
The Easiest Introduction to

SQL, with Useful Tasks

Explained From Scratch

Covers Everything From
How to Manipulate Values,

Tables & Queries, to

Handling Implied Range
Variables & Correlated

Subqueries

f>t£/** SoSu'S

The SELECT Command

SELECT *
I { [DISTINCT I ALL] < value expression> .,. . }

FROM {<tablename> [<a//as>]} .,.

.

[WHERE <predicate>]

[GROUP BY { <column name> I <integer> }.,..]

[HAVING <predicate>)

[ORDER BY { <column name> I <integer> }.,..]

[{ UNION [ALL]

SELECT *
I {

[DISTINCT I ALL] <value expression> . , . . }

FROM {<table name > [<a//as>]} .,..

[WHERE <predicate>

[GROUP BY { Kcolumn name> I <integer> }.,..]

[HAVING <predicate>]

[ORDER BY { Kcolumn name> I <integer> } .
, . .]

}];

The Elements Used in the SELECT Command

Element Definition

< value expression >

< table names'

<. alias's*

<predicated

^.column names*

<. integers'

An expression that produces a value. It may include or

consist of a <column name^

.

A name of or synonym for a table or view.

A temporary synonym for <Ctable name~> , defined here and

usable only in this command.

A condition that can be true or false for each row or

combination of rows from the table(s) in the FROM clause.

A name of a column of the table.

A number with no decimal point. In this case, it indicates a

< value expression^ in the SELECT clause by identifying its

placement in that clause.

The Update Commands

UPDATE
UPDATE <table name>

SET {I } .
, . . <column name> = <value expression>

[WHERE <predicate>

I WHERE CURRENT OF < cursor name

>

('embedded only*)];

INSERT
INSERT INTO Ktable name> [

(<column name> .,..)]

{ VALUES (<value expression> .,. .) }

I < query>;

DELETE
DELETE FROM <table name>

[WHERE <predicate>

I WHERE CURRENT OF < cursor name>
('embedded only*)];

The Elements Used in the Update Commands

Element Definition

<cursor name>

< query>

Name of a cursor used in this program.

A valid SELECT command.

For other elements, see the SELECT command.

The Symbols Used in Syntax Statements

Symbol Explanation

1 Whatever precedes this symbol may optionally be replaced by whatever

follows it. This is a symbolic way of saying "or".

{} Everything enclosed in curly brackets is treated as a unit for the purposes

of evaluating 1 , . , . . or other symbols.

[] Everything enclosed in square brackets is optional.

Whatever precedes this may be repeated any number of times.

. , .

.

Whatever precedes this may be repeated any number of times with the

individual occurrences separated by commas.

Understanding SQL

Understanding SQL

MARTIN GRUBER

SYBEX

San Francisco Paris Diisseldorf Soest

Acquisitions Editor: Dianne King

Editors: Michael L. Wolk, Eric Stone, Lyn Cordell

Technical Editor: Jon Forrest

Word Processors: Scott Campbell. Deborah Maizels

Book Designer: Julie Bilski

Chapter Art and Layout: Charlotte Carter

Screen Graphics: Delia Brown

Typesetter: The Typesetting Shop, Inc.

Proofreader: Ed Lin

Cover Designer: Thomas Ingalls + Associates

Cover Photographer: Michael Lamotte

Screen reproductions produced by XenoFont

ORACLE is a trademark of Oracle Co.

IBM and DB2 are trademarks of International Business Machines Corporation.

FirstSQL is a trademark of FFE Software.

XenoFont is a trademark of XenoSoft.

SYBEX is a registered trademark of SYBEX, Inc.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary

trademarks from descriptive terms by following the capitalization style used by the manufacturer.

SYBEX is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, SYBEX
assumes no responsibility for its use, nor for any infringement of the intellectual property rights of

third parties which would result from such use.

Copyright ©1990 SYBEX Inc., 2021 Challenger Drive #100, Alameda, CA 94501. World rights

reserved. No part of this publication may be stored in a retrieval system, transmitted, or reproduced

in any way, including but not limited to photocopy, photograph, magnetic or other record, without

the prior agreement and written permission of the publisher.

Library of Congress Card Number: 89-51772

ISBN 0-89588-644-8

Manufactured in the United States of America

10 9 8 7

A his book is dedicated to Lee and Janet Fesperman for

getting me involved in this whole thing in the first place.

£SbA»l5

ACKNOWLEDGMENTS

I would like to thank FFE Software for allowing me to use

FirstSQL in the production of this book.

CONTENTSATA GLANCE

Introduction

1 Introducing Relational Databases 1

2 SQL: An Overview 11

3 Using SQL to Retrieve Information from Tables 21

4 Using Relational and Boolean Operators to Create More Sophisticated Predicates 35

5 Using Special Operators in Conditions 47

6 Summarizing Data with Aggregate Functions 61

7 Formatting Query Output 75

8 Querying Multiple Tables at Once 87

9 Joining a Table to Itself 97

10 Placing Queries Inside One Another 109

11 Correlated Subqueries 125

12 Using the EXISTS Operator 137

13 Using the Operators ANY, ALL, and SOME 149

14 Using the UNION Clause 169

15 Entering, Deleting, and Changing Field Values 185

16 Using Subqueries with Update Commands 195

17 Creating Tables 207

18 Constraining the Values of Your Data 217

19 Maintaining the Integrity of Your Data 233

20 Introducing Views 251

21 Changing Values Through Views 265

22 Determining Who Can Do What 279

23 Global Aspects of SQL 297

24 How a SQL Database Is Kept in Order 313

25 Using SQL with Other Languages (Embedded SQL) 333

A Answers to Exercises 359

B SQL Data Types 381

C Some Common Nonstandard SQL Features 387

D Syntax and Command Reference 399

E Tables Used in Examples 419

Index 422

XI

TABLE OF CONTENTS
INTRODUCTION xxi

Chapter 1 : INTRODUCING RELATIONAL DATABASES 1

What Is a Relational Database? 2

Relating Tables to Each Other 3

The Order of the Rows Is Arbitrary 3

Identifying Rows (the Primary Key) 4

Columns Are Named and Numbered 4

A Sample Database 5

Summary 8

Putting SQL to Work 9

Chapter 2 : SQL : AN OVERVIEW 1

1

How Does SQL Work? 1

2

How Does ANSI Fit In? 12

Interactive vs. Embedded SQL 13

The Subdivisions of SQL 13

The Various Types of Data 14

SQL Inconsistencies 15

What Is a USER? 17

Conventions and Terminology 17

Summary 18

Putting SQL to Work 18

Chapter 3: USING SQL TO RETRIEVE INFORMATION
FROM TABLES 21

Making a Query 22

Where Do Queries Fit In? 22

The SELECT Command 23

Selecting Everything the Easy Way 25

SELECT in Brief 25

Looking Only at Certain Columns of a Table 25

XIX

Column Reordering 26

Eliminating Redundant Data 27

Qualified Selection—the WHERE Clause 29

Summary 32

Putting SQL to Work 33

Chapter 4 : USING RELATIONAL AND BOOLEAN
OPERATORS TO CREATE MORE
SOPHISTICATED PREDICATES 35

Relational Operators 36

Boolean Operators 37

Summary 43

Putting SQL to Work 45

Chapter 5: USING SPECIAL OPERATORS IN CONDITIONS 47

The IN Operator 48

The BETWEEN Operator 50

The LIKE Operator 53

Working with NULL Values 56

The IS NULL Operator 57

Using NOT with Special Operators 57

Summary 59

Putting SQL to Work 60

Chapter 6: SUMMARIZING DATA WITH AGGREGATE
FUNCTIONS 61

What Are the Aggregate Functions? 62

How Do You Use Aggregate Functions? 62

Special Attributes ofCOUNT 64

Aggregates Built on Scalar Expressions 67

The GROUP BY Clause 67

The HAVING Clause 69

Don't Nest Aggregates 72

Summary 73

Putting SQL to Work 74

Xlll

Chapter 7: FORMATTING QUERY OUTPUT 75

Strings and Expressions 76

Ordering Output by Fields 79

Ordering by Multiple Columns 80

Ordering Aggregate Groups 81

Ordering Output by Column Number 82

ORDER BY with NULLs 84

Summary 85

Putting SQL to Work 86

Chapter 8: QUERYING MULTIPLE TABLES AT ONCE 87

Joining Tables 88

Table and Column Names 88

Making a Join 89

Joining Tables through Referential Integrity 90

Equijoins and Other Kinds ofJoins 91

Joins of More Than Two Tables 92

Summary 93

Putting SQL to Work 95

Chapter 9: JOINING A TABLE TO ITSELF 97

How Do You Join a Table to Itself? 98

Aliases 98

Eliminating Redundancy 100

Checking for Errors 101

More on Aliases 102

Some More Complex Joins 102

Summary 105

Putting SQL to Work 107

Chapter 10: PLACING QUERIES INSIDE ONE ANOTHER 109

How Do Subqueries Work? 1 10

The Values That Subqueries Can Produce 1 1

1

DISTINCT with Subqueries 1 1

2

Predicates with Subqueries Are Not Reversible 1 14

XIV

Using Aggregate Functions in Subqueries 114

Using Subqueries That Produce Multiple Rows with IN 116

Subqueries in HAYING 121

Summary 122

Putting SQL to Work 123

Chapter 11: CORRELATED SUBQUERIES 125

How to Form a Correlated Subquery 126

How the Correlated Subquery Works 126

Using Correlated Subqueries to Find Errors 130

Correlating a Table with Itself 131

Correlated Subqueries in HAYING 132

Correlated Subqueries and Joins 133

Summary 134

Putting SQL to Work 135

Chapter 12: USING THE EXISTS OPERATOR 137

How Does EXISTS Work 138

Selecting Columns with EXISTS 139

Using EXISTS with Correlated Subqueries 139

Combining EXISTS and Joins 141

Using NOT EXISTS 142

EXISTS and Aggregates 142

A More Advanced Subquery Example 143

Summary 146

Putting SQL to Work 147

Chapter 13: USING THE OPERATORS ANY, ALL, AND SOME 149

The Special Operator ANY or SOME 150

Using IN or EXISTS instead ofANY 151

How ANY Can Be Ambiguous 154

The Special Operator ALL 158

Equalities vs. Inequalities 159

Keeping ANY and ALL Straight 162

XV

How ANY, ALL, and EXISTS Deal with Missing Data and

Unknowns 162

When the Subquery Comes Back Empty 162

ANY and ALL vs. EXISTS with NULLs 1 63

Using COUNT in Place of EXISTS 1 64

Summary 166

Putting SQL to Work 167

Chapter 14: USING THE UNION CLAUSE 169

Uniting Multiple Queries as One 170

When Can You Make a Union between Queries? 171

UNION and Duplicate Elimination 172

Using Strings and Expressions with UNION 174

Using UNION with ORDER BY 1 75

The Outer Join 177

Summary 181

Putting SQL to Work 1 83

Chapter 15: ENTERING, DELETING, AND CHANGING
FIELD VALUES 185

DML Update Commands 186

Entering Values 186

Inserting NULLs 187

Naming Columns for INSERT 187

Inserting the Results of a Query 188

Removing Rows from Tables 189

Changing Field Values 190

Updating Only Certain Rows 190

UPDATE with Multiple Columns 190

Using Expressions in UPDATE 191

UPDATing to NULL Values 1 92

Summary 192

Putting SQL to Work 193

X1

1

Chapter 16: USING SUBQUERIES WITH UPDATE
COMMANDS 195

Using Subqueries with INSERT 196

(Not) Inserting Duplicate Rows 197

Using Subqueries Built on Outer Query Tables 198

Using Subqueries with DELETE 199

Using Subqueries with UPDATE 202

Dealing with the Limitations of DML Command Subqueries 203

Summary 204

Putting SQL to Work 205

Chapter 17: CREATING TABLES 207

The CREATE TABLE Command 208

Indexes 210

Unique Indexes 211

Dropping Indexes 212

Altering a Table Once Created 212

Dropping a Table 2 1

4

Summary 214

Putting SQL to Work 2 1

5

Chapter 18: CONSTRAINING THE VALUES OF YOUR DATA 217

Constraining Tables 218

Declaring Constraints 218

L'sing Constraints to Exclude XL'LLs 219

Making Sure Values Are Unique 220

The PRIMARY KEY Constraint 222

Checking Field Values

Assigning Default \ alues 227

Summary 229

Putting SQL to Work 231

Chapter 19: MAINTAINING THE INTEGRITY OF YOUR DATA 233

Foreign and Parent Kevs 234

Multicolumn Foreign Keys 235

The Meaning of Foreign and Parent Kevs 235

XWl

The FOREIGN KEY Constraint 236

How to Declare Fields as Foreign Keys 236

FOREIGN KEY as a Table Constraint 238

FOREIGN KEY as a Column Constraint 239

Omitting Primary Key Column Lists 239

How Referential Integrity Restricts Parent Key Values 240

Primary vs. Unique Parent Keys 240

Foreign Key Restrictions 241

What Happens When You Perform Update Commands 241

Implications of the Table Definitions 242

The Effects of the Constraints 243

Foreign Keys That Refer Back to Their Own Tables 246

Summary 248

Putting SQL to Work 250

Chapter 20: INTRODUCING: VIEWS 251

What Are Views? 252

The CREATE VIEW Command 252

Updating Views 254

Naming Columns 255

Combining the Predicates of Views and Queries Based on Views 256

Grouped Views 257

Views and Joins 258

Views and Subqueries 260

What Views Cannot Do 261

Dropping Views 262

Summary 262

Putting SQL to Work 263

Chapter 21: CHANGING VALUES THROUGH VIEWS 265

Updating Views 266

Determining If a View Is Updatable 268

Updatable vs. Read-Only Views 269

Telling Which Are Updatable Views 270

Checking the Values Placed in Views 271

Predicates and Excluded Fields 272

Checking Views That Are Based on Other Views 274

xnn

Summarv _
~

':

Putting SQL to Work 2
' "

Chapter 22: DETERMINING WHO CAN DO WHAT 279

Use- 280

Logging On II

Granting Privileee? 281

The Standard Privile ; 281

The GRANT Command I :

Using the ALL and PUBLIC Arguments 285

Granting with the GRANT OPTION 286

Taking Privileges Away '_ : "

L sing Mews to Filter Privik 288

Other Kinds of Privil s
'-::

Typical System Privu^ '_?'_

\ting and Destroying U s e i-a 1

:

Summary- 1?~

Puning SQL to Work _ ?

:

Chapter 23: GLOBAL ASPECTS OF SQL 297

Renaming Tables 298

Renaming with the Same Name 298

One Name for Everybody 299

Dropping Synonyms 300

How Is the Database .Allocated to Users? 300

When Does a Change Become Permanent?

How SOL Deals with Multiple Users at Once -.

Types of Lc 307

Other Ways of Locking Data 308

Summary : ?

Puning SQL to Work 3 1

1

XIX

Chapter 24: HOW A SQL DATABASE IS KEPT IN ORDER 313

The System Catalog 314

A Typical System Catalog 315

Using Views on Catalog Tables 317

Commenting on the Catalog Contents 319

The Rest of the Catalog 322

SYSTEMINDEXES—Indexes in the Database 322

SYSTEMUSERAUTH—Users and System Privileges in the

Database 323

SYSTEMTABAUTH—Object Privileges That Are Not

Column Specific 324

SYSTEMCOLAUTH—Object Privileges That Are Column

Specific 326

SYSTEMSYNONS - Synonyms for Tables in the Database 328

Other Uses of the Catalog 329

Summary 330

Putting SQL to Work 332

Chapter 25 : USING SQL WITH OTHER LANGUAGES
(EMBEDDED SQL) 333

What Is Involved in Embedding SQL 334

Why Embed SQL? 334

How Do You Embed SQL? 335

Using Host Language Variables with SQL 336

Declaring Variables 339

Retrieving Values into Variables 339

The Cursor 410

SQLCODE 343

Using SQLCODE to Control Loops 345

WHENEVER 345

Updating Cursors 346

Indicator Variables 349

Using Indicator Variables to Emulate SQL NULLs 351

Other Uses of Indicator Variables 352

Summary 353

Putting SQL to Work 356

XX

Appendix A: ANSWERS TO EXERCISES 359

Appendix B: SQL DATA TYPES 381

Appendix C: SOME COMMON NONSTANDARD SQL FEATURES 387

Appendix D: SYNTAX AND COMMAND REFERENCE 399

Appendix E: TABLES USED IN EXAMPLES 419

INDEX 422

XXI

INTRODUCTION

SQL (USUALLY PRONOUNCED "SEQUEL") STANDS
for Structured Query Language. It is a language that enables

you to crgat^ and ^pp^tpon relational databases^ which are sets of

related information stored in tables.

The database world is becoming increasingly integrated, and

this has led to a clamor for a standard language that can be used

to operate in many different kinds of computer environments. A
standard language allows users to learn one set of commands and

use it to create, retrieve, alter, and transfer information regardless

of whether they are working on a personal computer, a worksta-

tion, or a mainframe. In our increasingly interconnected com-

puter world, a user equipped with such a language has tremen-

dous power to utilize and integrate information from a variety of

sources in a great number of ways.

Because of its elegance and independence from machine spe-

cifics, as well as its support by the industry leaders in relational-

database technology, SQL has become, and will for the foresee-

able future remain, that standard language. For this reason,

anyone who expects to work with databases in the nineties needs

to know SQL.
The SQL standard is defined by ANSI (American National

Standards Institute) and is currently accepted as well by ISO
(International Standards Organization). However, most commer-
cial database programs extend SQL beyond the ANSI definition,

adding other features that they think will be useful. Sometimes they

violate the standard in minor ways, although good ideas tend to be

copied and become "defacto" or "marketplace" standards. In this

book, we will basically be following the ANSI standard, but with an

eye towards the most common variations. You should consult the

documentation on the software package(s) you will be using to see

where they vary from the standard.

XXI

I

WHO CAN USE THIS BOOK?
This book requires no more than a minimal knowledge of

computers and databases. SQL is actually considerably easier to

use than many languages that are less compact because you

don't have to define the procedures used to achieve the desired

results. This book will lead you through the language step by

step, providing examples along the way and exercises for each

chapter to sharpen your comprehension and skills. You will be

able to perform useful tasks almost immediately; then you will

build more complex skills layer by layer.

Because SQL is part of so many programs that run on so

many different computers, no assumptions can be made about

the specific context in which you are using it. This book is

designed to be as general purpose as possible. You will be able to

apply what you learn here directly to any context in which SQL
is used.

Although this book is designed to be accessible to database

beginners, it presents SQL in considerable depth. Examples are

designed to reflect a variety of situations, many of which com-

monly occur in business environments. Certain examples are

fairly complex in the interest of showing all the implications of a

particular feature. The discussion of SQL is not restricted to

what is technically correct, but also explores the implications of

various features and approaches. We believe you will not find

another book on SQL which has the accessibility and the depth

of this one.

HOWIS THIS BOOK ORGANIZED?
The chapters of this book are arranged so that each one will

introduce a new group of related concepts and features. Every

chapter builds on what came before and concludes with practice

questions to sharpen and solidify your understanding. (Answers

to the practice questions are in Appendix A.)

The first seven chapters introduce the basic concepts of rela-

tional databases and of SQL, and then proceed to lay out the

basics of queries. Queries are commands used to retrieve informa-

tion from a database; they are the most common and, at times,

XXlll

probably the most complex aspect of SQL. Chapters 8 through 14

introduce more advanced query techniques, specifically how to

query more than one table at a time, and how to combine queries

in various ways. Other aspects of SQL—how to create tables, how
to enter values into them, and how to grant and deny access to

tables that you create—are covered in Chapters 15 through 23.

Chapter 24 shows you how to access information about the struc-

ture of your database. In Chapter 25, you will learn how to put

SQL into programs written in other languages.

Depending on how you will be using SQL, some of the later

information may be unnecessary for you to study. Not all users

create tables or even enter values into them. As a tutorial, this

book is written so that one chapter will flow into the next, but

you can feel free to skim sections that you may not need to use.

This is one reason we put all the query instruction together at

the beginning. Queries are basic; you will need to understand

them in order to use most of the other functions of SQL. But the

reverse is not necessarily true.

We will use a single set of tables to derive the bulk of the

book's examples. You will become quite familiar with these

tables, and thus be able to understand clearly the points being

made with them.

Here is a chapter-by-chapter summary of the contents of this

book:

• Chapter 1 shows you what a relational database is,

including the important concept of the primary key, and

gives examples similar to real-life situations. It also con-

tains the three tables from which we will derive the bulk

of our examples in this book and explains their contents.

• Chapter 2 orients you to the world of SQL. It covers such

general issues as: the structure of the language, the dif-

ferent types of data recognized by SQL, and some com-
mon SQL conventions and terminology.

• Chapter 3 shows you how to create queries and intro-

duces several techniques to refine them. After reading

this chapter, you will be able to do useful work with SQL.

XXIV

Chapter 4 illustrates how two types of standard mathe-

matical operators, relationals (=, <, > =, and so on)

and Booleans (AND, OR, NOT), are used in SQL.

Chapter 5 introduces some operators that are used in a

manner similar to the relational operators but are specific

to the SQL language. Also in this chapter, the issue of

missing data is brought up and NULL values are defined.

Chapter 6 teaches you about a set of operators that derive

data from tables, rather than simply extracting it. This

enables you to have summary data about the values in

your tables that is up to the second.

Chapter 7 shows some things you can do to the output of

a query, such as performing mathematical operations on

it, inserting text in it, and ordering it in various ways.

