s name and number.

4. Write a query that totals the orders for each day and
places the results in descending order.

(See A ppendix A for answers.)

88 UNDERSTANDING SQL

CH. 8

UP UNTIL NOW, EACH QUERY WE HAVE EXAMINED
has been based on a single table. In this chapter, you will learn
how to query any number of tables with a single command. This
1s an extremely powerful feature because it not only combines
output from multiple tables, but defines relationships between
them. You will learn about the various forms these relationships
can take, as well as how to define and use them to answer spe-
cific needs.

JOINING TABLES

One of the most important features of SQL queries is their abil-
ity to define relationships between multiple tables and draw infor-
mation from them in terms of these relationships, all within a sin-
gle command. This kind of operation 1s called a join, which is one
of the powerhouses of relational databases. As stated in Chapter
1, the strength of the relational approach is in the relationships
that can be constructed between the items of data in the tables.
With joins, we directly relate the information in any number of
tables, and thus are able to make connections between disparate
pieces of data.

In a join, the tables are listed in the FROM clause of the
query, separated by commas. The predicate of the query can
refer to any column of any table joined and, therefore, can be
used to make connections between them. Usually, the predicate
will compare the values in columns of different tables to deter-
mine whether a WHERE condition is met.

TABLE AND COLUMN NAMES

The full name of a column of a table actually consists of the
table name followed by a dot and then the column name. Here
are some examples:

Salespeople.snum
Customers.city

Orders.odate

QUERYING MULTIPLE TABLES AT ONCE 89

Up until now, you have been able to omit the table names
because you were querying only a single table at a time, and
SQL is intelligent enough to assume the proper table-name pre-
fix. Even when you query multiple tables, you will still be able to
omit the table names, provided that all of the columns have dif-
ferent names. But this is not always the case. For example, we
have two sample tables with columns called city. If we were to
join them (as we will momentarily), we would have to say Sales-
people.city or Customers.city, so that SQL could know which
one we meant.

MAKING A JOIN

Suppose you want to match your salespeople to your cus-
tomers according to what city they lived in, so that you would
see all the combinations of salespeople and customers who shared
a city. You would need to take each salesperson and search the
customers table for all customers in the same city. You could do
this by entering the following command (the output is shown in
Figure 8.1):

SELECT Customers.cname, Salespeople?sname,
iSalespeople.city

FROM Salespeople, Customers

WHERE Salespeople.city = Customers.city;

= =

Hof fman Peel London
Clemens Peel London
Liu Serres San Jose
Cisneros Serres San Jose
Hof fman Motika London
Clemens Motika London

_—

Figure 8.1: Joining two tables

90 UNDERSTANDING SQL

CH. 8

SELECT Customers.cname, Salespeople.sname,
Salespeople.city
FROM Salespeople, Customers
WHERE Salespeople.city = Customers.city;

Because there is a city field in both the Salespeople and Cus-
tomer tables, the table names have to be used as prefixes. Although
this is necessary only when two or more fields have the same name,
it is often a good idea to include the table name in joins for the sake
of clarity and consistency. Despite this, we will, in our examples,
generally use table names only when necessary, so that it will be
clear when they are needed and when they are not.

What SQL basically does in a join is examine every combina-
tion of rows possible from the two (or more) tables and test these
combinations against the predicate. In the preceding example, it
took the row of salesperson Peel from the Salespeople table and
combined it with each row of the Customers table, one at a time.
If a combination produced values that made the predicate true—
in this case, if the city field of a Customer table row were Lon-
don, the same as Peel’s—the requested values from that combi-
nation were selected for output. The same thing was then done
for every other salesperson in the Salespeople table (some of
whom had no customers located in their cites).

JOINING TABLES
THROUGH REFERENTIAL INTEGRITY

This feature is often used simply to exploit the relationships
built into the database. In the previous example, we established
a relationship between the two tables in the join. This is fine.
These tables, however, are already connected through the snum
field. This relationship is called the state of referential integrity,
as we mentioned in Chapter 1. A common use of the join is to
extract data in terms of this relationship. For example, to show
the names of all customers matched with the salespeople serving
them, we would use this query:

SELECT Customers.cname, Salespeople.sname
FROM Customers, Salespeople
WHERE Salespeople.snum = Customers.snum;

QUERYING MULTIPLE TABLES AT ONCE 91

The output of this query is shown in Figure 8.2.