Chapter 8 shows how a single query can draw information

from more than one table at a time. This process defines a

relationship between the tables, extending the ways in

which you can interrelate the data in your database.

Chapter 9 demonstrates that the same technique that

enables you to query multiple tables at once can enable

you to define special interrelationships between the items

of data in a single table.

In Chapter 10, you will learn how to execute one query and

have its output control what happens to another query.

Chapter 1 1 extends the technique introduced in Chap-

ter 10. Here you will learn how to have one query control

another by being executed repeatedly.

Chapter 12 introduces a new kind of SQL special opera-

tor. EXISTS is an operator that acts on an entire query

rather than on a simple value.

Chapter 13 introduces the operators ANY, ALL, and
SOME. These operators, like EXISTS, operate on entire

queries.

XXV

Chapter 14 introduces the command that enables you to

combine the output of multiple queries directly, rather

than having one control another.

Chapter 15 introduces the commands that determine

what the values are in a database—that is, the commands
to insert, delete, and update values.

Chapter 16 extends the power of the commands intro-

duced in the previous chapter by showing how they can

be controlled by queries.

Chapter 17 shows you how to create a table.

Chapter 18 elaborates on the creation of tables by show-

ing you how you can make them reject certain kinds of

changes automatically.

Chapter 19 explores the relationships built into your data-

base when, for a logical reason, a value located somewhere

in a table has to be the same as a value located elsewhere.

Chapter 20 talks about the view, a "window" that shows

the partial contents of some other table. Even if you do

not expect to create tables as such, you may want to look

over views, because they are quite useful, and are com-

monly created by many users who don't create tables.

Chapter 21 concentrates on the complex issue of changing

the values in a view. When you change the values in a

view, you actually change them in the underlying table.

This brings up some special problems that are also treated

in this chapter.

Chapter 22 talks about privileges—who has the ability to

query tables, who has the ability to change their con-

tents, how these abilities can be given to and taken from

users, and so on.

Chapter 23 is something of a catchall for general features

that don't fit in anywhere else. Specifically, we will dis-

cuss when changes to the database become permanent,

and how SQL deals with simultaneous actions.

XXVI

• Chapter 24 describes how SQL databases keep your

database structured, and shows you how to access and

use this information.

• Chapter 25 focuses on the special problems and proce-

dures associated with putting SQL commands inside

other languages. It includes SQL features relevant only

to the embedded form, such as cursors and the FETCH
command.

The appendices of this book contain the answers to the sample

problems (Appendix A), an extra copy of the sample tables

(Appendix E), some detailed information on different types of data

(Appendix B) and on common nonstandard features (Appendix C),

as well as a reference guide to SQL commands (Appendix D).

CONVENTIONS OF THIS BOOK
SQL consists of instructions you give a database program, tell-

ing it to perform some action. Although these are commonly
called "statements" in database jargon, we shall, for the most

part, use the term "commands" to emphasize that these are

directions that have effects.

Words in italics are terminology. In the text, terms are itali-

cized when they are first explained; in the syntax of commands,
they are italicized to indicate that they stand for something

besides themselves.

In our examples, we will show you the text you should enter

into your database program, and then show you the output as it

appears in one database product (FirstSQL, a database program

for the IBM PC). Output from other products may look differ-

ent, but the content will be the same.

1

Introducing Relational

Databases

2 UNDERSTANDING SQL

CH. 1

BEFORE YOU CAN USE SQL, YOU MUST UNDERSTAND
what relational databases are. In this chapter, we will explain this,

and show you how relational databases are useful. We won't be

discussing SQL specifically here, so if you already understand

these concepts fairly well, you may wish to merely skim this chap-

ter. In any case, you should look at the three tables that are intro-

duced and explained at the chapter's end; these will be the basis of

most of our examples in this book. A second copy of them is avail-

able in Appendix E, and we recommend copying them for your

reference.

WHAT IS A RELATIONAL DATABASE? _
A relational database is a body of related information stored in

two-dimensional tables. Think of an address book. There are

many entries in the book, each of which corresponds to a given

individual. For each individual, there may be several indepen-

dent pieces of data, such as name, telephone number, and
address. Suppose you were to format this address book as a table

with rows and columns. Each row (also called a record) would

correspond to a certain individual; each column would contain a

value for each type of data—name, telephone number, and

address represented in each row. The address book might look

like this:

Name Telephone Address

Gerry Farish (415)365-8775 127 Primrose Ave., SF

Celia Brock (707)874-3553 246 #4 3rd St. , Sonoma

Yves Grillet (762)976-3665 778 Modernas, Barcelona

What you have here is the foundation of a relational database as

defined at the beginning of this discussion—a two-dimensional

(row and column) table of information. Relational databases sel-

dom consist of a single table, however. Such a table is little more
than a filing system. By creating several tables of interrelated infor-

mation, you can perform more complex and powerful operations

on your data. The power of the database lies in the relationships

INTRODUCING RELATIONAL DATABASES 3

that you can construct between the pieces of information, rather

than in the pieces of information themselves.

RELATING TABLES TO EACH OTHER
Let us use the example of our address book to discuss a data-

base that would actually be used in a business situation. Suppose

the individuals in our first table (the address book) are patients

in a hospital. In another table, we could store additional infor-

mation about these patients. The columns of the second table

might be labelled Patient, Doctor, Insurer, and Balance.

PATIENT DOCTOR Insurer Balance

Farish Drume B.C./B.S. $272.99

Grillet Halben None $44.76

Brock Halben Health, Inc. $9077.47

Many powerful functions could be performed by extracting

information from these tables according to specific criteria, espe-

cially when the criteria involve relating pieces of information

from different tables to one another. For example, suppose Dr.

Halben wanted the phone numbers of all of his patients. To

extract this information, he could relate the table with the phone

numbers of patients (the address book) to the table that shows

which patients are his. Although, in this simple example, he

could also do this in his head and produce the phone numbers of

patients Grillet and Brock, these tables could easily be larger and

more complex. Relational-database programs were developed to

process large and complex collections of data of this kind, which

obviously are quite common in the business world. Even if the

hospital database contained hundreds or thousands of names—as

is probably the case in practice—a single SQL command could

give Dr. Halben the information he needed almost instantly.

THE ORDER OF THE ROWS IS ARBITRARY
To maintain maximum flexibility, the rows of a table are, by

definition, in no particular order. This is an aspect of database

4 UNDERSTANDING SQL

CH. 1

that differs from our address book. The entries in an address

book are usually ordered alphabetically. In relational-database

systems, one powerful capability that users have is the ability to

order the information however they want to as they retrieve it.

Consider the second table. Sometimes you might want to see

this information ordered alphabetically by name, sometimes by

the balance in ascending or descending order, and sometimes

grouped by doctor. Imposing a set order on the rows would

interfere with the user's ability to be flexible, so the rows are

always considered to be unordered. For this reason, you cannot

simply say, "I want to look at the fifth row of a table." Regard-

less of the order in which the data is entered or of any other crite-

ria, there is, by definition, no such fifth row. The rows of the

table are considered to be in no particular sequence.

IDENTIFYING ROWS (THE PRIMARYKEY)
For this and other reasons, you need to have a column in your

table that uniquely identifies each row. Typically, this column
contains a number—a patient number assigned to each patient,

for example. Of course, you could also use the patient's name,

but it is possible to have several Mary Smiths; in that case, you
would have no simple way to distinguish these patients from one

another. This is why numbers are more commonly used. This

unique column (or unique group of columns), used to identify

each row and keep all rows distinct, is referred to as the primary

key of the table.

The primary key of a table is vital to the structure of the data-

base. It is the heart of your filing system; when you want to find

a specific row in a table, you refer to it by the primary key. In

addition, primary keys guarantee that your data has a certain

integrity. If the primary key is properly used and maintained,

you will know that no row of a table is empty and that every row
is different from every other row. We will discuss keys further

when we talk about referential integrity in Chapter 19.

COLUMNS ARE NAMED AND NUMBERED
Unlike the rows, the columns (also called fields) of a table are

ordered and named. Thus, in our address-book table, it is possible

INTRODUCING RELATIONAL DATABASES

to refer to the "address column" or to "column 3". Naturally,

this means that each column of a given table must have a

different name to avoid ambiguity. It is best if these names indi-

cate the content of the field. In the sample tables in this book, we
will use some abbreviations as column names, such as cname for

customer name, and odate for order date. We have also given

each table a single numeric column as a primary key. The next

section will explain these tables and their keys in detail.

A SAMPLE DATABASE
Tables 1.1, 1.2, and 1.3 constitute a relational database that is

small enough to follow easily, but complex enough to illustrate

the major concepts and practices involved in using SQL. These

tables are printed in this chapter and also in Appendix E. Since

they will be used to illustrate the various features of SQL
throughout this book, we recommend you copy them for easy

reference.

You will notice that the first column of each table contains

numbers whose values are different for every row. As you may
have guessed, these are the primary keys of the tables. Some of

these numbers also appear in columns of other tables. There is

nothing wrong with this. It indicates a relationship between the

rows that use a value taken from a primary key, and the row

where that value is used in the primary key itself.

Table 1.1: Salespeople

Snum Sname City COMM

1001 Peel London .12

1002 Serres San Jose .13

1004 Motika London .11

1007 Rifkin Barcelona .15

1003 Axel rod New York .10

6 UNDERSTANDING SQL

CH. 1

Table 1.2: Customers

Cnum Cname City Rating Snum

2001 Hoffman London 100 1001

2002 Giovanni Rome 200 1003

2003 Liu San Jose 200 1002

2004 Grass Berlin 300 1002

2006 Clemens London 100 1001

2008 Cisneros San Jose 300 1007

2007 Pereira Rome 100 1004

Table 1.3: Orders

Onum Amt Odate Cnum Snum

3001 18.69 10/03/1990 2008 1007

3003 767.19 10/03/1990 2001 1001

3002 1900.10 10/03/1990 2007 1004

3005 5160.45 10/03/1990 2003 1002

3006 1098.16 10/03/1990 2008 1007

3009 1713.23 10/04/1990 2002 1003

3007 75.75 10/04/1990 2004 1002

3008 4723.00 10/05/1990 2006 1001

3010 1309.95 10/06/1990 2004 1002

3011 9891.88 10/06/1990 2006 1001

For example, the snum field of the Customers table indicates

to which salesperson a customer is assigned. The snum number
relates to the Salespeople table, which gives information about

these salespeople. Obviously, the salespeople to whom the cus-

tomers are assigned should exist—that is to say, the snum values

in the Customers table should also be present in the Salespeople

INTRODUCING RELATIONAL DATABASES

table. If this is the case, we say that the system is in a state of ref-

erential integrity. This issue will be more thoroughly and formally

explained in Chapter 19.

The tables themselves are intended to resemble a real-life busi-

ness situation, where you would use SQL to keep track of the

salespeople, their customers, and the customers' orders. Let's

take a moment to look at these three tables and the meaning of

their various fields.

Here's an explanation of the columns in Table 1.1:

Field Content

snum A unique number assigned to each salesperson

(an "employee number").

sname The name of the salesperson.

city The location of the salesperson.

comm The salesperson's commission on orders in

decimal form.

Table 1.2 contains the following columns:

Field Content

A unique number assigned to each customer.cnum

cname

city

rating

snum

The name of the customer.

The location of the customer.

A numeric code indicating level of preference

given this customer. Higher numbers indicate

greater preference.

The number of the salesperson assigned to this

customer (from the Salespeople table).

And here are the columns in Table 1.3:

Field Content

onum A unique number given to each purchase,

amt The amount of the purchase.

8 UNDERSTANDING SQL

CH. 1

odate The date of the purchase.

cnum The number of the customer making the purchase

(from the Customers table).

snum The number of the salesperson credited with the

sale (from the Salespeople table).

SUMMARY
Now you know what is meant by a relational database, a con-

cept that sounds more complicated than it really is. You also

have learned some fundamental principles about how tables are

structured—how rows and columns work, how primary keys dis-

tinguish rows from one another, and how columns can refer to

values in other columns. You are aware that record is a .synonym̂

for row , and that field is a synonym for column. Both terminolo-

gies are encountered in discussions of SQL, and we will use

them interchangeably in this book.

You are now familiar with the sample tables. Brief and simple

as they are, they are adequate to demonstrate most of the fea-

tures of the language, as you shall see. On occasion, we will

introduce another table or postulate some different data in one of

these tables to show you some other possibilities.

Now you are ready to dive into SQL itself. The next chapter

gives you a bird's-eye view of the language, orienting you to the

terrain and putting a lot of the material you may need to refer

back to in one familiar place.

INTRODUCING RELATIONAL DATABASES 9

Putting SQL to Work

1. Which field of the Customers table is the primary key?

2. What is column 4 of the Customers table?

3. What is another word for row? For column?

4. Why can you not ask to see the first five rows of a table?

(See Appendix Afor answers.)

1 2
r^=-

^*. SQL: An Overview

12 UNDERSTANDING SQL

CH. 2

THIS CHAPTER WILL ACQUAINT YOU WITH THE
structure of the SQL language as well as with certain general

issues, such as the types of data that fields can contain and some

of the areas of ambiguity that exist in SQL. It is intended to pro-

vide a context for the more specific information in subsequent

chapters. You do not need to remember every detail mentioned

in this chapter. The overview presented here consolidates, in one

easily located area, many of the details that you may have to

refer back to as you proceed to master the language. We have

put all this at the beginning of the book to orient you to the

world of SQL without oversimplifying it and to give you a famil-

iar place to refer back to when you have questions. This material

will become much clearer when we move into the specifics of

SQL commands, starting in Chapter 3.

HOWDOES SQL WORK?
SQL is a language oriented specifically around relational data-

bases. It eliminates a lot of the work you would have to do if you

were using a general-purpose programming language, such as

C. To build a relational database in C, you would have to start

from scratch. You would have to define an object called a table

that could grow to have any number of rows, and then create

step-by-step procedures for putting values in it and retrieving

them. If you wanted to find some particular rows, you would

have to enumerate each step of the process like this:

1

.

Look at a row of the table.

2. Perform a test to see if it is one of the rows you want.

3. If so, store it somewhere until the whole table is examined.

4. See if there are any more rows in the table.

5. If there are more rows, go back to step 1

.

6. If there are no more rows, output all values stored in step 3.

(Of course, this is not an actual set of C instructions, just an

English-language rendition of the logical steps that would be

involved.)

SQL: AN OVER VIEW 13

SQL, however, spares you all this. Commands in SQL can

operate on entire groups of tables as single objects and can treat

any quantity of information extracted or derived from them as a

single unit as well.

HOWDOES ANSI FIT IN?
As we mentioned in the Introduction, the SQL standard is

defined by ANSI (the American National Standards Institute).

SQL was not invented by ANSI. It is essentially a product of IBM
research. But other companies picked up on SQL right away; in

fact, at least one company (Oracle) beat IBM to the punch with a

marketable SQL product.

After there were a number of competing SQL products on the

market, ANSI defined the standard to which they would all con-

form (defining such standards is ANSI's function). Doing this

after the fact, however, presents some problems. The resulting

ANSI standard is somewhat limited; also what ANSI specifies is

not always what is found most useful in practice, so products

attempt to conform to the ANSI standard without letting it limit

them too much. This, in turn, leads to occasional inconsistencies

that we will explain as we encounter them. Database products

usually give ANSI SQL additional features and frequently relax

many of its more limiting restrictions. Therefore, common varia-

tions from ANSI will be explored as well. Although we obviously

cannot cover every exception or variation, successful ideas tend

to be copied and used similarly in different products even when
they are not specified by ANSI. ANSI is sort of minimum stan-

dard—you can do a lot more than it does, but you should pro-

duce the results it specifies when performing a task it defines.

INTERACTIVE VS EMBEDDED SQL

In a sense, there are two SQL's: interactive and embedded.
For the most part, the two forms operate the same way, but they

are used differently.

Interactive SQL is used to operate directly on a database to

produce output for human consumption. In this form of SQL,

14 UNDERSTANDING SQL

CH. 2

you enter a command now, it is executed now, and you can see

the output (if any) immediately.

Embedded SQL consists of SQL commands put inside of pro-

grams that are mostly written in some other language (such as

COBOL or Pascal). This can make these programs more power-

ful and efficient. However, enabling these languages to deal with

SQL's structure and its style of data management does require

some extensions to interactive SQL. The output of SQL com-

mands in embedded SQL is "passed off" to variables or param-

eters usable by the program in which it is embedded.

In this book, we will present SQL in its interactive form. This

will enable us to discuss commands and their effects without

worrying about how they interface with other languages. Inter-

active SQL is also the form most useful to nonprogrammers.

What you learn about interactive SQL basically applies as well

to the embedded form. The changes needed to use the embedded
form will be dealt with in the last chapter of this book.

THE SUBDIVISIONS OF SQL
In both the interactive and the embedded forms of SQL, there

are multiple sections, or subdivisions. Since you are likely to

encounter this terminology when reading about SQL, we will

provide some explanation. Unfortunately, these terms are not

used consistently in all implementations. They are emphasized

by ANSI and are useful on a conceptual level, but many SQL
products do not treat them separately in practice, so they essen-

tially become functional categories of SQL commands.
Data Definition Language (or DDL, also called Schema Defi-

nition Language in ANSI) consists of those commands that cre-

ate the objects (tables, indexes, views, and so on) in the data-

base. Data Manipulation Language (DML) is a set of

commands that determine which values are present in the tables

at any given time. Data Control Language (DCL) consists of

features that determine whether a user is permitted to perform a

particular action. This is considered part of DDL in ANSI.
Don't let these names put you off. These are not different lan-

guages per se, but divisions of SQL commands into groups

according to their functions.

SQL: AN OVER VIEW 15

THE VARIOUS TYPES OF DATA
Not all the types of values that can occupy the fields of a table

are logically the same. The most obvious distinction is between

numbers and text. You can't put numbers in alphabetical order

or subtract one name from another. Since relational-database

systems are based on the relationships between pieces of infor-

mation, the various types of data must be clearly distinguished

from one another, so that the appropriate processes and compari-

sons can be applied.

In SQL, this is done by assigning each field a data type that

indicates the kind of value the field will contain. All of the values

in a given field must be of the same type. In the Customers

table, for example, cname and city are strings of text, whereas

rating, snum, and cnum are numbers. For this reason, you

could not enter Highest or None into the rating field, which has

a numeric data type. This limitation is fortunate because it

imposes some structure on your data. You frequently will be

comparing some or all of the values in a given field, so that you

can perform an action on some rows and not on others. You
could not do this if the field's values had mixed data types.

Unfortunately, the definition of these data types is a major area in

which many commercial database programs and the official SQL
standard are not always in synch. The ANSI SQL standard recog-

nizes only text and number types, whereas many commercial pro-

grams use other special types as well. Notably, DATE and TIME are

almost defacto standard types (although the exact format varies).

Some packages also support types such as MONEY and BINARY.
(Binary is a special number system used by computers. All of the

information in a computer is represented by binary numbers and

then converted to other systems so we can more easily use and under-

stand it.)

ANSI defines several different types of number values, the dis-

tinctions between which are frequently subtle and sometimes con-

fusing. The exact ANSI data types are enumerated in Appendix B.

The complexity of the ANSI numeric types can, at least in part, be

explained by the effort to make embedded SQL compatible with a

variety of other languages.

16 UNDERSTANDING SQL

CH. 2

Two ANSI number types, INTEGER and DECIMAL (which

can be abbreviated as INT and DEC, respectively), will be ade-

quate for our purposes, as well as the purposes of many practical

business applications. Of course, an INTEGER can be thought of

as a DECIMAL that allows no digits to the right of the (implied)

decimal point.

The type for text is CHAR (or CHARACTER), which refers

to a string of text. A field of type CHAR has a definite length,

which is the maximum number of characters that can be entered

into that field. Most implementations also have a nonstandard

type called VARCHAR, which is a text string that can be of any

length up to an implementation-defined maximum (typically 254

characters). CHARACTER and VARCHAR values are enclosed

in single quotes such as 'text'. The difference between CHAR
and VARCHAR is that CHAR has to reserve enough memory
for the maximum length of the string. VARCHAR allocates

memory as needed.

The character types consist of all the printable characters,

including the numbers. However, the number 1 is not the same

as the character '1'. The character '1' is just another printable

piece of text, not recognized by the system as having the numeric

value 1. 1 + 1 = 2, but '1' + '1' does not equal '2'. CHAR-
ACTER values are stored in the computer as binary values, but

appear to the user as printable text. The conversion follows a for-

mat defined by the system you are using. This conversion format

will be one of the two standard types (possibly with extensions)

used in computer systems: ASCII (used in all personal and most

small computers) and EBCDIC (used in some larger computers).

Certain operations, such as alphabetical ordering of field values,

will vary with the format. Implications of these two formats will

be discussed in Chapter 4.

We shall follow the market, not ANSI, in using the type called

DATE. (In an implementation that did not recognize the DATE
type, you could declare a date as a character or numeric field, but

this makes many operations more difficult.) You should refer to the

documentation on the software package you will be using to find

out exacdy what data types it supports.

SQL: AN OVERVIEW 17

SQL INCONSISTENCIES

As you may have gathered from the preceding discussion, there

are inconsistencies within the world of SQL itself. SQL emerged

from the commercial database world as a tool, and was later

turned into an ANSI standard. Unfortunately, what ANSI speci-

fies is not always what is found most useful in practice, so prod-

ucts attempt to conform to the ANSI standard without letting it

limit them too much. ANSI is a sort of minimum standard—you

can do a lot more than it does, but you should be able to produce

the same results as it does when performing the same task.