This is also an example of a join in which the columns used to
determine the predicate of the query, in this case the snum columns
of both tables, have been omitted from the output, which is perfectly
alright. The output shows which customers are serviced by which
salespeople; the snum values that constitute the link are not, in them-
selves, relevant here. If you do this, however, you should either make
sure the output is self-explanatory or provide some explanation of the
data.

SQL Execution Log
SELECT Customers.cname, Salespeople.sname
FROM Salespeople, Customers
WHERE Salespeople.snum = Customers.snum;

f

THoffman Peel
Giovanni Axelrod
Liu Serres
Grass Serres
|Clemens Peel
‘Cisneros

‘Pereira

Figure 8.2: Joining salespeople to their customers

EQUIJOINS AND OTHER KINDS OF JOINS

Joins that use predicates based on equalities are called equi-
joins. Our examples in this chapter up to now have all fallen into
this category because the conditions in the WHERE clauses have
all been based on mathematical expressions using =. “City =
"London’ ”” and “Salespeople.snum = Orders.snum’ are exam-
ples of the types of equalities found in predicates. Equijoins are
probably the most common sort of join, but there are others. You
can, in fact, usc any of the relational operators in a join. Here

92 UNDERSTANDING SQL

CH. 8

is an example of another kind of join (its output is shown in Fig-
ure 8.3):

SELECT sname, cname
FROM Salespeople, Customers
WHERE sname < chame
AND rating < 200;

SQL Execution Log
SELECT sname, cname
FROM Salespeople, Customers
WHERE sname < cname
AND rating < 200;

1

[Peel Pereira
|Motika Pereira
Axelrod Hoffman
Axelrod Clemens
Axelrod Pereira

: tde> PgDn PgUp —P

Figure 8.3: A join based on an inequality

This command is not often likely to be useful. It produces all com-
binations of salesperson and customer names such that the former
precedes the latter alphabetically, and the latter has a rating of less
than 200. Usually, you will not need to construct complex rela-
tionships like this, and, for this reason, you will probably find
equijoins to be the most common, but it is good to be acquainted
with the other possibilities.

JOINS OF MORE THAN TWO TABLES

You can also construct queries joining more than two tables.
Suppose we wanted to find all orders by customers not located in
the same cities as their salespeople. This would involve relating

QUERYING MULTIPLE TABLES AT ONCE 93

all three of our sample tables (the output is shown in Figure 8.4):

SELECT onum, cname, Orders.cnum, Orders.snum
FROM Salespeople, Customers, Orders
WHERE Customers.city <> Salespeople.city

AND Orders.cnum = Customers.cnum
AND Orders.snum = Salespeople.snum;

———————=3QL Execution Log
SELECT onum, cname, Orders.cnum, Orders.snum
FROM Salespeople, Customers, Orders
WHERE Customers.city <> Salespeople.city
AND Orders.cnum = Customers.cnum
AND Orders.snum = Salespeople.snum;

| _cname |

Cisneros 2008 1007
Pereira 2907 1904
Cisneros 2908 1087
Giovanni 2092 1993 |
Grass 2004 1092
Grass 2004

Browse : t4€¢3 PgDn

Figure 8.4: Joining three tables

Although this command looks rather complex, you can follow
its logic by simply verifying that these are the customers not
located in the same city as their salespeople (matching the two
through the snum field), and that the orders listed are those
made by these customers (matching the orders with the cnum
and snum fields of the Orders table).

SUMMARY

Now you are no longer restricted to looking at one table at a
time. Moreover, you can make elaborate comparisons between

98 UNDERSTANDING SQL

CH.9

IN CHAPTER 8, WE SHOWED YOU HOW TO JOIN TWO
or more tables together. Interestingly enough, the same tech-
nique can be used to join together two copies of a single table. In
this chapter, we will explore this process. As you will see, joining
a table to itself, far from being a simple idiosyncracy, can be
quite a useful way to define certain kinds of relationships be-
tween the items of data in a given table.

HOW DO YOU JOIN
A TABLE TO ITSELF?

To join a table to itself means that you can take each row of the
table, one at a time, and combine it with itself and with every
other row of the table. You then evaluate each combination in
terms of a predicate, just as in multitable joins. This allows yvou
to easily forge certain kinds of relationships between the various
itemns within a single table—by finding pairs of rows with a field
value in common, for example.

You can picture a join of a table to itself as a join of two copies
of the same table. The table is not actually copied, but SQL per-
forms the command as though it were. In other words, the join is
the same as any other join between two tables, except that in this
case the two tables happen to be idenuical.

ALIASES

The syntax of the command for joining a table to itself is the
same as that for joining multiple tables, with a single modifica-
tion. When you join a table to itself, all of the column names are
repeated, complete with table-name prefixes. To refer to these
columns within the query, then, you must have two different
names for the same table. You can do this by defining temporary
names called range variables, correlation variables or simply aliases.
You define these in the FROM clause of the query. It’s quite sim-
ple: vou type the name of the table, leave a space, and then type
the alias for it.

JOINING A TABLE TO ITSELF 99

Here is an example that finds all pairs of customers having the
same rating (the output is shown in Figure 9.1):

SELECT first.cname, second.cname, first.rating
FROM Customers first, Customers second
WHERE first.rating = second.rating;

SQL Execution Log

|G10vannl Giovanni
Giovanni Liu

Liu Giovanni
Liu Liu
Grass Grass
Grass Cisneros
Clemens Hof fman
iClemens Clemens
Clemens Pereira
Cisneros Grass
Cisneros Cisneros
Pereira Hof fman
Pereira Clemens
|Pereira Pereira
LBrowse : til¢» PgDn Pg

Figure 9.1: Joining a table to itself

(note that in Figure 9.1, as in some future examples, the full
query cannot fit in the window with the output, and has there-
fore been truncated.)

In the above command, SQL behaves as though it were join-
ing two tables called “first” and “second’. Both of these are
actually the Customers table, but the aliases allow them to be
treated independently. The aliases first and second were found in
the FROM clause of the query, immediately following the name
of the table being copied. Notice that the aliases are also used in
the SELECT clause, even though they are not defined until the
FROM clause. This is perfectly all right. SQL will initially
accept any such aliases on faith, but will reject the command if
they are not defined immediately in the FROM clause of the
query. The life of an alias is only as long as the command takes

100 UNDERSTANDING SQL

CH.9

to execute. Once the query is finished, the aliases used in it are
no longer meaningful.

Now that it has two copies of the Customers table to work
with, SQL can treat this operation just as it would any other
join, taking every row from one alias and matching it with each
row of the other.

ELIMINATING REDUNDANCY

Notice that our output has every combination of values twice,
the second time in reverse order. This is because each value
shows up once in each alias, and the predicate is symmetrical.
Therefore, value A 1n alias first is selected in combination with
value B 1n alias second, and value A in alias second is selected in
combination with value B in alias first. In our example, Hoff-
man was selected with Clemens, and then Clemens was selected
with Hoffman. The same happened with Cisneros and Grass,
Liu and Giovanni, and so on. Also each row was matched with
itself to output rows such as Liu and Liu.

A simple way to avoid this i1s to impose an order on the two
values, so that one will have to be less than the other or precede
it in alphabetical order. This makes the predicate asymmetrical,
so that the same values in reverse order will not be selected
again, for example:

SELECT first.cname, second.cname, first.rating
FROM Customers first, Customers second
WHERE first.rating = second.rating

AND first.cname < second.cname;

The output of this query is shown in Figure 9.2.