WHAT IS A USER?

SQL is mostly found in computer systems that have more than

one user, and need to differentiate between them (your family

PC may have any number of users, but it usually has no way of

distinguishing one from another). Typically, in such a system,

each user has some sort of authorization code that identifies him
or her (the terminology varies). When beginning a session with

the computer, the user logs on, which tells the computer which

user, identified by an authorization ID, is speaking. Any number
of people using the same authorization ID are a single user as far

as the computer is concerned; likewise, a person can be many
users (generally at different times) by using different authoriza-

tion ID's.

SQL follows this pattern. Actions in most SQL environments

are credited to a specific authorization ID, which usually corre-

sponds to a user. A table or other object is owned by a user, who
has authority over what happens to it. A user may or may not

have the privilege to perform an action on an object he or she

does not own. For our purposes, we will assume any user has the

privileges needed to perform any action, until we get around to

discussing privileges specifically in Chapter 22.

The special value USER can be used as an argument to a

command. It indicates the authorization ID of the user issuing

the command.

18 UNDERSTANDING SQL

CH. 2

CONVENTIONSAND TERMINOLOGY
Keywords are words that have a special meaning in SQL. They

are understood to be instructions, not text or names of objects.

We will indicate keywords by printing them in all CAPS. You

should take care not to confuse keywords with terminology. SQL
has certain special terms that are used to describe it. Among
these are such words as query, clause, and predicate, which are

important in describing and understanding the language but do

not mean anything to SQL itself.

Commands, or statements, are instructions given by you to a SQL
database. Commands consist of one or more logically distinct

parts called clauses. Clauses begin with a keyword for which they

are generally named, and consist of keywords and arguments.

Examples of clauses you will encounter are "FROM Salespeople"

and "WHERE city = 'London'." Arguments complete or modify

the meaning of a clause. In the examples above, "Salespeople" is

the argument, and FROM is the keyword of the FROM clause.

Likewise, "city = 'London' '"
is the argument of the WHERE

clause. Objects are structures in the database that are given names

and stored in memory. They include base tables, views (the two

kinds of tables), and indexes.

When we show you how commands are formed, we will gener-

ally do so by example. There is, however, a more formal method

of describing commands using standardized conventions. We
will make some use of this in later chapters, it is good for you to

understand these conventions in case you encounter them in

other SQL documents. Square brackets ([]) will indicate por-

tions that can optionally be omitted, and ellipses (...) will indi-

cate that the preceding may be repeated any number of times.

Words indicated in angle brackets (O) are special terms that

will be explained as they are introduced. We have simplified the

standard SQL terminology considerably, but without changing

the effect.

SUMMARY
Whew! You have quickly covered a lot of ground in this chap-

ter. But our intention has simply been to fly high over the SQL

SQL: AN OVER VIEW 19

territory, so you could have an idea of its overall shape. When we
return to the ground in the next chapter, things will become
much more concrete. Now you know a fair amount about SQL
—how it is structured, how it is used, how it conceives of data,

how and by whom it is defined (and some inconsistencies emerg-

ing from that), and some of the conventions and terminology

used to describe it. This is a lot of information for a single chap-

ter; we don't expect you to remember all of the details, but you

can refer to details as you need to. The important thing is the big

picture.

In Chapter 3, we will go hands-on, showing exactly how com-

mands are formed and what they do. We will introduce the SQL
command used to extract information from tables, which is eas-

ily the most widely used command in SQL. By the end of that

chapter, you will be able to extract highly specific information

from your database.

20 UNDERSTANDING SQL

CH. 2

Putting SQL to Work

1. What is the most basic distinction between data types

in SQL?

2. Does ANSI recognize the data type DATE?

3. Which subdivision of SQL is used to put values in tables?

4. What is a keyword?

(See Appendix Afor answers.)

3

Using SQL to Retrieve

Informationfrom

22 UNDERSTANDING SQL

CH. 3

IN THIS CHAPTER WE WILL SHOW YOU HOW TO
retrieve information from tables. You will learn how to omit or to

reorder columns and how to eliminate redundant data from your

output automatically. Finally, you will learn how to define a con-

dition— a test, if you will—that you can use to determine which

rows of a table are used to derive output. This last feature, to be

further described in later chapters, is one of the most elegant and

powerful in SQL.

MAKING A QUERY
As we pointed out before, SQL stands for Structured Query

Language. Queries are probably the most frequently used aspect

of SQL. In fact, there is a category of SQL users who are

unlikely to ever use the language for anything else. For this rea-

son, we will begin our discussion of SQL with a discussion of the

query and how it is implemented in this language.

What is a query? A query is a command you give your data-

base program that tells it to produce certain specified informa-

tion from the tables in its memory. This information is usually

sent directly to the screen of the computer or terminal you are

using, although, in many cases, it can also be sent to a printer,

stored in a file (as an object in the computer's memory), or given

as input to another command or process.

WHERE DO QUERIES FIT IN?
Queries are usually considered as part of DML. However,

because a query does not change the information in the tables at

all, but merely shows it to the user, we shall consider queries a

category unto themselves and define DML commands as those

that affect, rather than simply reveal, the contents of a database.

Queries in SQL are all constructed from a single command.
The structure of this command is deceptively simple, because

you can extend it enough to allow some highly sophisticated

evaluating and processing of data. This command is called

SELECT.

USING SQL TO RETRIEVE INFORMATIONFROM TABLES 23

THE SELECT COMMAND
In its simplest form, the SELECT command simply instructs

the database to retrieve information from a table. For example,

you could produce the Salespeople table by typing the following:

SELECT snum, sname, city, comm
FROM Salespeople;

The output for this query is shown in Figure 3.1.

SELECT snum, sname,
FROM Salespeople;

city, comm

0. 12

0. 13
0.11
0. 15
0. 10

H2IE^^H ^^HdEme city
1001 Peel
1002 Serres
1004- Motika
1007 Rifkin
1003 Axelrod

London
San Jose
London
Barcelona
New York

«•» PgDn PgUp —! \i— \

Figure 3. 1: The SELECT command

In other words, this command simply outputs all of the data in

the table. Most programs will also provide column headings as

above, and some allow elaborate formatting of the output, but

that is beyond the specifications of the standard. Here is an

explanation of each part of the command:

SELECT A keyword that tells the database

this command is a query. All queries

begin with this word followed by a

space.

24 UNDERSTANDING SQL

CH. 3

snum, sname

FROM Salespeople

This is a list of the columns from the

table that are being selected by the

query. Any columns not listed here

would not be included in the output

of the command. This, of course,

would not delete them or their

information from the tables because

a query does not affect the

information in the tables; it only

exhibits the data.

FROM is a keyword, like SELECT,
which must be present in every

query. It is followed by a space and

then the name of the table being

used as the source of the

information. In this case that table

is Salespeople.

The semicolon is used in all

interactive SQL commands to tell

the database that the command is

complete and ready to be executed.

A substitute on some systems is a

backslash (\) on a line by itself after

the end of the command.

It is worth noting here that a query of this nature will not nec-

essarily order its output in any particular way. The same com-

mand executed on the same data at different times may not even

produce the same ordering. Usually, the rows come out in the

order in which they are found in the table but, as we stated in

the previous chapter, that order is arbitrary. It will not necessar-

ily be the order in which the data is entered or stored. You can

order output from SQL commands directly through the use of a

special clause. Later, we will explain how to do this. For now,

simply recognize that, in the absence of explicit ordering, there

is no definite order to your output.

USING SQL TO RETRIEVE INFORMATIONFROM TABLES 25

Our use of the return (the Enter key) is arbitrary. We could

just as easily have typed the query on one line as follows:

SELECT snum, sname, city, comm FROM Salespeople;

Since SQL uses the semicolon to indicate the end of a com-

mand, most SQL programs treat the return (made by pressing

the Return or Enter key) as a space. It is a good idea to use

returns and indentation as we did previously to make your com-

mands easier to read and correct.

SELECTING EVERYTHING THE EASY WAY
If you want to see every column of a table, there is an optional

abbreviation you can use. The asterisk (*) can be substituted for

a complete list of the columns as follows:

SELECT *

FROM Salespeople;

This will produce the same result as our previous command.

SELECTINBRIEF
In summation, the SELECT command begins with the key-

word SELECT, followed by a blank. After this comes a list of the

names of the columns you wish to see, separated by commas. If

you wish to see all of the columns of a table, you can replace this

list with an asterisk (*). The keyword FROM is next, followed

by a space and the name of the table that is being queried.

Finally, a semicolon (;) must be used to end the query and indi-

cate that the command is ready to be executed.

LOOKING ONLYAT
CERTAIN COLUMNS OF A TABLE
The power of the SELECT command lies in its ability to

extract highly specific information from a table. First, we will

26 UNDERSTANDING SQL

CH. 3

introduce the ability to look only at specified columns of a table.

This is done easily by simply omitting the columns you do not

wish to see from the SELECT portion of the command. For

example, this query

SELECT sname, comm
FROM Salespeople;

will produce the output shown in Figure 3.2.

Figure 3.2: Selecting certain columns

There may be tables that have a large number of columns con-

taining data, not all of which is relevant to the purpose at hand.

Therefore, you will find the ability to pick and choose your

columns quite useful.

COLUMNREORDERING
Even though the columns of a table are, by definition, ordered,

this does not mean that you have to retrieve them in that order.

An asterisk (*) will produce all the columns in their proper order,

but if you indicate the columns separately, you can put them in

any order you want. Let's look at the Orders table, placing the

USING SQL TO RETRIEVE INFORMATIONFROM TABLES 2 7

order date first, followed by the salesperson number, the order

number, and the amount:

SELECT odate, snum, onum, amt
FROM Orders;

This query's output is shown in Figure 3.3.

1 SQL Execution Log
SELECT odate, snum, onum, amt
FROM Orders;

^ETi^^^^l ^d!^^^l iKTT^Mi »-'nf
10/03/1990 1007 3001 18.69
10/03/1990 1001 3003 767.19
10/03/1990 1004 3002 1900.10
10/03/1990 1002 3005 5160.45
10/03/1990 1007 3006 1098.16
10/04/1990 1003 3009 1713.23
10/04/1990 1002 3007 75.75
10/05/1990 1001 3008 4723.00
10/06/1990 1002 3010 1309.95
10/06/1990 1001 3011 9891.88

Browse : TA«--> PaDn PqUd —M l<1— Home=^

Figure 3.3: Rearranging columns

As you can see, the structure of the information in the tables is

merely a foundation for its active restructuring with SQL.

ELIMINATING REDUNDANTDATA
DISTINCT is an argument that provides a way for you to

eliminate duplicate values from your SELECT clause. Suppose

you want to know which salespeople currently have orders in the

Orders table. You don't need to know how many orders each one

has; you need only a list of salesperson numbers (snum's). You
could enter

SELECT snum
FROM Orders;

to get the output shown in Figure 3.4.

28 UNDERSTANDING SQL

CH. 3

=SQL Execution Log=
SELECT snum
FROM Orders;

EfflTQ

1007
1001
1004-

1002
1007
1005
1002
1001
1002
1001

-il

Figure 3. 4: SELECT with duplicates

To produce a list without duplications, which would be easier

to read, you could enter the following:

SELECT DISTINCT snum
FROM Orders;

The output for this query is shown in Figure 3.5.

In other words, DISTINCT keeps track of which values have

come up before, so they will not be duplicated on the list. This is

a useful way to avoid redundant data, but it is important that

you be aware of what you are doing. If you should not have

redundant data, you should not use DISTINCT, because it can

hide a problem. For example, you might assume that all your

customers' names are different. If someone put a second Cle-

mens in the Customers table, however, and you use SELECT
DISTINCT cname, you would not even see evidence of the

duplication. You might get the wrong Clemens. Since you don't

expect redundancy in this case, you shouldn't use DISTINCT.

THE PARAMETERS OF DISTINCT DISTINCT can be

specified only once in a given SELECT clause. If the clause

USING SQL TO RETRIEVE INFORMATIONFROM TABLES 29

Figure 3.5: SELECT without duplicates

selects multiple fields, DISTINCT eliminates rows where all of

the selected fields are identical. Rows in which some values are

the same and some different will be retained. DISTINCT, in

effect, applies to the entire output row, not a specific field

(except when used within aggregate functions, as explained in

Chapter 6), so it makes no sense to repeat it.

DISTINCT VS ALL As an alternative to DISTINCT, you

may specify ALL. This has the opposite effect: duplicate output

rows are retained. Since this is also what happens if you specify

neither DISTINCT nor ALL, ALL is essentially a clarifier,

rather than a functional argument.

QUALIFIED SELECTION—
THE WHERE CLA USE
Tables tend to get very large as time goes on, and more and

more rows are added. As it is usually only certain rows that

interest you at a given time, SQL enables you to define criteria

to determine which rows are selected for output. The WHERE

30 UNDERSTANDING SQL

CH. 3

clause of the SELECT command allows you to define a predicate,

a condition that can be either true or false for any row of the

table. The command extracts only those rows from the table for

which the predicate is true. For example, suppose you want to

see the names and commissions of all salespeople in London. You

could enter this command:

SELECT sname, city

FROM Salespeople

WHERE city = 'London';

When a WHERE clause is present, the database program

goes through the entire table one row at a time and examines

each row to determine if the predicate is true. Therefore, for the

Peel record, the program will look at the current value of the city

column, determine that it is equal to 'London', and include this

row in the output. The Serres record will not be included, and so

on. The output for the above query is shown in Figure 3.6.

Notice that the city column is not included in the output, even

though its value is used to determine which rows are selected.

This is perfectly alright. It is not necessary for the columns used

=SQL Execution Log=
SELECT sname, city
FROM Salespeople
WHERE city = 'London';

Browse : fi«--» ~>Timmm I]»i

Figure 3. 6: SELECT with a WHERE clause

USING SQL TO RETRIEVE INFORMATIONFROM TABLES 31

in the WHERE clause to be present among those selected for

output.

Let's try an example with a numeric field in the WHERE
clause. The rating field of the Customers table is intended to sep-

arate the customers into groups based on some criteria that can

be summarized by such a number. Perhaps it is a form of credit

rating or a rating based on the volume of previous purchases.

Such numeric codes can be useful in relational databases as a

way of summarizing complex information. We can select all cus-

tomers with a rating of 100, as follows:

SELECT *

FROM Customers
WHERE rating = 100;

The single quotes are not used here because rating is a numeric field.

The results of the query are shown in Figure 3.7.

The WHERE clause is compatible with the previous material in

this chapter. In other words, you can still use column numbers, elimi-

nate duplicates, or reorder columns in SELECT commands that use

WHERE.

SELECT •

FROM Customers
WHERE rating = 100

SQL Execution Log=

2001 Hoffman
2006 Clemens
2007 Pereira

Figure 3. 7: SELECT with a numeric field in the predicate

32 UNDERSTANDING SQL

CH.3

SUMMARY
Now you know several ways to make a table give you the

information that you want, rather than simply spilling out its

contents. You can reorder the columns of the table or eliminate

any of them. You can decide whether or not you want to see

duplicate values.

Most importantly, you can define a condition called a predi-

cate that determines whether or not a particular row of a table,

possibly from among thousands, will be selected for output.

Predicates can become very sophisticated, giving you great pre-

cision in controlling which rows are selected by a query. It is this

ability to decide exactly what you want to see that makes SQL
queries so powerful. The next several chapters will consist, for

the most part, of features that expand the power of predicates. In

Chapter 4. you will be exposed to operators other than equals

that are used in predicate conditions and to ways of combining

multiple conditions into a single predicate.

USING SQL TO RETRIEVE INFORMATIONFROM TABLES 33

Putting SQL to Work

1. Write a SELECT command that produces the order

number, amount, and date for all rows in the order table.

2. Write a query that produces all rows from the customer

table for which the salesperson's number is 1001

.

3. Write a query that produces the salesperson table with

the columns in the following order: city, sname, snum,

comm.

4. Write a SELECT command that produces the rating fol-

lowed by the name of each customer in San Jose.

5. Write a query that will produce the snum values of all

salespeople with orders currently in the Orders table

without any repeats.

(See Appendix A for answers.)

4

Using Relational and

Boolean Operators to Create

More Sophisticated

Predicates

36 UNDERSTANDING SQL

CH. 4

IN CHAPTER 3, YOU LEARNED THAT PREDICATES CAN
evaluate an equals statement as true or false. They can also evalu-

ate other kinds of relationships besides equalities. This chapter will

explore the other relational operators used in SQL. You will also

learn how to use Boolean operators to change and combine predi-

cate values. With Booleans, a single predicate can contain any

number of conditions. This allows you to produce quite sophisti-

cated predicates. The use of parentheses to structure these complex

predicates will also be explained.

RELATIONAL OPERATORS
A relational operator is a mathematical symbol that indicates a

certain type of comparison between two values. You have already

seen how equalities, such as 2 +3 = 5 or city = 'London', are

used. But there are other relational operators as well. Suppose

you want to see all Salespeople with commissions above a certain

amount. You would use a greater-than type of comparison.

These are the relational operators that SQL recognizes:

= Equal to

> Greater than

< Less than

> = Greater than or equal to

< = Less than or equal to

<> Not equal to

These operators have the standard meanings for numeric val-

ues. For character values, their definition depends on the con-

version format, ASCII or EBCDIC, that you are using. SQL
compares character values in terms of the underlying numbers as

defined in the conversion format. Even character values, such as

'1', which represent numbers, do not necessarily equal the num-
ber they represent.

You can use relational operators to represent alphabetical

order—for example, 'a' < 'n' means a precedes n in alphabeti-

cal order—but this is limited by the parameters of the conversion

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATEMORE SOPHISTICATED PREDICATES 3 7

format. In both ASCII and EBCDIC, characters are less than all

other characters that they precede in alphabetical order, pro-

vided all are of a single case (upper or lower). In ASCII, all

uppercase characters are less than all lowercase characters, so

that 'Z' < 'a', and all numbers are less than all characters, so

that '1' < 'Z'. Both of these are reversed in EBCDIC. To keep

the discussion simple, we will assume from here on that you are

using the ASCII format. Consult your system documentation if

you are unsure of which format you are using or how it works.

The values being compared here are called scalar values. Scalar

values can be produced by scalar expressions; 1 + 2 is a scalar

expression that produces the scalar value 3. Scalar values can be

characters or numbers, although obviously only numbers are

used with arithmetic operators, such as + or *. Predicates typi-

cally compare scalar values using either relational operators or

special SQL operators to see if the comparison is true. Some
SQL operators are explained in Chapter 5.

Suppose you wanted to see all customers with a rating above

200. Since 200 is a scalar value, as are the values in the rating

column, you would use a relational operator to compare them:

SELECT *

FROM Customers
WHERE rating > 200;

The output for this query is shown in Figure 4. 1

.

Of course, if we also wanted to see the customers with a rating

equal to 200, we would use the predicate

rating > = 200

BOOLEAN OPERATORS
Basic Boolean operators are also recognized in SQL. Boolean

expressions are those that are either true or false, like predicates.

Boolean operators relate one or more true/false values and pro-

duce a single true/false value. The standard Boolean operators

recognized in SQL are AND, OR, and NOT. Other, more com-

plex, Boolean operators exist (such as "exclusive or"), but these

38 UNDERSTANDING SQL

CH. 4

=SQL Execution Log=
SELECT »

FROM Customers
WHERE rating > 200;

2004 Grass Berlin
2008 Cisneros San Jose

300
300

1002
1007

Figure 4. 1: Using greater than (>)

can be built from our three simple pieces. As you may be aware,

Boolean true/false logic is the entire basis of digital computer

operation; so, actually, everything SQL (or any other language)

does can be reduced to Boolean logic. These are the Boolean

operators and how they work:

• AND takes two Booleans (in the form A AND B) as

arguments and evaluates to true if they are both true.

• OR takes two Booleans (in the form A OR B) as argu-

ments and evaluates to true if either is true.

• NOT takes a single Boolean (in the form NOT A) as an

argument and changes its value from false to true or from

true to false.

By relating predicates with Boolean operators, you can greatly

increase their sophistication. Suppose you want to see all cus-

tomers in San Jose who have a rating above 200:

SELECT *

FROM Customers
WHERE city = San Jose'

AND rating > 200;

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATE MORE SOPHISTICATED PREDICATES 39

(Of course, as we stated before, the returns are for readability

only.) The output for this query is shown in Figure 4.2. There is

only one customer who fills the bill.

If you used OR, you would get all customers who were either

located in San Jose or had a rating above 200

=SQL Execution Log=
SELECT «

FROM Customers
WHERE city = 'San Jose'
AND rating > 200;

Figure 4.2: SELECT using AND

SELECT *

FROM Customers
WHERE city San Jose'

OR rating > 200;

The output for this query is shown in Figure 4.3.

NOT can be used to reverse the value of a Boolean. Here is an

example of a NOT query:

SELECT *

FROM Customers
WHERE city = San Jose'

OR NOT rating > 200;

This query's output is shown in Figure 4.4.

40 UNDERSTANDING SQL

CH. 4

SQL Execution Log=
SELECT *

FROM Customers
WHERE city = 'San Jose'
OR rating > 2 ;

2003 Liu
2004 Grass
2008 Cisneros

San Jose
Berlin
San Jose

200
300
300

1002
1002
1007

Figure 4.3: SELECT using OR

SQL Execution Log=
SELECT «

FROM Customers
WHERE city = 'San Jose'
OR NOT rating > 200;

2001 Hoffman London
2002 Giovanni Rome
2003 Liu San Jose
2006 Clemens London
2008 Cisneros San Jose
2007 Pereira Rome

100
200
200
100
300
100

1001
1003
1002
1001
1007
1004-

Figure4.4: SELECT using NOT

All of the records except Grass were selected. Grass was not in

San Jose, and his rating was greater than 200, so he failed both

tests. Each of the other rows met one or the other (or both) of these

criteria. Notice that the NOT operator must precede a Boolean

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATEMORE SOPHISTICATED PREDICATES 41

whose value it is to change, not be located before the relational

operator as you might do in English. It is incorrect to enter

rating NOT > 200

as a predicate, even though that is how we would say it in

English. This brings up another point. How would SQL evalu-

ate the following?

SELECT *

FROM Customers
WHERE NOT city = 'San Jose'

OR rating > 200;

Does the NOT apply only to the city = 'San Jose' expression,

or to both that and the rating > 200 expression? As written, the

correct answer would be the former. SQL will apply NOT only

to the Boolean expression immediately following it. You could

obtain another result with this command:

SELECT *

FROM Customers
WHERE NOT (city = 'San Jose'

OR rating > 200);

SQL understands parentheses to mean that everything inside

them will be evaluated first and treated as a single expression by

everything outside them (which is the standard interpretation in

mathematics). In other words, SQL takes each row and deter-

mines if the city = 'San Jose' or the rating > 200. If either con-

dition is true, the Boolean expression inside the parentheses is

true. However, if the Boolean expression inside the parentheses

is true, the predicate as a whole is false, because NOT turns the

trues into falses and vice versa. The output for this query is

shown in Figure 4.5.

Here is a deliberately complex example. See if you can follow

its logic (the output is shown in Figure 4.6):

SELECT *

FROM Orders

42 UNDERSTANDING SQL

CH. 4

=SQL Execution Log =
SELECT *

FROM Customers
WHERE NOT (city = 'San Jose'
OR rating > 200);

^^Q| HEEZIH H2X3H kjli±lljH
2001 Hoffman London 100
2002 Giovanni Rome 200
2006 Clemens London 100
2007 Pereira Rome 100

1001
1003
1001
1004

Browse : fi«--» PgDn PgUp —

>

I |«— Home

Figure 4.5: SELECT with NOT and parentheses

=SQL Execution Log
SELECT
FROM Orders
WHERE NOT ((odate = 10/03/1990 AND snum > 1002)
OR amt > 2000.00);

3003 767.19 10/03/1990
3009 1713.23 10/04/1990
3007 75.75 10/04/1990
3010 1309.95 10/06/1990

2001
2002 1

2004 1

2004 1

Figure 4. 6: A complex query

WHERE NOT ((odate = 10/03/1990 AND snum > 1002)

OR amt > 2000.00);

Although Boolean operators are simple individually, they are

not so simple when combined into complex expressions. The

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATEMORE SOPHISTICATED PREDICATES 43

way to evaluate a complex Boolean is to evaluate the Boolean

expression(s) most deeply nested in parentheses, combine these

into a single Boolean value, and then combine this with the

higher nested values.

Here is a detailed explanation of how the example above was

evaluated. The most deeply nested Boolean expressions in the

predicate—odate = 10/03/1990 and snum > 1002— are joined

by an AND, forming one Boolean expression that will evaluate

to true for all rows that meet both of these conditions. This com-

pound Boolean expression (which we will call Boolean number 1

,

or Bl for short) is joined with the amt > 2000.00 expression (B2)

by an OR, forming a third expression (B3), which is true for a

given row if either Bl or B2 is true for that row. B3 is wholly

contained in parentheses preceded by a NOT, forming the final

Boolean expression (B4), which is the condition of the predicate.

Thus B4, the predicate of the query, is true whenever B3 is false

and vice versa. B3 is false whenever Bl and B2 are both false. Bl

is false for a row if the order date of the row is not 10/03/1990 or

if its snum value is not greater than 1002. B2 is false for all rows

with an amount that is not above 2000.00. Any row with an

amount above 2000.00 would make B2 true; as a result, B3
would be true, and B4 false. Therefore, all such rows are elimi-

nated from the output. Of the remaining rows, those on October

3 with snum greater than 1002 (such as the row for onum 3001

on October 3 with snum of 1007), make Bl true, thereby making
B3 true, and the predicate of the query false. These are also

eliminated. The output shows the rows that are left.

SUMMARY
In this chapter, you have greatly extended your fluency with

predicates. Now you can find values that relate to a given value

in any one of a number of ways— all definable with the various

relational operators. You can also use the Boolean operators

AND and OR to combine multiple conditions, each of which

could stand alone in predicates, into a single predicate. The
Boolean operator NOT, as you have seen, can reverse the mean-
ing of a condition or group of conditions. All of the Boolean and

44 UNDERSTANDING SQL

CH. 4

relational operators can have their effect controlled by the use of

parentheses, which determine the order in which the operations

are performed. These operations can be taken to any level of

complexity; you have had some taste of how conditions that are

quite involved can be built up out of these simple parts.

Now that we have shown how standard mathematical opera-

tors are used, we can move on to operators that are exclusive to

SQL. This we will do in Chapter 5.

USING RELATIONAL AND BOOLEAN OPERATORS TO CREATE MORE SOPHISTICATED PREDICATES 45

Putting SQL to Work

1. Write a query that will give you all orders for more than

$1,000.

2. Write a query that will give you the names and cities of

all salespeople in London with a commission above .10.

3. Write a query on the Customers table whose output will

exclude all customers with a rating < = 100, unless they

are located in Rome.

4. What will be the output from the following query?

SELECT *

FROM Orders

WHERE (amt 1000 OR
NOT(odate = 10/03/1990

AND cnum > 2003));

5. What will be the output of the following query?

SELECT *

FROM Orders
WHERE NOT ((odate = 10/03/1990 OR snum
> 1006)

AND amt >= 1500);

6. What is a simpler way to write this query?

SELECT snum, sname, city, comm
FROM Salespeople

WHERE (comm >+ .12 OR
comm < .14);

(See Appendix A for answers.)

5

N~^_

*'

Using Special Operators

in Conditions

48 UNDERSTANDING SQL

CH. 5

IN ADDITION TO THE RELATIONAL AND BOOLEAN
operators we discussed in Chapter 4, SQL uses the special opera-

tors IN, BETWEEN, LIKE, and IS NULL. In this chapter, you

will learn how to use them, as you would the relational opera-

tors, to produce more sophisticated and powerful predicates.

The discussion of IS NULL will involve the implications of miss-

ing data and of the NULL value that indicates data is missing.

You will also learn a variation in the usage of NOT that is appli-

cable to these operators.

THE IN OPERATOR
IN explicitly defines a set in which a given value may or may

not be included. Based on what you have learned up to now, if

you wanted to find all salespeople that were located in either

Barcelona or London, you would have to use the following query

(its output is shown in Figure 5.1):

SELECT *

FROM Salespeople

WHERE city = 'Barcelona'

OR city = 'London';

Here is an easier way to get the same information:

SELECT *

FROM Salespeople

WHERE city IN ('Barcelona', 'London');

The output for this query is shown in Figure 5.2.

As you can see, IN defines a set by explicitly naming the

members of the set in parentheses, separated by commas. It then

checks the various values of the named field to try to find a

match. If it does, the predicate is true. When the set contains

numeric rather than character values, of course, the single

quotes are omitted. Let's find all customers matched with sales-

people 1001, 1007, and 1004. The output for the following query

USING SPECIAL OPERATORS IN CONDITIONS 49

=SQL Execution Log=
SELECT
FROM Salespeople
WHERE city = 'Barcelona'
OR city = 'London';

1001 Peel
1004 Motika
1007 Rifkin
=Browse : fl«--»

Figure 5. 1: Finding salespeople in Barcelona or London

SOL Execution Log=
SELECT
FROM Salespeople
WHERE city IN ('Barcelona*, 'London')

Figure 5.2: SELECT using IN

is shown in Figure 5.3:

SELECT *

FROM Customers
WHERE snum IN (1 001 , 1 007, 1 004);

50 UNDERSTANDING SQL

CH.

=SQL Execution Lo(

SELECT *

FROM Customers
WHERE snum IN (1001, 1007, 1004);

2ZZ- "C"~a-
2006 Clemens
2008 Cisneros
2007 Pereira

Figure 5.3: SELECT using IN with numbers

THE BETWEEN OPERATOR
The BETWEEN operator is similar to IN. Rather than enu-

merating a set as IN does, BETWEEN defines a range that val-

ues must fall in to make the predicate true. You use the keyword

BETWEEN followed by the beginning value, the keyword AND
and the ending value. Unlike IN, BETWEEN is sensitive to

order, and the first value in the clause must be first in alphabetic

or numeric order. (Notice that, unlike English, SQL does not say

{value) "is BETWEEN" {value) and {value), but simply {value)

••BETWEEN" {value) and {value). This applies as well to the

LIKE operator.) The following will extract from the Salespeople

table all salespeople with commissions between .10 and .12 (the

output is shown in Figure 5.4):

SELECT *

FROM Salespeople

WHERE comm BETWEEN .10 AND .12;

Notice that the BETWEEN operator is inclusive; that is, val-

ues matching either of the two boundary- values (in this case, .10

and .12) cause the predicate to be true. SQL does not directly

USING SPECIAL OPERATORS IN CONDITIONS 51

=SQL Execution Log
SELECT
FROM Salespeople
WHERE comm BETWEEN .10 AND .12;

Figure 5.4: SELECT using BETWEEN

support a noninclusive BETWEEN. You must either define your

boundary values so that an inclusive interpretation is acceptable,

or do something like this:

SELECT *

FROM Salespeople

WHERE (comm BETWEEN .10, AND .12)

AND NOT comm IN (.10, .12);

The output for this query is shown in Figure 5.5.

Admittedly, this is a bit clumsy, but it does show how these

new operators can be combined with Boolean operators to pro-

duce more complex predicates. Basically, you use IN and
BETWEEN just as you do relational operators to compare val-

ues, one of which happens to be a set (for IN) or a range (for

BETWEEN).
Also like relational operators, BETWEEN operates on charac-

ter fields in terms of the ASCII equivalents. This means you can

use it to select ranges from alphabetical ordering. It is important

when you do this to be consistent in your use of capitalization.

52 UNDERSTANDING SQL

CH. 5

SQL Execution Log
SELECT *

FROM Salespeople
WHERE (comm BETWEEN .10 AND .12)
AND NOT comm IN (.10, .12);

Figure 5.5: Making BETWEEN noninclusive

This query selects all customers whose names fall in a certain

alphabetical range:

SELECT *

FROM Customers
WHERE cname BETWEEN 'A' AND 'G';

The output for this query is shown in Figure 5.6.

Notice that Grass and Giovanni are omitted, even though

BETWEEN is inclusive. This is because of the way BETWEEN
compares strings of unequal length. The string 'G' is shorter

than the string 'Giovanni', so BETWEEN pads the 'G' with

blanks. The blanks precede the letters in alphabetical order (in

most implementations), so Giovanni is not selected. The same

applies to Grass. It is important to remember this if you are

using BETWEEN to extract alphabetical ranges. You will usu-

ally go one letter beyond the last letter you want to include, or

add a z (several if necessary) after your second boundary value.

USING SPECIAL OPERATORS IN CONDITIONS 53

SQL Execution Log=
SELECT *

FROM Customers
WHERE cname BETWEEN 'A' AND 'G';

Figure 5. 6: Using BETWEEN alphabetically

THE LIKE OPERATOR
LIKE can be applied only to fields of types CHAR or VAR-

CHAR, against which it is used to find substrings. In other words,

it searches a character field to see if part of it matches a string. To

do this, it uses wildcards, special characters that will match any-

thing. There are two types of wildcards used with LIKE:

• The underscore character (_) stands for any single char-

acter. For example, 'b_t' will match 'bat' or 'bit' but it

will not match 'brat'.

• The percent sign (%) stands for a sequence of any num-
ber of characters (including zero characters). '%p%t'
will match 'put', 'posit', or 'opt', but not 'spite'.

Let's find all the customers whose names begin with G (the out-

put is shown in Figure 5.7):

SELECT *

FROM Customers
WHERE cname LIKE 'G°/o';

54 UNDERSTANDING SQL

CH. 5

ll

SQL Execution Log ,i

SELECT •

FROM Customers
WHERE cname LIKE 'G#';

BE3E3BI K3IEZSI KEQTfl !2!X33iI?H |EQS!3HI
2002 Giovanni Rome 200 1003
2004 Grass Berlin 300 1002

Figure 5. 7: SELECT using LIKE with %

LIKE can be handy if you are searching for a name or other

value, and you cannot remember all of it. Suppose you were

unsure whether to spell the name of one of your salespeople Peal

or Peel. You can simply use the part you know and the wildcards

will find all possible matches (the output of this query is shown in

Figure 5.8):

SELECT *

FROM Salespeople

WHERE sname LIKE 'P_ _l%';

The underscore wildcards each represent a single character, so

a name like Prettel would not show up. The % wildcard at the

end of the string is necessary in many implementations if the

length of the sname field is greater than the number of characters

in the name Peel (which it obviously is here, because some of the

other sname values are longer than four characters). In such a

case, the sname field value is actually stored as the name Peel,

followed by a series of spaces. Therefore, the character T is not

considered the end of the string. The % wildcard simply matches

all the spaces. This would not be necessary if the sname field

were of type VARCHAR.

USING SPECIAL OPERATORS IN CONDITIONS 55

=—= SQL Execution Log=
SELECT
FROM Salespeople
WHERE sname LIKE 'P l£'

;

Figure 5.8: SELECT using LIKE with _ (underscore)

So what do you do if you need to search for a percent sign or

an underscore in a string? In a LIKE predicate, you can define

any single character as an escape character. An escape character is

used immediately before a percent sign or underscore in the

predicate, and means that the percent sign or underscore will be

interpreted as a character rather than a wildcard. For example,

we could search our sname column for the presence of under-

scores, as follows:

SELECT *

FROM Salespeople

WHERE sname LIKE '%/_%'ESCAPE V;

With the current data there is no output, because we have not

included any underscores in our salespeople's names. The
ESCAPE clause defines V as an escape character. The escape

character is used in the LIKE string, followed by a percent sign,

an underscore, or itself (to be explained shortly), which will be

searched for in the column, rather than treated as a wildcard.

The escape character must be a single character and applies only

to the single character immediately following it. In the example

56 UXDERSTAXDLXG SQL

CH. 3

above, both the beginning and ending percent signs are still

treated as wildcards; only the underscore represents itself.

As mentioned above, the escape character can also be used on

itself. In other words, if you want to search the column for your

escape character, you will simply enter it twice. The first one acts

as an escape character meaning "take the following character lit-

erally as a character." and the second one is that character—the

escape character itself. Here is the preceding example revised to

search for occurrences of the string '_/' in the sname column:

SELECT *

FROM Salespeople

WHERE sname LIKE '%/_//% 'ESCAPE V;

Again there is no output with the current data. The string being

matched consists of any sequence of characters (%), followed by

the underscore character (/_), the escape character (//). and any

sequence of trailing characters (%).

WORKING WITHNULL VALUES

Frequently, there will be records in a table that do not have

values for every field, either because the information is not com-

plete, or because the field simply does not apply to every case.

SQL provides for these instances by allowing you to enter a

NULL into the field in place of a value. A NULL is not in the

field at all, strictly speaking. When a field value is NULL, it

means that the database program has specially marked that field

as not having any value for that row (record). This is different

from simply assigning a field a value of zero or a blank, which

the database will treat the same as any other value. Also, since

NULL is technically not a value, it does not have a data type. It

can be placed in any type of field. Nonetheless, a NULL in SQL
is frequently referred to as a NULL value.

Suppose you have a new customer who has not yet been

assigned a salesperson. Rather than wait for the salesperson to

be assigned, you want to enter the customer into the database

now. so that he or she does not get lost in the shuffle. You can

USING SPECIAL OPERATORS IN CONDITIONS 57

enter a row for the customer with a NULL for snum and fill in

that field with a value later, when a salesperson is assigned.

THE ISNULL OPERATOR
Since NULL indicates missing values, you cannot know what

the result of any comparison involving a NULL would be. When
a NULL is compared to any value, even another NULL, the

result is neither true nor false, but unknown. An unknown Bool-

ean generally behaves the same as a false— a row that produces

an unknown value in the predicate will not be selected by the

query—with the notable exception that, while NOT (false)

equals true, NOT (unknown) still equals unknown. Therefore,

an expression such as "city = NULL" or "city IN (NULL)"
will be unknown, regardless of the city value.

Often you will need to distinguish between false and unknown
—between rows containing column values that fail a predicate

condition and those containing NULL in those columns. For this

reason, SQL provides the special operator IS, which is used with

the keyword NULL to locate NULL values.

To find all records in our Customers table with NULL values

in the city column, we could enter:

SELECT *

FROM Customers
WHERE city IS NULL;

This currently produces no output because we have no NULL
values in our sample tables. NULL values are very important,

and we will be returning to them later.

USING NOT WITH SPECIAL OPERATORS
The special operators we have covered in this chapter can be

immediately preceded by the Boolean NOT. This is in contrast

58 UNDERSTANDING SQL

CH. 5

to relational operators, which must have the NOT before the

entire expression. For example, if we want to eliminate NULLs
from our output, rather than finding them, we would use NOT
to reverse the meaning of the predicate:

SELECT *

FROM Customers
WHERE city IS NOT NULL;

In the absence of NULLs (which is currently the case), this

would produce the entire Customers table. It is the equivalent of

entering

SELECT *

FROM Customers
WHERE NOT city IS NULL;

which is also acceptable.

We can also use NOT with IN:

SELECT *

FROM Salespeople

WHERE city NOT IN ('London', San Jose');

This is another way of saying

SELECT *

FROM Salespeople

WHERE NOT city IN ('London', San Jose);

The output for this query is shown in Figure 5.9.

You can use NOT BETWEEN and NOT LIKE the same way.

USING SPECIAL OPERATORS IN CONDITIONS 59

SQL Execution Log=
SELECT »

FROM Salespeople
WHERE city NOT IN ('London', 'San Jose');

Figure 5.9: Using NOT with IN

SUMMARY
Now you can construct predicates in terms of relationships

specially defined by SQL. You can search for values in a certain

range (BETWEEN) or in an enumerated set (IN), or you can

search for character values that match text within parameters

that you define (LIKE).

You have also learned some things about how SQL deals with

missing data— a reality of the database world—by using NULLs
in place of values. You can extract or exclude NULLs from your

output by using the IS NULL (or IS NOT NULL) operator.

Now that you have an entire set of both standard mathematical

and special operators at your disposal, you are ready to move on

to special SQL functions that operate on entire groups of values,

rather than on single values. This is the subject of Chapter 6.

60 UNDERSTANDING SQL

CH. 5

Putting SQL to Work

1. Write two queries that will produce all orders taken on

October 3rd or 4th, 1990.

2. Write a query that selects all of the customers serviced by

Peel or Motika. (Hint: the snum field relates the two

tables to one another.)

3. Write a query that will produce all of the customers

whose names begin with a letter from A to G.

Write a query that selects all customers whose names

begin with C.

Write a query that selects all orders save those with

zeroes or NULLs in the amt (amount) field.

4.

J.

(See Appendix A for answers.

)

/**#*'

6
I

**«

Summarizing Data with

Aggregate Functions

62 UNDERSTANDING SQL

CH. 6

IN THIS CHAPTER. YOU WILL MOVE BEYOND SIMPLY
using queries to extract values from the database and discover

how you can use them to derive information from those values.

This is done with aggregate or summary functions that take

groups of values from a field and reduce them to a single value.

You will learn how to use these functions, how to define the

groups of values to which they will be applied, and how to deter-

mine which groups are selected for output. You will also see

under what conditions you can combine field values with this

derived information in a single query.

WHATARE THE
AGGREGATE FUNCTIONS?

Queries can produce generalizations about groups of values as

well as field values. It does this through the use of aggregate

functions. Aggregate functions produce a single value for an

entire group of table entries. Here is a list of these functions:

• COUNT produces the number of rows or nonNL'LL
field values that the query selected.

• SUM produces the arithmetic sum of all selected values

of a given field.

• AYG produces the average (mean) of all selected values

of a given field.

• MAN produces the largest of all selected values of a

given field.

• MIN produces the smallest of all selected values of a

given field.

HOWDO YOU USE AGGREGATE FUNCTIONS?

Aggregate functions are used like field names in the SELECT
clause of queries and. with one exception, take field names as

arguments. Only numeric fields can be used for SL'M and A\ G.

For COL'NT. MAN. and MIN. numeric or character fields can

SUMMARIZING DATA WITH AGGREGATE FUNCTIONS 63

be used. When used with character fields, MAX and MIN will

translate to ASCII equivalents, which is to say that, generally

speaking, MIN will mean first, and MAX last, in alphabetical

order (the issue of alphabetical ordering is discussed in more
detail in Chapter 4).

To find the SUM of all of our purchases from the Orders

table, we could enter the following query, whose output is shown

in Figure 6.1:

SELECT SUM(amt)
FROM Orders;

SELECT SUM (amt)
| FROM Orders;

=SQL Execution Log=

Browse : fi«-* PaDn PqUd —M 14— Home

Figure 6. 1: Selecting a sum

This, of course, differs substantially from selecting a field in that

it returns a single value, regardless of how many rows are in the

table. Because of this, aggregate functions and fields cannot be

selected at the same time, unless the GROUP BY clause

(described shortly) is used.