Hoffman precedes Periera in alphabetical order, so that com-
bination satisfies both conditions of the predicate and appears in
the output. When the same combination comes up In reverse
order—when Periera in the alias first table 1s matched with Hoff-
man in the alias second table—the second condition is not met.
Likewise Hoffman is not selected for having the same rating as
himself because his name doesn’t precede itself in alphabetical
order. If you wanted to include matches of rows with themselves

JOINING A TABLE TO ITSELF 101

SELECT first.cname, second.cname, first.rating
FROM Customers first, Customers second

WHERE first.rating = second.rating

AND first.cname < second.cname;

| _cname __Ji rating

Hof fman Pereira 100
Giovanni [y 200

Clemens Hof fman 100
Clemens Pereira 109
Cisneros

Figure 9.2: Eliminating redundant output from a self join

in queries like this, of course, you could simply use < = instead
of <.

CHECKING FOR ERRORS

Another way we can use this feature of SQL is to check for
certain kinds of errors. Looking at the Orders table, you can see
that the cnum and snum fields should have a consistent relation-
ship. Because each customer should be assigned to one and only
one salesperson, each time a certain customer number comes up
in the Orders table, it should match with the same salesperson
number. The following command will locate any inconsistencies
in this area:

SELECT first.onum, first.cnum, first.snum,
second.onum, second.cnum, second.snum
FROM Orders first, Orders second
WHERE first.cnum = second.cnum
AND first.snum < > second.snum;

Although it looks complicated, the logic of this command is
quite straightforward. It will take the first row of the Orders

102 UNDERSTANDING SQL

CH. 9

table, store it under the alias first, and examine it in combina-
tion with each row of the Orders table under the alias second,
one by one. If a combination of rows satisfies the predicate, it is
selected for output. In this case, it will look at a row, find out
that the cnum 1s 2008 and the snum is 1007, and then look at
every other row with that same cnum value. If it finds that any
of these have a different snum value, the predicate will be true,
and 1t will output the selected fields from the current combina-
tion of rows. If the snum values for a given cnum value in our
table are all the same, this command will produce no output.

MORE ON ALIASES

Although joins of a table with itself are the first situation you
have encountered in which aliases are necessary, you are not lim-
ited to using them to differentiate between copies of a single
table. You can use them anytime you want to create alternate
names for your tables in a command. For example, if your tables
had very long and complex names, you could define simple one-
letter aliases, such as a and b, and use these instead of the table
names in the SELECT clause and predicate. They will also be
used with correlated subqueries (discussed in Chapter 11).

SOME MORE COMPLEX JOINS

You can use any number of aliases for a single table in a query,
although more than two in a given SELECT clause is not com-
mon. Suppose you had not yet assigned your customers to your
salespeople. Company policy is to assign each salesperson three
customers initially, one at each of the three rating values. You
personally are to decide which customers to assign to each sales-
person, but you use the following query to see all of the possible
combinations of customers you can assign (the output is shown
in Figure 9.3):

SELECT a.cnum, b.cnum, c.cnum
FROM Customers a, Customers b, Customersc

ar

JOINING A TABLE TO ITSELF 103

SQL Execution Log
AND c.rating = 300;

Figure 9.3: Combinations of customers with different rating values

WHERE a.rating = 100
AND b.rating = 200
AND c.rating = 300;

As you can see, this query finds all combinations of customers
with the three rating values, so that the first column consists of
customers with a 100 rating, the second of those with a 200 rat-
ing, and the last of those with a rating of 300. These are repeated
in all possible combinations. This is a sort of grouping that can-
not be done with GROUP BY or ORDER BY, as these compare
values only in a single output column.

You should also realize that it is not always actually necessary
to use every alias or table mentioned in the FROM clause of a
query in the SELECT clause. Sometimes, an alias or table is
queried solely so that it can be referenced in the predicate of the
query. For example, the following query finds all customers
located in cities where salesperson Serres (snum 1002) has cus-
tomers (the output is shown in Figure 9.4):

SELECT b.cnum, b.cname
FROM Customers a, Customers b

104 UNDERSTANDING SQL

CH.9

— SQL Execution Log
SELECT b.cnum, b.cname

FROM Customers a, Customers b

WHERE a.snum = 1082

AND b.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>