Finding the average amount would be a similar operation (the

output of the following query is shown in Figure 6.2):

SELECT AVG(amt)
FROM Orders;

64 UNDERSTANDING SQL

CH. 6

SELECT AVG (amt)
FROM Orders;

=SQL Execution Log

Figure 6. 2: Selecting an average

SPECIAL ATTRIBUTES OF COUNT
The COUNT function is slightly different. It counts the num-

ber of values in a given column, or the number of rows in a

table. When it is counting column values, it is used with DIS-

TINCT to produce a count of the number of different values in a

given field. We could use it, for example, to count the number of

salespeople currently listing orders in the Orders table (the out-

put is shown in Figure 6.3):

SELECT COUNT (DISTINCT snum)
FROM Orders;

THE USE OF DISTINCT Notice in the above example that

DISTINCT, followed by the name of the field it is being applied

to, is placed in parentheses, not immediately after SELECT as

we have seen before. This use of DISTINCT with COUNT
when applied to individual columns is required by the ANSI
standard, but many programs do not enforce this requirement.

SUMMARIZING DATA WITHAGGREGATE FUNCTIONS 65

=SQL Execution Log=
(SELECT COUNT (DISTINCT snum)
FROM Orders;

Browse : T4«-+ PaDn PqUd — ! I
«-

Figure 6.3: Counting field values

You can select multiple COUNTs of DISTINCT fields in a sin-

gle query, which, as we have seen in Chapter 3, is not the case

when you select DISTINCT rows.

DISTINCT can be used in this way with any aggregate func-

tion, but it is most often used with COUNT. With MAX and

MIN, it simply has no effect, and with SUM and AVG, you usu-

ally want to include repeated values, because these legitimately

affect the total and the average of all column values.

USING COUNT WITH ROWS RATHER THAN VALUES To

count the total number of rows in a table, use the COUNT func-

tion with an asterisk in place of a field name, as in the following

example, the output of which is shown in Figure 6.4:

SELECT COUNTS)
FROM Customers;

COUNT with the asterisk includes both NULLs and dupli-

cates, so DISTINCT cannot be used. For this reason, it can pro-

duce a higher number than the COUNT of a particular field,

66 UNDERSTANDING SQL

CH. 6

SELECT COUNT (*)
FROM Customers;

SQL Execution Log

.

Browse : T±«"» PaDn PqUd — I I
«— Home

Figure 6.4: Counting rows instead of values

which eliminates all rows that have redundant or NULL data in

that field.

DISTINCT has been eliminated for COUNT (*), because it

should have no effect in a well-designed and maintained data-

base. In such a database, there should be neither rows that are

entirely NULL nor duplicates (the former contain no data, and

the latter are completely redundant). If, on the other hand, fully

NULL or redundant rows are present, you probably don't want

COUNT to suppress this information.

INCLUDING DUPLICATES IN AGGREGATE FUNCTIONS
Aggregate functions can also (in many implementations) take the

argument ALL, which is placed before the field name, like DIS-

TINCT, but means the opposite: to include duplicates. ANSI
technically doesn't allow this for COUNT, but many implemen-

tations relax this restriction. The differences between ALL and *

when used with COUNT are

• ALL still takes a fieldname as an argument.

• ALL will not count NULL values.

SUMMARIZING DATA WITH AGGREGATE FUNCTIONS 67

Since * is the only argument that includes NULLs and it is used

only with COUNT, functions other than COUNT disregard

NULLs in any case. The following command will COUNT the

number of nonNULL rating fields in the Customers table

(including repeats):

SELECT COUNT (ALL rating)

FROM Customers;

AGGREGATES BUILT ONSCALAR EXPRESSIONS
Up until now, you have used aggregate functions with single

fields as arguments. You can also use aggregate functions with

arguments that consist of scalar expressions involving one or

more fields. (If you do this, DISTINCT is not allowed.) Suppose

the Orders table had another column that held the prior out-

standing balance (bine) for each customer. You would find the

current balance by adding the order amount to the prior bal-

ance. You could find the largest outstanding balance as follows:

SELECT MAX (bine + amt)

FROM Orders;

For each row of the table, this query will add the bine and the

amt for that customer and select the largest value it finds. Of
course, since customers may have multiple orders, their out-

standing balance is evaluated separately for each order. Presum-

ably, the order with the most recent date would have the greatest

outstanding balance. Otherwise, an old balance could be selected

by the above query.

In fact, there are many situations in SQL where you can use

scalar expressions with or in place of fields, as you will see in

Chapter 7.

THE GROUP BY CLA USE
The GROUP BY clause allows you to define a subset of the

values in a particular field in terms of another field, and apply an

aggregate function to the subset. This enables you to combine

68 UNDERSTANDING SQL

CH. 6

fields and aggregate functions in a single SELECT statement. For

example, suppose you wanted to find the largest order taken by
each salesperson. You could do a separate query for each, select-

ing the MAX amt from the Orders table for each snum value.

GROUP BY, however, let's you put it all in one command:

SELECT snum, MAX(amt)
FROM Orders

GROUP BY snum;

The output for this query is shown in Figure 6.5.

SELECT snum, MAX (amt)
FROM Orders
GROUP BY snum;

=SQL Execution Log=

1001 9891 88
1002 5160 45
1003 1713 23
1004 1900 10
1007 1098 16

Browse : t4*+

Figure 6.5: Finding maximum amounts for each salesperson

GROUP BY applies the aggregate functions independently to

a series of groups that are defined by having a field value in com-

mon. In this case, each group consists of all the rows with the

same snum value, and the MAX function is applied separately

to each such group. This means the field to which GROUP BY
applies has, by definition, only one value per output group, as

do the aggregate functions. The result is a compatibility that

allows aggregates and fields to be combined in this way.

You can also use GROUP BY with multiple fields. To refine

the above example further, suppose you wanted to see the largest

SUMMARIZING DATA WITHAGGREGATE FUNCTIONS 69

order taken by each salesperson on each date. To do this, you
would group the Orders by date within salesperson, and apply

the MAX function to each group, like this:

SELECT snum, odate, MAX(amt)
FROM Orders

GROUP BY snum, odate;

The output for this query is shown in Figure 6.6.

=SQL Execution Log=
SELECT snum, odate, MAX (amt)
FROM Orders
GROUP BY snum, odate;

1001 10/03/1990 767 19
1001 10/05/1990 4723 00
1001 10/06/1990 9891 88
1002 10/03/1990 5160 45
1002 10/04/1990 75 75
1002
1003

10/06/1990
10/04/1990

1309 95
1713 23

1004 10/03/1990 1900 10
1007 10/03/1990 1098 16

II

KETH 4.-

Figure 6. 6: Finding each salesperson's largest orders for each day

Of course, empty groups—that is, dates when the current

salesperson had no orders— are not shown.

THE HAVING CLA USE

Suppose, in the previous example, you had wanted to see just

the maximum purchases over $3000.00. You cannot use aggre-

gate functions in a WHERE clause (unless you use a subquery,

explained later), because predicates are evaluated in terms of a

single row, whereas aggregate functions are evaluated in terms

70 UNDERSTANDING SQL

CH. 6

of groups of rows. This means you could not do something like

the following:

SELECT snum, odate, MAX(amt)
FROM Orders

WHERE MAX(amt) > 3000.00

GROUP BY snum, odate;

This would be rejected in a strict ANSI interpretation. To see

the maximum purchases over $3000.00, you would use the

HAVING clause. The HAVING clause defines criteria used to

eliminate certain groups from the output, just as the WHERE
clause does for individual rows. The correct command would be

the following:

SELECT snum, odate, MAX(amt)
FROM Orders

GROUP BY snum, odate

HAVING MAX (amt) > 3000.00;

The output for this query is shown in Figure 6.7.

SQL Execution Log=
SELECT snum, odate, MAX(amt)
FROM Orders
GROUP BY snum, odate
HAVING MAX(amt) > 3000.00;

1001 10/05/1990 4723.00
1001 10/06/1990 9891 .88
1002 10/03/1990 5160.45

Figure 6. 7: Eliminating groups of aggregate values

SUMMARIZING DATA WITHAGGREGATE FUNCTIONS 71

Arguments to the HAVING clause follow the same rules as

those to the SELECT clause of a command using GROUP BY.

They must have a single value per output group. The following

command would be illegal:

SELECT snum, MAX(amt)
FROM Orders

GROUP BY snum
HAVING odate = 10/03/1988;

The odate field cannot be referenced by the HAVING clause

because it can have (and indeed does have) more than one value

per output group. To avoid this situation, the HAVING clause

must reference only aggregates and fields chosen by GROUP
BY. Here is the correct way to state the above query (the output

is shown in Figure 6.8):

SELECT snum, MAX(amt)
FROM Orders

WHERE odate = 10/03/1990

GROUP BY snum;

=S0L Execution Log=
SELECT snum, MAX(amt)
FROM Orders
WHERE odate = 10/03/1990
GROUP BY snum;

1001 767.19
1002 5160.45
1004 1900.10
1007 1098.16

Browse : TA«--» PaDn PqUd — >\ 1 4— Home

Figure 6.8: Each salesperson's maximum for October 3

72 UNDERSTANDING SQL

CH. 6

Of course, since odate is not and cannot be a selected field, the

significance of this data is less self evident than in some other

examples. The output should probably include something that

says, "these are the largest orders for October 3." In Chapter 7,

we will show you how to insert text in your output.

As mentioned, HAVING can take only arguments that have a

single value per output group. In practice, references to aggre-

gate functions are the most common, but fields chosen by
GROUP BY are also permissible. For instance, we could look at

the largest orders for Serres and Rifkin:

SELECT snum, MAX(amt)
FROM Orders

GROUP BY snum
HAVING snum IN (1002, 1007);

The output for this query is shown in Figure 6.9.

=SQL Execution Log=
SELECT snum, MAX(amt)
FROM Orders
GROUP BY snum
HAVING snum IN (1002, 1007);

' * I l I - 'At * V

Browse : TA«--» 4— Home

Figure 6.9: Using HAVING with GROUP BY fields

DON'TNESTAGGREGATES
In a strict interpretation of ANSI SQL, you cannot take an

aggregate of an aggregate. Suppose you wanted to find out

SUMMARIZING DATA WITHAGGREGATE FUNCTIONS 73

which day had the higher total amount ordered. If you tried to

do this:

SELECT odate, MAX (SUM (amt)

)

FROM Orders

GROUP BY odate;

Your command would probably be rejected. (Some implemen-

tations don't enforce this restriction, which is advantageous

because nested aggregates can be useful, even if they are some-

what problematic.) In the above command, for example, SUM
is to be applied to each odate group, and MAX to all of the

groups, producing a single value for all the groups. Yet the

GROUP BY clause implies that there should be one row of out-

put for each odate group.

SUMMARY
Now you are using queries a little differently. The ability to

derive, rather than simply locate, values is very powerful. It

means that you may not necessarily have to keep track of certain

information if you can formulate a query to derive it. A query will

give you up-to-the-minute results, whereas a table of totals or

averages will be only as good as the last time it was updated. This

is not to suggest that aggregate functions can completely supplant

the need to track information such as this independently.

You can apply these aggregates to groups of values defined by

a GROUP BY clause. These groups have a field value in com-

mon, and they can reside within other groups that have a field

value in common. Meanwhile, predicates are still used to deter-

mine which rows the aggregate function is applied to. Com-
bined, these features make it possible to produce aggregates

based on tightly defined subsets of the values in the field. Then
you can define another condition to exclude certain of the result-

ing groups with the HAVING clause.

Now that you have become adept with many facets of how a

query produces values, we will show you, in Chapter 7, some
things that you can do with the values it produces.

74 UNDERSTANDING SQL

CH. 6

Putting SQL to Work

1

.

Write a query that counts all orders for October 3

.

2. Write a query that counts the number of different non-

NULL city values in the Customers table.

3. Write a query that selects each customer's smallest order.

4. Write a query that selects the first customer, in alphabeti-

cal order, whose name begins with G.

5. Write a query that selects the highest rating in each city.

6. Write a query that counts the number of salespeople reg-

istering orders for each day. (If a salesperson has more

than one order on a given day, he or she should be

counted only once.)

I

(See Appendix Afor answers.)

7
#

Formatting Query Output

*\

76 UNDERSTANDING SQL

CH. 7

THIS CHAPTER WILL EXTEND YOUR ABILITY TO
work with the output produced by queries. You will learn how to

insert text and constants among the selected fields, how to use the

selected fields in mathematical expressions, whose results will then

become the output, and how to make the values you output emerge

in a specified order. This last feature includes the ability to order your

output by any column or any values derived from a column.

STRINGSAND EXPRESSIONS
Many SQL-based databases provide special features that allow

you to refine the output from your queries. Naturally, these vary

greatly from product to product, and discussion of them is

beyond our scope here. However, there are a few features built

into the SQL standard that allow you to do more than simply

output field values and aggregate data.

SCALAR EXPRESSIONS WITH SELECTED FIELDS Let's

suppose you want to perform simple numeric computations on

the data to put it in a form more appropriate to your needs. SQL
allows you to place scalar expressions and constants among the

selected fields. These expressions can supplement or replace

fields in the SELECT clauses, and they can involve one or more

selected fields themselves. For example, you might consider it

desirable to present your salespeople's commissions as percent-

ages rather than decimal numbers. Simple enough:

SELECT snum, sname, city, comm * 100

FROM Salespeople;

The output from this query is shown in Figure 7.1.

OUTPUT COLUMNS The last column of the preceding example

is unlabeled because it is an output column. Output columns are

columns of data created by a query, rather than being directly

extracted from a table. You create them whenever you use

FORMATTING QUERYOUTPUT 77

=SQL Execution Log=
ISELECT snum, sname, city, comm * 100
FROM Salespeople;

1002 Serres
1004 Motika
1007 Rifkin
1003 Axelrod

London
San Jose
London
Barcelona
New York

12 .000000
13.000000
1 1 . 000000
15 . 000000
10. 000000

Figure 7. 1: Putting an expression in your query

aggregate functions, constants, or expressions in a query's

SELECT clause. Because the names of columns are one of the

attributes of a table, columns that do not come from tables have no

names. Other than the fact that they are unlabeled, output columns

can be treated the same as columns extracted from tables in almost

all situations.

PUTTING TEXT IN YOUR QUERY OUTPUT The letter A'

,

when signifying nothing but itself, is a constant, just as the num-
ber 1 is. You have the ability to insert constants in the SELECT
clause of a query, including text. However, character constants,

unlike numeric constants, cannot be used in expressions. You can

have the expression 1 + 2 in your SELECT clause, but you cannot

use an expression such as 'A' + 'B'; this is reasonable if we keep in

mind that 'A' and 'B' here are simply letters, not variables or sym-

bols for anything besides themselves. Nonetheless, the ability to

insert text in the output from your queries is quite handy.

You could refine the previous example by marking the com-
missions as percentages with the percent sign (%). This enables

you to put such items as symbols and comments in the output, as

78 CXDERSTAXDIXG SQL

CH. /

in the following example (the output is shown in Figure 7.2):

SELECT snum. sname. city. ' %", comm * 100

FROM Salespeople:

Figure 7. 2: Inserting characters in your output

This same feature can be used to label output with inserted com-

ments. You must remember, however, that the same comment will be

printed with every row of the output, not simply once for the table.

Suppose you are generating output for a report that indicates the

number of orders for each day. You could label your output (see Fig-

ure 7.3) by forming the query as follows:

SELECT For '. odate. '. there are ".

COUNT (DISTINCT onum). orders."

FROM Orders

GROUP BY odate:

The grammatical incorrectness of the output for October 5 can-

not be fixed without making this query- much more complicated

than it is. (You would have to use two queries in a LXTOX.

FORMATTING QUERY OUTPUT 79

Figure 7.3: Combining text, field values, and aggregates

which we will explain in Chapter 14.) As you can see, a single

unvarying comment for each row of a table can be helpful, but

has limitations. It is sometimes more elegant and useful to pro-

duce a single comment for the output as a whole, or different

comments for different rows.

The various programs using SQL often provide features, such

as report generators, which are designed to format and refine

output. Embedded SQL can also exploit the formatting capabili-

ties of the language it is embedded in. SQL itself is primarily

concerned with operating on data. Its output is essentially infor-

mation, and a program using SQL can often take that informa-

tion and put it in a more attractive form. This is, however,

beyond the scope of SQL itself.

ORDERING OUTPUT BY FIELDS
As we have emphasized, tables are unordered sets, and the

data that comes out of them does not necessarily emerge in any
particular sequence. SQL uses the ORDER BY command to

allow you to impose an order on your output. This command

80 UNDERSTANDING SQL

CH. 7

orders the query output according to the values in one or more
selected columns. Multiple columns are ordered one within

another, just as with GROUP BY, and you can specify ascending

(ASC) or descending (DESC) for each. Ascending is the default.

Let's look at our order table arranged by customer number
(notice the values in the cnum column):

SELECT *

FROM Orders

ORDER BY cnum DESC;

The output is shown in Figure 7.4.

[j

bQL txecution Log
SELECT *

FROM Orders
ORDER BY cnum DESC;

MEHEM IKZuSI K2ZE2H ^/ESBSMk WEE^M
-5001 18.69 10/03/1990 2008 1007
3006 1098.16 10/03/1990 2008 1007
3002 1900.10 10/03/1990 2007 1004
3008 4723.00 10/05/1990 2006 1001
3011 9891.88 10/06/1990 2006 1001
3007 75.75 10/04/1990 2004 1002
3010 1309.95 10/06/1990 2004 1002
3005 5160.45 10/03/1990 2003 1002
3009 1713.23 10/04/1990 2002 1003
3003 767.19 10/03/1990 2001 1001

Browse : tl«--» PgDn PqUp — \i

Figure 7.4: Ordering output by a descending field

ORDERING BYMULTIPLE COLUMNS
We could also order the table by another column, amt for

example, within the cnum ordering (output shown in Figure 7.5):

SELECT *

FROM Orders

ORDER BY cnum DESC, amt DESC;

FORMATTING QUERYOUTPUT 81

SQL Execution Log
SELECT
FROM Orders
ORDER BY cnum DESC, amt DESC;

3006 1098.16 10/03/1990
3001 18.69 10/03/1990
3002 1900.10 10/03/1990
3011 9891 .88 10/06/1990
3008 4723.00 10/05/1990
3010 1309.95 10/06/1990
3007 75.75 10/04/1990
3005 5160.45 10/03/1990
3009 1713.23 10/04/1990
3003 767.19 10/03/1990

2008
2008
2007
2006
2006
2004
2004
2003
2002
2001

Figure 7.5: Ordering output by multiple fields

You can use ORDER BY in this manner with any number of

columns at once. Notice that, in all cases, the columns being

ordered are among the columns selected. This is an ANSI
requirement that most, but not all, systems enforce. The follow-

ing command, for instance, would be illegal:

SELECT cname, city

FROM Customers
ORDER BY cnum;

Since cnum was not a selected field, ORDER BY cannot find

it to use for ordering the output. Even if your system does allow

this, the significance of the ordering would not be evident from

the output, so including all columns used in the ORDER BY
clause is generally advisable.

ORDERING AGGREGATE GROUPS
ORDER BY can also be used with GROUP BY to order

groups. If so, ORDER BY always comes last. Here's an exam-

ple from the last chapter with an added ORDER BY clause.

Before the output was grouped, but the order of the groups was

82 UNDERSTANDING SQL

CH. 7

arbitrary; now we force the groups to be placed in sequence:

SELECT snum, odate, MAX(amt)
FROM Orders

GROUP BY snum, odate

ORDER BY snum;

The output is shown in Figure 7.6.

SQL Execution Log ,

FROM Orders
GROUP BY snum, odate
ORDER BY snum;

KHIIIEul HEUm^H
1001 10/05/1990 4-723 . 00

|

1001 10/06/1990 9891 .88
1002 10/05/1990 5160.45
1002 10/04/1990 75.75
1002 10/06/1990 1309.9511
1003 10/04/1990 1713.23
1004 10/03/1990 1900.10
1007 10/03/1990 1098. 16

1

Uo —M H— Home 'I Browse : ti«-» PqDn Pq

Figure 7. 6: Ordering by a group

Since we did not specify ascending or descending order, ascend-

ing is used by default.

ORDERING OUTPUT BY COLUMNNUMBER
In place of column names, you can use numbers to indicate the fields

being used to order the output. These numbers will refer, not to the

order of the columns in the table, but to their order in the output. In

other words, the first field mentioned in the SELECT clause is, for the

purposes of ORDER BY, field - 1 , regardless of where it is found

in the table. For example, you can use the following command to see

FORMATTING QUER Y OUTPUT 83

certain fields of the Salespeople table, ordered in descending order of

commission (the output is shown in Figure 7.7):

SELECT sname, comm
FROM Salespeople

ORDER BY 2 DESC;

|,

SQL
SELECT sname, comm

Execution Log=

FROM Salespeople
ORDER BY 2 DESC;

sname comm
1 Rifkin 0. 15
1 Serres 0. 13
1 Peel 0. 12

1 Motika 0.11
1 Axelrod 0. 10

Figure 7. 7: Ordering using numbers

One of the main purposes of this ORDER BY feature is to

enable you to use ORDER BY with output columns as well as

table columns. Columns resulting from aggregate functions, con-

stants, or expressions in the SELECT clause of a query are per-

fectly usable with ORDER BY, provided that they are referred

to by number. For example, let's count the orders of each of our

salespeople, and output the results in descending order, as shown
in Figure 7.8:

SELECT snum, COUNT (DISTINCT onum)
FROM Orders

GROUP BY snum
ORDER BY 2 DESC;

84 UXDERSTAXDLXG SQL

CH. /

Figure 7.8: Ordering by an output column

In this case, you should use the column number, because an

output column has no name: you should not use the aggregate

function itself. In strict ANSI SQL. the following would not

work, although some systems relax this requirement:

SELECT snum, COUNT (DISTINCT onum)
FROM Orders

GROUP BY snum
ORDER BY COUNT (DISTINCT onum) DESC;

This would be rejected by many systems.

ORDER BY WITHNULLS
If there are NULL values in a field that you are using to order

vour output, they will either follow or precede every other value

m the field. This is an option that ANSI has left up to the indi-

vidual program. A given program uses one or the other form.

FORMATTING QUER YOUTPUT 85

SUMMARY
In this chapter, you have learned how to make your queries do

more than produce field values or aggregate function data from a

table. You can take fields and use them in expressions: for exam-

ple, you can multiply a numeric field by 10 or even multiply it

by another numeric field. In addition, your ability to put con-

stants, including characters, in your output, allows you to put

text directly in a query and have it output with the table data.

This enables you to label or explain your output in various ways.

You have also learned how to impose an order on your output.

Even though the table itself remains unordered, the ORDER BY
clause enables you to control the order of the rows of a given

query's output. Query output can be in ascending or descending

order, and columns can be nested one within another.

The concept of output columns was explained in this chapter.

You now know that output columns may be used to order query

output, but they are unnamed, and therefore must be referred to

by number in the ORDER BY clause.

Now that you have seen what can be done with the output

from a query based on a single table, it is time to move on to the

advanced query features and learn how to query any number of

tables in a single command, forging relationships between them

as you do so. This will be the subject of Chapter 8.

86 UNDERSTANDING SQL

CH. 7

Putting SQL to Work

1. Assume each salesperson has a 12% commission. Write a

query on the Orders table that will produce the order

number, the salesperson number, and the amount of the

salesperson's commission for that order.

2. Write a query on the Customers table that will find the

highest rating in each city. Put the output in this form:

For the city (city), the highest rating is: (rating).

3. Write a query that lists customers in descending order of

rating. Output the rating field first, followed by the cus-

tomer's name and number.

4. Write a query that totals the orders for each day and

places the results in descending order.

(See Appendix A for answers.)

/**'

8

Querying Multiple Tables

at Once

88 UNDERSTANDING SQL

CH. 8

UP UNTIL NOW, EACH QUERY WE HAVE EXAMINED
has been based on a single table. In this chapter, you will learn

how to query any number of tables with a single command. This

is an extremely powerful feature because it not only combines

output from multiple tables, but defines relationships between

them. You will learn about the various forms these relationships

can take, as well as how to define and use them to answer spe-

cific needs.

JOINING TABLES
One of the most important features of SQL queries is their abil-

ity to define relationships between multiple tables and draw infor-

mation from them in terms of these relationships, all within a sin-

gle command. This kind of operation is called a join, which is one

of the powerhouses of relational databases. As stated in Chapter

1, the strength of the relational approach is in the relationships

that can be constructed between the items of data in the tables.

With joins, we directly relate the information in any number of

tables, and thus are able to make connections between disparate

pieces of data.

In a join, the tables are listed in the FROM clause of the

query, separated by commas. The predicate of the query can

refer to any column of any table joined and, therefore, can be

used to make connections between them. Usually, the predicate

will compare the values in columns of different tables to deter-

mine whether a WHERE condition is met.

TABLE AND COLUMNNAMES
The full name of a column of a table actually consists of the

table name followed by a dot and then the column name. Here

are some examples:

Salespeople .snum

Customers. city

Orders, odate

QUER YING MULTIPLE TABLESAT ONCE 89

Up until now, you have been able to omit the table names
because you were querying only a single table at a time, and

SQL is intelligent enough to assume the proper table-name pre-

fix. Even when you query multiple tables, you will still be able to

omit the table names, provided that all of the columns have dif-

ferent names. But this is not always the case. For example, we
have two sample tables with columns called city. If we were to

join them (as we will momentarily), we would have to say Sales-

people, city or Customers. city, so that SQL could know which

one we meant.

MAKING AJOIN
Suppose you want to match your salespeople to your cus-

tomers according to what city they lived in, so that you would

see all the combinations of salespeople and customers who shared

a city. You would need to take each salesperson and search the

customers table for all customers in the same city. You could do

this by entering the following command (the output is shown in

Figure 8.1):

IL Execution Log=
SELECT Customers .cname. Salespeople . sname
Salespeople. city
FROM Salespeople, Customers
WHERE Salespeople. city = Customers. city,

Hoffman
Clemens
Liu
Cisneros
Hoffman
Clemens

Peel
Peel
Serres
Serres
Motika
Motika

London
London
San Jose
San Jose
London
London

Browse : ti** PaDn PaUi liTTTZ

Figure 8. 1: Joining two tables

90 UNDERSTANDING SQL

CH. 8

SELECT Customers.cname, Salespeople.sname,
Salespeople. city

FROM Salespeople, Customers
WHERE Salespeople. city = Customers. city;

Because there is a city field in both the Salespeople and Cus-

tomer tables, the table names have to be used as prefixes. Although

this is necessary only when two or more fields hav<= the same name,

it is often a good idea to include the table name in joins for the sake

of clarity and consistency. Despite this, we will, in our examples,

generally use table names only when necessary, so that it will be

clear when they are needed and when they are not.

What SQL basically does in a join is examine every combina-

tion of rows possible from the two (or more) tables and test these

combinations against the predicate. In the preceding example, it

took the row of salesperson Peel from the Salespeople table and

combined it with each row of the Customers table, one at a time.

If a combination produced values that made the predicate true

—

in this case, if the city field of a Customer table row were Lon-

don, the same as Peel's—the requested values from that combi-

nation were selected for output. The same thing was then done

for every other salesperson in the Salespeople table (some of

whom had no customers located in their cities).

JOINING TABLES
THROUGH REFERENTIAL INTEGRITY
This feature is often used simply to exploit the relationships

built into the database. In the previous example, we established

a relationship between the two tables in the join. This is fine.

These tables, however, are already connected through the snum
field. This relationship is called the state of referential integrity,

as we mentioned in Chapter 1 . A common use of the join is to

extract data in terms of this relationship. For example, to show

the names of all customers matched with the salespeople serving

them, we would use this query:

SELECT Customers.cname, Salespeople.sname
FROM Customers, Salespeople

WHERE Salespeople.snum = Customers.snum;

OVER YING MULTIPLE TABLES AT ONCE 91

The output of this query is shown in Figure 8.2.

This is also an example of a join in which the columns used to

determine the predicate of the query, in this case the snum columns

of both tables, have been omitted from the output, which is perfectly

alright. The output shows which customers are serviced by which

salespeople; the snum values that constitute the link are not, in them-

selves, relevant here. If you do this, however, you should either make
sure the output is self-explanatory or provide some explanation of the

data.

SQL Execution Log=
SELECT Customers. cname, Salespeople. sname
FROM Salespeople, Customers
WHERE Salespeople. snum = Customers. snum;

Ti«-» PaDn PqUd —M H— Home

Figure 8.2: Joining salespeople to their customers

EQUIJOINSAND OTHER KINDS OFJOINS
Joins that use predicates based on equalities are called equi-

joins. Our examples in this chapter up to now have all fallen into

this category because the conditions in the WHERE clauses have

all been based on mathematical expressions using = . "City =

'London' " and "Salespeople. snum = Orders. snum" are exam-

ples of the types of equalities found in predicates. Equijoins are

probably the most common sort ofjoin, but there are others. You

can, in fact, use any of the relational operators in a join. Here

92 UNDERSTANDING SQL

CH.8

is an example of another kind of join (its output is shown in Fig-

ure 8.3):

SELECT sname, cname
FROM Salespeople, Customers
WHERE sname < cname

AND rating < 200;

=SQL Execution Log=
SELECT sname, cname
FROM Salespeople, Customers
WHERE sname < cname
AND rating < 200;

|

Peel
KE"

JMotika Pereira
Axelrod Hoffman
Axelrod Clemens

1 Axelrod Pereira

Figure 8.3: A join based on an inequality

This command is not often likely to be useful. It produces all com-

binations of salesperson and customer names such that the former

precedes the latter alphabetically, and the latter has a rating of less

than 200. Usually, you will not need to construct complex rela-

tionships like this, and, for this reason, you will probably find

equijoins to be the most common, but it is good to be acquainted

with the other possibilities.

JOINS OFMORE THAN TWO TABLES

Ynu can also construct queries joining more than two tables.

Suppose we wanted to find all orders by customers not located in

the same cities as their salespeople. This would involve relating

QUER YING MULTIPLE TABLES AT ONCE 93

all three of our sample tables (the output is shown in Figure 8.4):

SELECT onum, cname, Orders.cnum, Orders.snum
FROM Salespeople, Customers, Orders

WHERE Customers. city < > Salespeople. city

AND Orders.cnum = Customers.cnum
AND Orders.snum = Salespeople.snum;

SQL Execution Log —
SELECT onum, cname. Orders .cnum, Orders.snum
FROM Salespeople, Customers, Orders
WHERE Customers. city <> Salespeople. city
AND Orders. cnum = Customers. cnum
AND Orders.snum = Salespeople. snum;

5001
3002
3006

Cisneros
Pereira
Cisneros

3009 Giovanni
3007 Grass
3010 Grass

2008 1007
2007 1004
2008 1007
2002 1003
2004 1002
2004 1002

Figure 8.4: Joining three tables

Although this command looks rather complex, you can follow

its logic by simply verifying that these are the customers not

located in the same city as their salespeople (matching the two

through the snum field), and that the orders listed are those

made by these customers (matching the orders with the cnum
and snum fields of the Orders table).

SUMMARY
Now you are no longer restricted to looking at one table at a

time. Moreover, you can make elaborate comparisons between

94 UNDERSTANDING SQL

CH. 8

any of the fields of any number of tables and use the results to

decide what information you want to see. In fact, this technique

is so useful for constructing relationships that it is even used to

construct them within a single table. That's right: you can join a

table to itself, and it's a handy thing to do. This will be the sub-

ject of Chapter 9.

QUER YING MULTIPLE TABLES AT ONCE 95

Putting SQL to Work

1. Write a query that lists each order number followed by

the name of the customer who made the order.

2. Write a query that gives the names of both the salesperson

and the customer for each order after the order number.

3. Write a query that produces all customers serviced by

salespeople with a commission above 12%. Output the

customer's name, the salesperson's name, and the sales-

person's rate of commission.

4. Write a query that calculates the amount of the salesper-

son's commission on each order by a customer with a rat-

ing above 100.

(See Appendix Afor answers.)

9

Joining a Table to Itself

98 UNDERSTANDING SQL

CH. 9

IN CHAPTER 8. WE SHOWED YOU HOW TO JOIN TWO
or more tables together. Interestingly enough, the same tech-

nique can be used to join together two copies of a single table. In

this chapter, we will explore this process. As you will see. joining

a table to itself, far from being a simple idiosyncracy. can be

quite a useful way to define certain kinds of relationships be-

tween the items of data in a given table.

HOWDO YOUJOIN
A TABLE TO ITSELF?

To join a table to itself means that you can take each row of the

table, one at a time, and combine it with itself and with every

other row of the table. You then evaluate each combination in

terms of a predicate, just as in multitable joins. This allows you

to easily forge certain kinds of relationships between the various

items within a single table—by finding pairs of rows with a field

value in common, for example.

You can picture a join of a table to itself as a join of two copies

of the same table. The table is not actually copied, but SQL per-

forms the command as though it were. In other words, the join is

the same as any other join between two tables, except that in this

case the two tables happen to be identical.

ALIASES

The syntax of the command for joining a table to itself is the

same as that for joining multiple tables, with a single modifica-

tion. When you join a table to itself, all of the column names are

repeated, complete with table-name prefixes. To refer to these

columns within the query, then, you must have two different

names for the same table. You can do this by defining temporary

names called range variables, correlation variables or simply aliases.

You define these in the FROM clause of the query. It's quite sim-

ple: you type the name of the table, leave a space, and then type

the alias for it.

JOINING A TABLE TO ITSELF 99

Here is an example that finds all pairs of customers having the

same rating (the output is shown in Figure 9.1):

SELECT first.cname, second.cname, first. rating

FROM Customers first, Customers second
WHERE first. rating = second. rating;

bUL txecution Log .i

Giovanni Giovanni 200
Giovanni Liu 200
Liu Giovanni 200
Liu Liu 200
Grass Grass 300
Grass Cisneros 300
Clemens Hoffman 100
Clemens Clemens 100
Clemens Pereira 100
Cisneros Grass 300
Cisneros Cisneros 300
Pereira Hoffman 100
Pereira Clemens 100
Pereira Pereira 100
1=Browse : t±«-» PgDn PgUp —

|

Figure 9. 1: Joining a table to itself

(note that in Figure 9.1, as in some future examples, the full

query cannot fit in the window with the output, and has there-

fore been truncated.)

In the above command, SQL behaves as though it were join-

ing two tables called "first" and "second". Both of these are

actually the Customers table, but the aliases allow them to be

treated independently. The aliases first and second were found in

the FROM clause of the query, immediately following the name
of the table being copied. Notice that the aliases are also used in

the SELECT clause, even though they are not defined until the

FROM clause. This is perfectly all right. SQL will initially

accept any such aliases on faith, but will reject the command if

they are not defined immediately in the FROM clause of the

query. The life of an alias is only as long as the command takes

100 UNDERSTANDING SQL

CH. 9

to execute. Once the query is finished, the aliases used in it are

no longer meaningful.

Now that it has two copies of the Customers table to work
with, SQL can treat this operation just as it would any other

join, taking every row from one alias and matching it with each

row of the other.

ELIMINATING REDUNDANCY
Notice that our output has every combination of values twice,

the second time in reverse order. This is because each value

shows up once in each alias, and the predicate is symmetrical.

Therefore, value A in alias first is selected in combination with

value B in alias second, and value A in alias second is selected in

combination with value B in alias first. In our example, Hoff-

man was selected with Clemens, and then Clemens was selected

with Hoffman. The same happened with Cisneros and Grass,

Liu and Giovanni, and so on. Also each row was matched with

itself to output rows such as Liu and Liu.

A simple way to avoid this is to impose an order on the two

values, so that one will have to be less than the other or precede

it in alphabetical order. This makes the predicate asymmetrical,

so that the same values in reverse order will not be selected

again, for example:

SELECT first.cname, second.cname, first. rating

FROM Customers first, Customers second
WHERE first. rating = second. rating

AND first.cname < second.cname;

The output of this query is shown in Figure 9.2.

Hoffman precedes Periera in alphabetical order, so that com-

bination satisfies both conditions of the predicate and appears in

the output. When the same combination comes up in reverse

order—when Periera in the alias first table is matched with Hoff-

man in the alias second table—the second condition is not met.

Likewise Hoffman is not selected for having the same rating as

himself because his name doesn't precede itself in alphabetical

order. If you wanted to include matches of rows with themselves

JOINING A TABLE TO ITSELF 101

=SQL Execution Log
SELECT first. cname, second. cname, first. rating
FROM Customers first, Customers second
WHERE first. rating = second. rating
AND first. cname < second. cname;

Hoffman Pereira
Giovanni Liu
Clemens Hoffman
Clemens Pereira
Cisneros Grass

Figure 9.2: Eliminating redundant output from a selfjoin

in queries like this, of course, you could simply use < = instead

of<.

CHECKING FOR ERRORS
Another way we can use this feature of SQL is to check for

certain kinds of errors. Looking at the Orders table, you can see

that the cnum and snum fields should have a consistent relation-

ship. Because each customer should be assigned to one and only

one salesperson, each time a certain customer number comes up
in the Orders table, it should match with the same salesperson

number. The following command will locate any inconsistencies

in this area:

SELECT first.onum, first.cnum, first.snum,
second.onum, second.cnum, second.snum

FROM Orders first, Orders second
WHERE first.cnum = second.cnum

AND first.snum <> second.snum;

Although it looks complicated, the logic of this command is

quite straightforward. It will take the first row of the Orders

102 UNDERSTANDING SQL

CH. 9

table, store it under the alias first, and examine it in combina-

tion with each row of the Orders table under the alias second,

one by one. If a combination of rows satisfies the predicate, it is

selected for output. In this case, it will look at a row. find out

that the cnum is 2008 and the snum is 1007, and then look at

every other row with that same cnum value. If it finds that any

of these have a different snum value, the predicate will be true,

and it will output the selected fields from the current combina-

tion of rows. If the snum values for a given cnum value in our

table are all the same, this command will produce no output.

MORE ONALIASES
Although joins of a table with itself are the first situation you

have encountered in which aliases are necessary, you are not lim-

ited to using them to differentiate between copies of a single

table. You can use them anytime you want to create alternate

names for your tables in a command. For example, if your tables

had very long and complex names, you could define simple one-

letter aliases, such as a and b, and use these instead of the table

names in the SELECT clause and predicate. They will also be

used with correlated subqueries (discussed in Chapter 11).

SOME MORE COMPLEXJOINS
You can use any number of aliases for a single table in a query,

although more than two in a given SELECT clause is not com-

mon. Suppose you had not yet assigned your customers to your

salespeople. Company policy is to assign each salesperson three

customers initially, one at each of the three rating values. You

personally are to decide which customers to assign to each sales-

person, but you use the following query to see all of the possible

combinations of customers you can assign (the output is shown

in Figure 9.3):

SELECT a.cnum, b.cnum, c.cnum
FROM Customers a, Customers b, Customers c

JOINING A TABLE TO ITSELF 103

1

=SQL Execution Log=
AND c. rating = 300;

ansEM msss^m nasH
2001 2002 2004
2001 2002 2008
2001 2003 2004
2001 2003 2008
2006 2002 2004
2006 2002 2008
2006 2003 2004
2006 2003 2008
2007 2002 2004
2007 2002 2008
2007 2003 2004
2007 2003 2008

—»l |
A— Home===JBrowse : TA<--> PgDn Pgl

Figure 9.3: Combinations of customers with different rating values

WHERE a. rating = 100

AND b.rating = 200

AND crating = 300;

As you can see, this query finds all combinations of customers

with the three rating values, so that the first column consists of

customers with a 100 rating, the second of those with a 200 rat-

ing, and the last of those with a rating of 300. These are repeated

in all possible combinations. This is a sort of grouping that can-

not be done with GROUP BY or ORDER BY, as these compare
values only in a single output column.

You should also realize that it is not always actually necessary

to use every alias or table mentioned in the FROM clause of a

query in the SELECT clause. Sometimes, an alias or table is

queried solely so that it can be referenced in the predicate of the

query. For example, the following query finds all customers

located in cities where salesperson Serres (snum 1002) has cus-

tomers (the output is shown in Figure 9.4):

SELECT b.cnum, b.cname
FROM Customers a, Customers b

104 UNDERSTANDING SQL

CH. 9

SQL Execution Log=
SELECT b.cnum, b.cname
FROM Customers a, Customers b
WHERE a.snum = 1002
AND b.city = a. city;

2003 Liu
2008 Cisneros
2004- Grass

Browse : tl«--» PgDn PgUp —! \4— Home

Figure 9. 4: Finding customers in the same cities as those of Serres

WHERE a.snum = 1002

AND b.city = a. city;

Alias a will make the predicate false except when its snum
column value is 1002. So alias a eliminates all but Serres' cus-

tomers. Alias b will be true for all rows with the same city value as

the current city value of a; over the course of the query, a row of

alias b will be true once for every time its city value is present in a.

Finding these rows of alias b is the only purpose of alias a, so we
did not select any columns from it. As you can see, Serres own
customers are selected for being in the same city as themselves, so

selecting them from alias a is not necessary. In short, alias a

locates the rows of Serres customers, Liu and Grass. Alias b finds

all customers located in either of their cities (San Jose and Berlin

respectively) including, of course, Liu and Grass themselves.

You can also construct joins that involve both different tables

and aliases of a single table. The following query joins the Cus-

tomer table to itself to Find all pairs of customers served by a sin-

gle salesperson. At the same time, it joins the customer to the

JOINING A TABLE TO ITSELF 105

Salespeople table to name that salesperson (the output is shown

in Figure 9.5):

SELECT sname, Salespeople.snum, first.cname,
second.cname

FROM Customers first, Customers second, Salespeople

WHERE first.snum = second.snum
AND Salespeople.snum = first.snum
AND first.cnum < second.cnum;

^=SQL Execution Log =
SELECT sname, Salespeople. snum, first. cname,
second . cname
FROM Customers first, Customers second, Salespeople
WHERE first. snum = second. snum
AND Salespeople. snum = first. snum
AND first. cnum < second. cnum;

Browse : ti«--»

Figure 9.5: Joining a table to itself and to another table

SUMMARY
Now you understand the full power of joins and can use them

to construct relationships within a table, between different tables,

or both. You have been introduced to some possible uses to which

these abilities can be put. You are now familiar with the terms

range variables, correlation variables, and aliases (this terminol-

ogy varies from product to product and writer to writer, so we
decided to acquaint you with all three terms). You also understand

a bit more about how queries actually work.

106 UNDERSTANDING SQL

CH.9

The next step after combining multiple tables or multiple cop-

ies of a single table in a query, is combining multiple queries, so

that one query can produce output that controls what another

query does. This is another powerful feature of SQL that we will

introduce in Chapter 10 and elaborate on in the next several

chapters.

JOINING A TABLE TO ITSELF 107

Putting SQL to Work

1

.

Write a query that produces all pairs of salespeople who
are living in the same city. Exclude combinations of sales-

people with themselves as well as duplicate rows with the

order reversed.

2. Write a query that produces all pairs of orders by a given

customer, names that customer, and eliminates dupli-

cates, as above.

3. Write a query that produces the names and cities of all

customers with the same rating as Hoffman. Write the

query using Hoffman's cnum rather than his rating, so

that it would still be usable if his rating changed.

(See Appendix A for answers.)

10

Placing Queries Inside

One Another

110 UXDERSTAXDLXG SQL

CH. 10

AT THE END OF CHAPTER 9. WE SAID QUERIES
could control other queries. In this chapter, you will learn that

this is done (for the most part) by placing a query inside the

predicate of another query, and using the inner query's output

in the predicate's true or false condition. You will find out what

kinds of operators can use subqueries and explore how sub-

queries work with features of SQL such as DISTINCT, aggre-

gate functions, and output expressions. You will learn how to use

subqueries with the HAYING clause and receive some pointers

on the correct way to use subqueries.

HOWDO SUBQUERIES WORK?
With SQL you have the ability to nest queries within one

another. Typically, the inner query generates values that are

tested in the predicate of the outer query, determining when it

will be true. For instance, suppose we knew the name but not the

snum of salesperson Motika. and wanted to extract all of her

orders from the Orders table. Here is one way we could do it

(the output is shown in Figure 10.1):

SELECT *

FROM Orders

WHERE snum =

(SELECT snum
FROM Salespeople

WHERE sname = Motika):

In order to evaluate the outer (main) query. SQL first had to

evaluate the inner query (or subquery) within the WHERE
clause. It does this in the same way it would have had this query

been its sole task: it searched through the Salespeople table for

all rows where the sname was equal to Motika. and then

extracted the snum values of those rows.

The only row found, of course, was the one with the snum
= 1004. Rather than simply outputting this value, however.

SQL put it in the predicate of the main query in place of the sub-

query itself, so that the predicate read

WHERE snum = 1004

PLACING QUERIES INSIDE ONE ANOTHER 111

=SQL Execution Log=
SELECT «

FROM Orders
WHERE snum =

(SELECT snum
FROM Salespeople
WHERE sname = 'Motika');

Figure 10. 1: Using the subquery

The main query was then performed as usual with the above

results. Naturally, the subquery must select one and only one

column, and the data type of this column must match that of the

value to which it is being compared in the predicate. Often, as

above, the selected field and this value will have the same name
(in this case, snum), but this is by no means necessary.

Of course, if we had already known Motika's salesperson

number, we could have simply typed

WHERE snum = 1004

and done away with the subquery altogether, but this is much
more versatile. It will continue to work even if Motika's number
is changed, and, with a simple change of the name in the sub-

query, you could use it for anyone else.

THE VALUES THAT
SUBQUERIES CANPRODUCE

It is rather convenient that our subquery in the previous

example returned one and only one value. Had it selected snums

112 UNDERSTANDING SQL

CH. 10

"WHERE city = 'London' " instead of "WHERE sname =

'Motika'," there would have been several values produced. This

would have made the equation in the predicate of the main
query impossible to evaluate as true or false, and the command
would have produced an error.

When using subqueries in predicates based on relational opera-

tors (equations or inequalities, as explained in Chapter 4), you

must be sure to use a subquery that will produce one and only one

row of output. If you use a subquery that produces no values at

all, the command will not fail; but neither will the main query

produce any output. Subqueries that produce no output (or

NULL output) cause the predicate to be considered neither true

nor false, but unknown. However, the unknown predicate has the

same effect as false: no rows are selected by the main query (refer

to Chapter 5 for more information on the unknown predicate).

It is not good policy to do something like the following:

SELECT *

FROM Orders

WHERE snum =

(SELECT snum
FROM Salespeople

WHERE city = 'Barcelona');

As we have only one salesperson in Barcelona, Mr. Rifkin, the

subquery would select a single snum value and therefore be

accepted. But this is only a function of the current data. Most

SQL databases have multiple users, and if another user had

added a new salesperson in Barcelona to the table, the subquery

would select two values, and your command would fail.

DISTINCT WITH SUBQUERIES
You can, in some cases, use DISTINCT to force a subquery

to generate a single value. Suppose we wanted to find all or-

ders credited to the same salesperson who services Hoffman

PLACING QUERIES INSIDE ONE ANOTHER 1 13

(cnum = 2001). Here is one way to do it (the output is shown
in Figure 10.2):

SELECT *

FROM Orders

WHERE snum =

(SELECT DISTINCT snum
FROM Orders

WHERE cnum = 2001);

=S0L Execution Log
SELECT »

FROM Orders
WHERE snum =

(SELECT DISTINCT snum
FROM Orders
WHERE cnum = 2001);

3003 767.19 10/03/1990
3008 472300 10/05/1990
3011 9891 88 10/06/1990

2001 1001
2006 1001
2006 1001

Figure 10.2: Using DISTINCT to force a single value from a subquery

The subquery ascertained that the snum matched with Hoff-

man is 1001, and then the main query extracted all orders with

that snum (regardless of whether they were for Hoffman) from the

Orders table. Since each customer is assigned to one and only one

salesperson, we know that every row in the Orders table with a

given cnum value should have the same snum value. However,

since there can be any number of such rows, the subquery could

have produced multiple (although identical) snum values for the

given cnum. The DISTINCT argument prevents this. If our sub-

query were to still return more than one value, it would indicate

an error in our data— a good thing to know about.

114 UNDERSTANDING SQL

CH. 10

An alternative approach would have been to reference the

Customers rather than Orders table in the subquery. As cnum is

the primary key of the Customer table, a query selecting it

should produce only one value. It is possible, however, that you,

as a user, could have access to the Orders but not the Customers

table. If this were the case, you could use the solution we pre-

sented above. (SQL has mechanisms that determine who has

privileges to do what to which table. These will be explained in

Chapter 22.)

Please remember, however, that the technique used in the pre-

ceding example is applicable only when you know that two dif-

ferent fields in a table should always match up the same, as was

the case here. Although this type of situation is not uncommon
in relational databases, it is the exception, not the rule.

PREDICATES WITH
SUBQUERIES ARE NOT REVERSIBLE
You should also note that predicates involving subqueries use

the form < scalar expression^ <operator~> <subquery~> , rather than

<subquery> <operator> < scalar expression^ or <subquery> <Copera-

torXsubquery> . In other words, you would not have written the

previous example like this:

SELECT *

FROM Orders

WHERE (SELECT DISTINCT snum
FROM Orders

WHERE cnum = 2001)

= snum;

In a strict ANSI implementation, this would fail, although some

programs permit it. ANSI also prevents you from having both of

the values in the comparison be produced by subqueries.

USING AGGREGATE FUNCTIONS INSUBQUERIES
One type of function that automatically can produce a single

value for anv number of rows, of course, is the aggregate func-

PLACING QUERIES INSIDE ONE ANOTHER 115

tion. Any query using a single aggregate function without a

GROUP BY clause will select a single value for use in the main

predicate. For example, you might want to see all orders that are

greater than the average for October 4 (the output is shown in

Figure 10.3):

SELECT *

FROM Orders

WHERE amt >
(SELECT AVG (amt)

FROM Orders

WHERE odate = 10/04/1990);

SQL Execution Log=
SELECT *

FROM Orders
WHERE amt >

(SELECT AVG (amt)
FROM Orders
WHERE odate = 10/04/1990);

Figure 10.3: Selecting amounts greater than the average for 10/04/1990

The average amount for October 4 is 1788.98 (1713.23 +

75.75) divided by 2, which equals 894.49. Rows with amount
fields greater than this were selected.

Keep in mind that grouped aggregate functions, that is aggre-

gate functions defined in terms of a GROUP BY clause, can pro-

duce multiple values. They are, therefore, not allowed in sub-

queries of this nature. Even if GROUP BY and HAVING are

used in such a way that only a single group is output by the sub-

query, the command is still rejected on principle. You should use a

116 UNDERSTANDING SQL

CH. 10

single aggregate function with a WHERE clause that will elimi-

nate the undesired groups. For example, the following query to

find the average commission of salespeople in London

SELECT AVG (comm)
FROM Salespeople

GROUP BY city

HAVING city = 'London';

cannot be used in a subquery! This is not the best way to form

the query anyway. The version you want is

SELECT AVG (comm)
FROM Salespeople

WHERE city = 'London';

USING SUBQUERIES THAT
PRODUCE MULTIPLE ROWS WITH IN
You can use subqueries that produce any number of rows if

you use the special operator IN (the operators BETWEEN,
LIKE, and IS NULL cannot be used with subqueries). As you

recall, IN defines a set of values, one of which must match the

other term of the predicate's equation in order for the predicate

to be true. When you use IN with a subquery, SQL simply

builds this set from the subquery's output. We can, therefore,

use IN to perform the same subquery that would not work with a

relational operator, and find all Orders attributed to salespeople

in London (the output is shown in Figure 10.4):

SELECT *

FROM Orders

WHERE snum IN

(SELECT snum
FROM Salespeople

WHERE city = 'London');

PLACING QUERIES INSIDE ONE ANOTHER 117

=SQL Execution Log=
SELECT
FROM Orders
WHERE snum IN
(SELECT snum
FROM Salespeople
WHERE city = 'London');

3003 767.19
3002 1900.10
3008 4723.00
301 1 9891 88

10/03/1990
10/03/1990
10/05/1990
10/06/1990

2001
2007
2006
2006

1001
1004
1001
1001

Figure 10.4: Using a subquery with IN

In a situation like this, a subquery is both easier for a user to

understand and simpler (thus faster) for the computer to execute

than the same problem would be if a join were used:

SELECT onum, amt, odate, cnum, Orders.snum
FROM Orders, Salespeople

WHERE Orders.snum = Salespeople.snum
AND Salespeople. city = 'London';

Although this would produce the same output as the subquery

example, here SQL would have to go through each possible combi-

nation of rows from the two tables and test it against the compound
predicate. It is simpler and more efficient to extract from the Sales-

people table the snum values where the city = 'London', and then

to search for these values in the Orders table, which is what the

subquery version does. The inner query gives us the snums 1001

and 1004. The outer query then gives us the rows from the Orders

table where those snums are found.

Strictly speaking, whether or not the subquery version would

be faster in practice depends on the implementation—on how the

program you are using is designed. There is a part of your pro-

gram called an optimizer that attempts to find the most efficient

118 UNDERSTANDING SQL

CH. 10

way to execute your queries. A good optimizer would convert

the join version to a subquery anyway, but there is no easy way
for you to determine if this is being done or not. It's better to

write your queries with efficiency in mind than to rely entirely

on the optimizer.

Of course you can also use IN, even when you are assured

that the subquery will produce a single value. In any situation

where you can use the relational operator equals (=), you can

also use IN. Unlike relational operators, IN will not cause the

command to fail if more than one value is selected by the sub-

query. This can be an advantage or a disadvantage. You do not

directly see the output from subqueries; if you believe that a sub-

query is going to produce only one value, and it produces sev-

eral, you may not be able to tell the difference from the main
query's output. For instance, consider this command, which is

similiar to a previous example:

SELECT onum, amt, odate

FROM Orders

WHERE snum =

(SELECT DISTINCT snum
FROM Orders

WHERE cnum = 2001);

You could eliminate the need for DISTINCT by using IN
instead of =

, like this:

SELECT onum, amt, odate

FROM Orders

WHERE snum IN

(SELECT snum
FROM Orders

WHERE cnum = 2001);

What happens if there is a mistake and one of the orders was

credited to a different salesperson? The version using IN would

give you all orders for both of the salespeople. There would be

no obvious way of seeing the mistake, and reports generated or

decisions made on the basis of this query would compound the

error. The version using =
, on the other hand, would simply

PLACING QUERIES INSIDE ONE ANOTHER 119

fail. This, at least, lets you know there is a problem. You could

then troubleshoot by executing the subquery by itself and seeing

the values that it produces.

Generally speaking, if you know the subquery should, for logi-

cal reasons, produce only one value, you should use equals. IN is

appropriate if the query can legitimately produce one or more

values, regardless of whether you expect it to. Suppose I want to

know the commissions of all salespeople servicing customers in

London:

SELECT comm
FROM Salespeople

WHERE snum IN

(SELECT snum
FROM Customers
WHERE city = 'London');

The output for this query, shown in Figure 10.5, is the commis-

sion of Peel (snum = 1001), who has both of the London cus-

tomers. This is a function only of the current data, however.

There is no (apparent) reason why some of the London cus-

tomers could not be assigned to someone else. Therefore, IN is

the most logical form to use for the query.

SQL Execution Log
SELECT comm
FROM Salespeople
WHERE snum IN
(SELECT snum
FROM Customers
WHERE city = 'London');

12

Browse : TA«-» PaDn PqUd — I 1 4— Home

Figure 10.5: Using IN with a single-value subquery

120 UNDERSTANDING SQL

CH. 10

OMITTING TABLE PREFIXES FROM SUBQUERIES By the

way, a table prefix for city is not necessary' in the previous example,

despite the possible ambiguity between the city fields of the Sales-

people and Customer tables. SQL always looks first for fields in the

table(s) indicated in the FROM clause of the current (sub)query If

a field with the given name is not found there, the outer queries are

checked. In the above example, "city" in the WHERE clause was

meant to refer to Customers. city. Since the Customers table is

named in the FROM clause of the current query, SQLs assump-

tion was correct. This assumption can be overridden with explicit

table or alias prefixes, which we will discuss further when we talk

about correlated subqueries. If there is any chance of confusion, of

course, it is best to use the prefixes.

SUBQUERIES TAKE SINGLE COLUMNS A common thread

of all the subqueries discussed in this chapter is that they all select

a single column. This is mandatory, as the select output is being

compared to a single value. An implication of this is that

SELECT * cannot be used in a subquery. There is an exception

to this, subqueries used with the EXISTS operator, which we will

introduce in Chapter 12.

USING EXPRESSIONS IN SUBQUERIES You can use an

expression based on a column, rather than the column itself, in

the SELECT clause of a subquery. This can be done with either

relational operators or IN. For example, the following query uses

the relational operator = (the output is shown in Figure 10.6):

SELECT *

FROM Customers
WHERE cnum =

(SELECT snum + 1000

FROM Salespeople

WHERE sname = 'Serres');

This finds all customers whose cnum is 1000 above the snum of

Serres. We are assuming that the sname column has no duplicate

values (this can be enforced by either a UNIQUE INDEX, dis-

cussed in Chapter 17, or a UNIQUE constraint, discussed in

PLACING QUERIES INSIDE ONE ANOTHER 121

SQL Execution Log
SELECT
FROM Customers
WHERE cnum =

(SELECT snum + 1000
FROM Salespeople
WHERE sname = 'Serres');

2002 Giovanni Rome 200 1 003
!>|

=Browse : ti«-* PgDn PgUi

Figure 10.6: Using a subquery with an expression

Chapter 18); otherwise the subquery might produce multiple

values. Unless the snum and cnum fields have meaning beyond
their simple function as primary keys, which would not necessar-

ily be a good idea, a query such as the above is probably not ter-

ribly useful, but it does illustrate the point.

SUBQUERIES INHAVING
You can also use subqueries within the HAVING clause. These

subqueries can use their own aggregate functions as long as they

do not produce multiple values or use GROUP BY or HAVING
themselves. The following query is an example (its output is

shown in Figure 10.7):

SELECT rating, COUNT (DISTINCT cnum)
FROM Customers
GROUP by rating

HAVING rating >
(SELECT AVG (rating)

FROM Customers
WHERE city = San Jose);

122 UNDERSTANDING SQL

CH. 10

=SQL Execution Log=
SELECT rating, count (DISTINCT cnum)
FROM Customers
GROUP BY rating
HAVING rating >

(SELECT AVG (rating)
FROM Customers
WHERE city = 'San Jose');

=Browse : T4«-» PaDn PaU

Figure 10. 7: Finding customers with a rating above San Jose's average

This command counts the customers with ratings above San

Jose's average. Had there been other ratings than 300 that quali-

fied, each distinct rating would have been output with a count of

the number of customers who had that rating.

SUMMARY
Now you are using queries in a hierarchical manner. You have

seen how using the results of one query to control another

extends the ease with which you can perform many functions.

You now understand how to use subqueries with relational oper-

ators as well as with the special operator IN, in either the

WHERE or HAYING clause of the outer query.

In the next few chapters, we will elaborate on subqueries. First

in Chapter 1 1 . we will discuss another kind of subquery, one that

is executed separately for each row of the table referenced in the

outer query. Then, in Chapter 12 and 13, we will introduce you

to several special operators that operate on entire subqueries, as

IN does, except that these operators can be used only with sub-

queries.

PLACING QUERIES INSIDE ONE ANOTHER 123

Putting SQL to Work

1. Write a query that uses a subquery to obtain all orders

for the customer named Cisneros. Assume you do not

know his customer number (cnum).

2. Write a query that produces the names and ratings of all

customers who have above-average orders.

3. Write a query that selects the total amount in orders for

each salesperson for whom this total is greater than the

amount of the largest order in the table.

(See Appendix A for answers.)

m

11
i.

Correlated Subqueries

126 UNDERSTANDING SQL

CH. 11

IN THIS CHAPTER, WE WILL INTRODUCE A TYPE OF
subquery that we did not cover in Chapter 10—the correlated sub-

query. You will learn how to use correlated subqueries in the

WHERE and HAVING clauses of queries. The similarities and

differences between correlated subqueries and joins will be dis-

cussed, and you will sharpen your sense of aliases and table-name

prefixes—when they are needed and how to use them.

HOW TO FORMA
CORRELATED SUBQUERY
When you are using subqueries in SQL, you can refer in the

inner query to the table in the FROM clause of the outer query,

forming a correlated subquery. When you do this, the subquery is

executed repeatedly, once for each row of the main query's table.

Correlated subqueries are among the most subtle concepts in

SQL because of the complexity involved in evaluating them.

Once you have mastered them, however, you will find that they

are quite powerful, precisely because they can perform compli-

cated functions with such compact directions.

For example, here is one way of finding all customers with

orders on October 3 (the output is shown in Figure 11.1):

SELECT *

FROM Customers outer

WHERE 10/03/1990 IN

(SELECT odate

FROM Orders inner

WHERE outer.cnum = inner.cnum);

HOW THE CORRELATED SUBQUERY WORKS
In the above example, "inner" and "outer" are, of course,

aliases, like those discussed in Chapter 9. We chose these names

for the sake of clarity; they refer to values from the inner and

outer queries, respectively. Because the value in the cnum field

of the outer query varies, the inner query must be executed sepa-

rately for each row of the outer query. The row of the outer

.

CORRELATED SUBQUERIES 127

=SQL Execution Log=
SELECT *

FROM Customers outer
WHERE 10/03/1990 IN
(SELECT odate
FROM Orders inner
WHERE outer. cnum = inner. cnum);

11 Hoffman
!003 Liu
)08 Cisneros
)7 Pereira

Figure 11. 1: Using a correlated subquery

query for which the inner query is being executed at any time is

called the current candidate row. Therefore, the procedure to

evaluate a correlated subquery is this:

1. Select a row from the table named in the outer query.

This will be the current candidate row.

2. Store the values from this candidate row in the alias

named in the FROM clause of the outer query.

3. Perform the subquery. Wherever the alias given for the

outer query is found (in this case "outer"), use the value

for the current candidate row. The use of a value from

the outer query's candidate row in a subquery is called

an outer reference.

4. Evaluate the predicate of the outer query on the basis of the

results of the subquery performed in step 3. This will deter-

mine whether the candidate row is selected for output.

5. Repeat the procedure for the next candidate row of the

table, and so on until all the rows of the table have been

tested.

128 UNDERSTANDING SQL

CH. 11

In the above example, SQL implements the following procedure:

1. It selects the row of Hoffman from the Customers table.

2. It stores this row as the current candidate row under the

alias "outer".

3. It then performs the subquery. The subquery goes

through the entire Orders table to find rows where the

cnum field is the same as outer, cnum, which currently is

2001, the cnum of Hoffman's row. It then extracts the

odate field from each row of the Orders table for which

this is true, and builds a set of the resulting odate values.

4. Having formed a set of all odate values where the cnum
is 2001, it tests the predicate of the main query to see if

October 3 is in this set. If it is (and it is), it selects Hoff-

man's row for output from the main query.

5. It repeats the entire procedure using Giovanni's row as

the candidate row, and then keeps repeating until every

row of the Customers table has been tested.

As you can see, the calculations that SQL performs with these

simple instructions are quite complex. Of course, you could also

have solved the same problem with a join, such as the following

(the output for this query is shown in Figure 11.2):

SELECT *

FROM Customers first, Orders second

WHERE first.cnum = second.cnum
AND second.odate = 10/03/1990;

Notice that here Cisneros was chosen twice, once for each

order she had on the given date. We could have eliminated this

by using SELECT DISTINCT instead of simply SELECT, of

course. This is, however, not necessary with the subquery ver-

sion. The IN operator, as used with the subquery version, makes

no distinction between values that are selected by the subquery

once and values that are selected repeatedly. Therefore DIS-

TINCT is not needed.

CORRELATED SUBQUERIES 129

=SQL Execution Log
SELECT *

FROM Customers first. Orders second
WHERE first. cnum = second. cnum
AND second. odate = 10/03/1990;

Figure 11.2: Using a join in place of a correlated subquery

Suppose we wanted to see the names and numbers of all sales-

people who had more than one customer. The following query

would accomplish this for us (the output is shown in Figure 11.3):

SELECT snum, sname
FROM Salespeople main
WHERE 1 <

(SELECT COUNT (*)

FROM Customers
WHERE snum = main.snum);

Notice that the FROM clause of the subquery in this example

makes no use of an alias. In the absence of a table-name or alias

prefix, SQL will initially assume that any field is drawn from the

table named in the FROM clause of the current query. If there is

no field of the given name (in this case, snum) in that table, SQL
will then check the outer queries. That is why table-name pre-

fixes are usually necessary with correlated subqueries— to over-

ride this assumption. Aliases are also frequently called for to

enable you to reference the same table in an inner and an outer

query without ambiguity.

130 UNDERSTANDING SQL

CH. 11

=SQL Execution Log
SELECT snum, sname
FROM Salespeople main
WHERE 1 <

(SELECT COUNT (*)
FROM Customers
WHERE snum = main. snum);

1001 Peel
1002 Serres

Browse : t4<-» PgDn Pgll|

Figure 11.3: Finding salespeople with multiple customers

USING CORRELATED
SUBQUERIES TO FIND ERRORS

Sometimes it is useful to run queries that are solely designed

to find errors. It is always possible for faulty information to be

entered into your database, and, once entered, it can be difficult

to spot. The following query should produce no output. It exam-

ines the Orders table to see if the match of snum and cnum in

each row there corresponds to that in the Customers table and

outputs any row where it does not. In other words, it checks to

see if the correct salesperson was credited with each sale (it

assumes that cnum, as the primary key of the Customers table,

will have no duplicate values in that table).

SELECT *

FROM Orders main

WHERE NOT snum =

(SELECT snum
FROM Customers
WHERE cnum = main.cnum);

CORRELATED SUBQUERIES 131

Using the mechanism of referential integrity (discussed in

Chapter 19), you can ensure against some errors of this kind.

But this mechanism is not always available, nor is its use desir-

able in all cases, so error-seeking queries, such as the above, can

still be useful.

CORRELATING A TABLE WITH ITSELF
You can also use correlated subqueries based on the same table

as the main query. This enables you to extract certain complex

forms of derived information. For example, we can find all

orders with above-average amounts for their customers (the out-

put is shown in Figure 11.4):

SELECT *

FROM Orders outer

WHERE amt >
(SELECT AVG (amt)

FROM Orders inner

WHERE inner.cnum = outer.cnum);

SQL Execution Log=
SELECT
FROM Orders outer
WHERE amt >

(SELECT AVG (amt)
FROM Orders inner
WHERE inner.cnum = outer.cnum);

3010 1309.95 10/06/1990
301

1

9891 .88 10/06/1990

Figure 11.4: Correlating a table with itself

132 UNDERSTANDING SQL

CH. 11

Of course, in our small sample table, with most customers
having only one order, the majority of values are the same as the

average and therefore not selected. Let's enter the command in a

different way (the output is shown in Figure 11.5):

SELECT *

FROM Orders outer

WHERE amt > =

(SELECT AVG (amt)

FROM Orders inner

WHERE inner.cnum = outer.cnum);

FROM Orders outer
WHERE amt >=

(SELECT AVG (amt)
FROM Orders inner
WHERE inner.cnum

=SQL Execution Log=

outer.cnum);

3003 767.19 10/03/1990
3002 1900. 10 10/03/1990
3005 5160.45 10/03/1990
3006 1098.16 10/03/1990
3009 1713. 23 10/04/1990
3010 1309.95 10/06/1990
301

1

9891 .88 10/06/1990

2001
2007
2003
2008
2002
2004
2006

1001
1004
1002
1007
1 003

|

1002

Figure 11.5: Selecting orders >
customers

the average amounts for their

The difference, of course, is that the relational operator of the

main predicate here includes values that equal the average

(which usually means that they are the only orders for the given

customers).

CORRELATED SUBQUERIES INHAVING

Just as the HAVING clause can take subqueries, it can take

correlated subqueries. When you use a correlated subquery in a

CORRELATED SUBQUERIES 133

HAVING clause, you must restrict the outer references to items

that could be directly used in the HAVING clause itself. You will

recall from Chapter 6 that HAVING clauses can use only aggre-

gate functions from their SELECT clause or fields used in their

GROUP BY clause. These are the only outer references you can

make. This is because the predicate of the HAVING clause is

evaluated for each group from the outer query, not for each row.

Therefore, the subquery will be executed once for each output

group from the outer query, not for each row.

Suppose you want the sums of the amounts from the Orders

table, grouped by date, eliminating all those dates where the

SUM was not at least 2000.00 above the MAX amount:

SELECT odate, SUM (amt)

FROM Orders a

GROUP BY odate

HAVING SUM (amt) >
(SELECT 2000.00 + MAX (amt)

FROM Orders b

WHERE a.odate = b.odate);

The subquery calculates the MAX value for all rows with the

same date as the current aggregate group of the main query.

This must be done, as above, with a WHERE clause. The sub-

query itself must not use a GROUP BY or HAVING clause.

CORRELATED SUBQUERIES ANDJOINS
As you may have surmised, correlated subqueries are closely

related to joins—both involve checking each row of one table

against every row of another (or an alias of the same) table. You
will find that many operations that can be performed with one of

these will also work with the other.

There are differences in application between the two, however,

such as the aforementioned occasional necessity for using DIS-

TINCT with a join where it is not needed with a subquery. There

are also things that each can do that the other cannot. Subqueries,

for example, can employ aggregate functions in the predicate,

making possible operations such as our previous example in which

134 UNDERSTANDING SQL

CH. 11

we extracted orders that were above the average for their cus-

tomers. Joins, on the other hand, can produce rows from both of

the tables being compared, whereas the output of subqueries is

used only in the predicates of outer queries. As a rule of thumb,

the form of query that seems most intuitive will probably be the

best to use. but it is good to be cognizant of both techniques for

those situations where one or the other will not work.

SUMMARY
If you are still with us. you can congratulate yourself on mas-

tering what many consider the most abstruse concept in SQL

—

the correlated subquery. You have seen how the correlated sub-

query relates to the join, as well as how it can be used with

aggregate functions and in the HAYING clause. All in all. you

have now covered all types of subqueries pretty thoroughly.

The next step is the introduction of some SQL special opera-

tors. These take subqueries as arguments, as IN does, but unlike

IN, they can be used only with subqueries. The first of these,

introduced in Chapter 12. is the operator called EXISTS.

CORRELATED SUBQUERIES 135

Putting SQL to Work

1. Write a SELECT command using a correlated subquery

that selects the names and numbers of all customers with

ratings equal to the maximum for their city.

2. Write two queries that select all salespeople (by name and

number) who have customers in their cities who they do

not service, one using a join and one a correlated sub-

query. Which solution is more elegant?

(Hint: one way to do this is to find all customers not

serviced by a given salesperson and see if any of them are

in his or her city.)

(See Appendix A for answers.)

12

Using the EXISTS
Operator

m

138 UNDERSTANDING SQL

CH. 12

NOW THAT YOU ARE WELL ACQUAINTED WITH SUB-
queries, we can talk about some special operators that always

take subqueries as arguments. You will learn about the first of

these in this chapter. The remainder will be covered in the next.

The EXISTS operator is used to base a predicate on whether a

subquery produces output or not. In this chapter, you will learn

how to use this operator with conventional and (more commonly)

correlated subqueries. We will also discuss special considerations

that come into play when you use this operator as regards aggre-

gates, NULLS, and Booleans. In addition, you will extend your

general proficiency with subqueries by examining more complex

applications of them than we have been seeing up to now.

HOWDOES EXISTS WORK?
EXISTS is an operator that produces a true or false value, in

other words, a Boolean expression (see Chapter 4 for review on

this term). This means it can stand alone in a predicate or be

combined with other Boolean expressions using the Boolean oper-

ators AND, OR, and NOT. It takes a subquery as an argument

and evaluates to true if it produces any output or false if it does

not. This makes it different from other predicate operators, in that

it cannot be unknown. For example, we can decide to extract

some data from the Customers table if and only if one or more of

the customers in the Customers table are located in San Jose (the

output for this query is shown in Figure 12.1):

SELECT cnum, cname, city

FROM Customers
WHERE EXISTS

(SELECT *

FROM Customers
WHERE city = 'San Jose');

The inner query selected all data for all customers in San Jose.

The EXISTS operator in the outer predicate noted that some

output was produced by the subquery and, since the EXISTS
expression was the entire predicate, made the predicate therefore

true. The subquery (not being correlated) was performed only

USING THE EXISTS OPERATOR 139

1
SOL Execution Log J

SELECT cnum, cname, city
FROM Customers
WHERE EXISTS
(SELECT *

FROM Customers
WHERE city = 'San Jose');

anviEM mssEs^m raTHi
2001 Hoffman London
2002 Giovanni Rome
2003 Liu San Jose
2004 Grass Berlin
2006 Clemens London
2008 Cisneros San Jose
2007 Pereira Rome

-
| | « Home '

Figure 12. 1: Using the EXISTS operator

once for the entire outer query, and therefore had a single value

for all cases. Since EXISTS, when used in this manner, makes

the predicate true or false for all rows at once, it is not terribly

useful for extracting specific information.

SELECTING COLUMNS WITH EXISTS

In the above example, EXISTS could have just as easily selected

a single column, instead of selecting all columns by using the star.

This differs from the subqueries we have seen before that can select

only a single column, as noted in Chapter 10. However, it generally

makes little difference which column EXISTS selects, or if selects

all columns, because it simply notes whether or not there is output

from the subquery and does not use the values produced at all.

USING EXISTS WITH
CORRELATED SUBQUERIES
With a correlated subquery, the EXISTS clause is evaluated

separately for each row of the table referenced in the outer query,

just as other predicate operators are when you use correlated

140 UNDERSTANDING SQL

CH. 12

subqueries. This enables you to use EXISTS as a true predicate,

one that generates different answers for each row of the table ref-

erenced in the main query. Therefore information from the inner

query is, in a sense, preserved, if not directly output, when you
use EXISTS in this manner. For example, we can output sales-

people who have multiple customers (the output for this query is

shown in Figure 12.2):

SELECT DISTINCT snum
FROM Customers outer

WHERE EXISTS
(SELECT *

FROM Customers inner

WHERE inner.snum = outer.snum

AND inner.cnum <> outer.cnum);

xecution Log=
SELECT DISTINCT snum
FROM Customers outer
WHERE EXISTS
(SELECT *

FROM Customers inner
WHERE inner.snum = outer.snum
AND inner.cnum <> outer.cnum);

=Browse : fi«--» PgDn PgU'

Figure 12.2: Using EXISTS with a correlated subquery

For each candidate row of the outer query (representing a cus-

tomer currently being examined), the inner query found rows

that matched the snum value (had the same salesperson), but not

the cnum value (matched a different customer). If any such rows

are found by the inner query, it implies that there are two

USING THE EXISTS OPERATOR 141

different customers serviced by the current salesperson (that is,

the salesperson of the customer in the current candidate row of

the outer query). The EXISTS predicate is therefore true for the

current row and the salesperson number (snum) field of the table

in the outer query is output. If DISTINCT were not specified,

each of these salespeople would have been selected once for each

customer that she or he is assigned.

COMBINING EXISTSANDJOINS
It might be useful for us to output more information about

these salespeople than their numbers, however. We can do this

by joining the Customers table to the Salespeople table (the out-

put for the query is shown in Figure 12.3):

SELECT DISTINCT first.snum, sname, first.city

FROM Salespeople first, Customers second
WHERE EXISTS

(SELECT "

FROM Customers third

WHERE second.snum = third.snum
AND second.cnum < > third.cnum)

AND first.snum = second.snum;

=SQL Execution Log=
SELECT DISTINCT first. snum, sname, first.city
FROM Salespeople first, Customers second
WHERE EXISTS
(SELECT
FROM Customers third
WHERE second. snum = third. snum
AND second. cnum <> third. cnum)
AND first. snum = second. snum;

101 Peel
102 Serres

-I 14— Home

Figure 12.3: Combining EXISTS with a join

142 UNDERSTANDING SQL

CH. 12

The inner query here is the same as the previous version, save

for the fact that the aliases have been changed. The outer query is a

join of the Salespeople and Customers tables, similar to ones we
have seen before. The new clause of the main predicate (AND
first.snum = second. snum) is, of course, evaluated at the same

level as the EXISTS clause. It is the functional predicate of the join

itself, matching the two tables from the outer query in terms of the

snum field that they have in common. Because of the Boolean oper-

ator AND, both of the main predicate's conditions must be true in

order for the predicate to be true. Therefore, the results of the sub-

query matter only in those cases where the second part of the query

is true, and the join is in effect. Combining joins and subqueries in

this way can be quite a powerful way of processing data.

USING NOT EXISTS

The previous example makes it clear that EXISTS can be

combined with Boolean operators. Naturally, the one that is easi-

est to use and probably most commonly used with EXISTS is

NOT. One way that we could find all salespeople with only one

customer would be to reverse our previous example (the output

for this query is shown in Figure 12.4):

SELECT DISTINCT snum
FROM Customers outer

WHERE NOT EXISTS
(SELECT *

FROM Customers inner

WHERE inner.snum = outer.snum

AND inner.cnum <> outer.cnum);

EXISTSAND AGGREGATES
One thing that EXISTS cannot do is take an aggregate function

in its subquery This makes sense. If an aggregate function finds

any rows to operate on, EXISTS is true, and it does not matter

what the value of the function is; if the function finds no rows,

EXISTS is false. Attempting to use aggregates with EXISTS in

USING THE EXISTS OPERATOR 143

=SQL Execution Log=
SELECT DISTINCT snum
FROM Customers outer
WHERE NOT EXISTS
(SELECT *

FROM Customers inner
WHERE inner. snum = outer. snum
AND inner. cnum <> outer. cnum);

Browse : T4«-» PqDn PqUo — I I

4— Home

Figure 12.4: Using EXISTS with NOT

this way probably indicates that the problem has not been properly

thought through.

Of course, a subquery to an EXISTS predicate may also use

one or more subqueries of its own. These may be of any of the

various types we have seen (or that we will see). These sub-

queries, and any others within them, are allowed to use aggre-

gates, unless there is some other reason why they cannot. The
next section offers an example of this.

In either case, you could have gotten the same result more easily

by selecting the field that you used the aggregate function on,

instead of using the function itself. In other words, the predicate

EXISTS (SELECT COUNT (DISTINCT sname) FROM Sales-

people) would be equivalent to EXISTS (SELECT sname FROM
salespeople) were the former permissible.

A MORE ADVANCED SUBQUERYEXAMPLE
The possible applications of subqueries can get very involved.

You can nest two or more of them in a single query, even inside

one another. While it can take a bit of thought to figure out how
these commands will work, you can do things this way in SQL

144 UNDERSTANDING SQL

CH. 12

that would take several commands in most other languages.

Here is a query that extracts the rows of all salespeople who have

customers with more than one current order. It is not necessarily

the simplest solution to this problem, but is intended rather to

demonstrate advanced SQL logic. Deriving this information

means interrelating all three of our sample tables:

SELECT *

FROM Salespeople first

WHERE EXISTS
(SELECT *

FROM Customers second
WHERE first.snum = second.snum
AND1 <

(SELECT COUNT (*)

FROM Orders

WHERE Orders.cnum =

second.cnum));

The output for this query is shown in Figure 12.5.

=SQL Execution Log=
FROM Salespeople first
WHERE EXISTS
(SELECT «

FROM Customers second
WHERE first. snum = second. snum
AND 1 <

(SELECT COUNT («)
FROM Orders
WHERE Orders. cnum = second. cnum))

;

1001 Peel
1002 Serres
1007 Rifkin
=Browse : t

Figure 12.5: Using EXISTS with a complex subquery

USING THE EXISTS OPERATOR 145

We could view the evaluation of the above query like this:

Take each row of the salesperson table as a candidate row (outer

query) and perform the subqueries. For each candidate row from

the outer query, take each row from the Customers table (middle

query). If the current customer row is not matched to the current

salesperson row (that is, if first. snum <> second. snum), the

predicate of the middle query is false. Whenever we find a cus-

tomer in the middle-query that is matched to the salesperson in

the outer query, however, we must look at the innermost query

to determine if our middle query predicate will be true. The
innermost query counts the number of orders of the current cus-

tomer (from the middle query). If this number is greater than 1,

the predicate of the middle query is true, and rows are selected.

This makes the EXISTS predicate of the outer query true for the

current salesperson's row, meaning that at least one of the cur-

rent salesperson's customers has more than one order.

If this does not seem quite intuitive to you at this point, don't

worry. The complexity of this example is well beyond what you

would frequently use in a business situation. The main purpose

of examples such as this is to sharpen your comprehension and

skills as well as to show you some advanced possibilities that may
prove useful. After working with complicated situations like this,

the simple queries that are most often used in SQL will seem ele-

mentary to you.

Besides, this query, even though it may seem like a convoluted

way to extract information, is doing a lot of work. It is correlat-

ing three different tables to give you information that, if the

tables were larger than they are here, as they are likely to be,

would be difficult to derive more directly (although this is not the

only, nor necessarily the best, way to do it in SQL). Perhaps you

would have to see this information on a regular basis— if, for

instance, you had an end-of-the-week bonus for salespeople who
produced multiple orders from a single customer. In this case, it

would be worth deriving the command, and keeping it to use

again and again as the data changes (a good way to do this is

with a view, which we will discuss in Chapter 20).

146 UNDERSTANDING SQL

CH. 12

SUMMARY
EXISTS, although it seems simple, can be one of SQL's more

abstruse operators. It is, however, quite flexible and powerful. In

this chapter, you have seen and mastered the many possibilities

that EXISTS creates for you. In the process, your comprehen-

sion of advanced subquery logic has been extended considerably.

The next step is to master three other special operators that

take subqueries as arguments: ANY, ALL, and SOME. As you

will see in Chapter 13, these are alternative formulations of some

things you already know how to do, but, in some cases, they

may be preferable.

USING THE EXISTS OPERATOR 147

Putting SQL to Work

1. Write a query that uses the EXISTS operator to extract

all salespeople who have customers with a rating of 300.

2. How could you have solved the above problem with a join?

3. Write a query using the EXISTS operator that selects all

salespeople with customers located in their cities who are

not assigned to them.

4. Write a query that extracts from the Customers table

every customer assigned to a salesperson who currently

has at least one other customer (besides the customer

being selected) with orders in the Orders table (hint: this is

similar in structure to our three-level subquery example).

(See Appendix A for answers.)

4flP

13
i\

*>+

Using the Operators ANY,
ALL andSOME

150 UNDERSTANDING SQL

CH. 13

NOW THAT YOU HAVE MASTERED EXISTS, YOU WILL
learn about three more special operators oriented around sub-

queries. (Actually, there are only two, because ANY and SOME
are the same.) Once you understand these operators, you will

have covered all of the types of predicate subqueries used in

SQL. In addition, you will be exposed to the various ways a

given query can be formed using different types of predicate sub-

queries, and you will understand the advantages and disadvan-

tages of each approach.

ANY, ALL, and SOME are similar to EXISTS in that they

take subqueries as arguments; they differ from EXISTS, how-

ever, in that they are used in conjunction with relational opera-

tors. In this respect, they are similar to the IN operator when it

is used with subqueries; they take all the values produced by the

subquery and treat them as a unit. However, unlike IN, they can

be used only with subqueries.

THE SPECIAL
OPERATOR ANY OR SOME

Let us begin by examining the operator ANY or SOME. SOME
and ANY are interchangable—wherever we use the term ANY,
SOME would work just the same. The difference in terminology

reflects an effort to allow people to use the term that they find more

intuitive. This is somewhat problematic; as we shall see, intuitive

interpretations of these operators can sometimes be misleading.

Here is a new way to find salespeople with customers located

in their cities (the output for this query is shown in Figure 13.1):

SELECT *

FROM Salespeople

WHERE city = ANY
(SELECT city

FROM Customers);

The ANY operator takes all values produced by the subquery,

in this case all city values in the Customers table, and evaluates

to true if ANY of them equal the city value of the current row of

USING THE OPERATORS ANY, ALL, AND SOME 151

SELECT *

FROM Salespeople
WHERE city = ANY
"(SELECT city
FROM Customers);

=SQL Execution Log=

Figure 13. 1: Using the ANY operator

the outer query. This means that the subquery must select values

of the same type as those they are being compared to in the main
predicate. This is in contrast to EXISTS, which simply deter-

mines if a subquery produces results or not and does not actually

use the results.

USING IN OR EXISTS INSTEAD OFANY
We could also have used the IN operator to construct the pre-

vious query:

SELECT *

FROM Salespeople

WHERE city IN

(SELECT city

FROM Customers);

This query will produce the output shown in Figure 13.2.

However, the ANY operator can use other relational operators

besides equals, and thereby make comparisons that are beyond

the capabilities of IN. For example, we could find all salespeople

152 UNDERSTANDING SQL

CH. 13

SELECT *

FROM Salespeople
WHERE city IN
(SELECT city
FROM Customers);

=SQL Execution Log=

Figure 13.2: Using IN as an alternative to ANY

SELECT -

FROM Salespeople
WHERE sname < ANY
(SELECT cname
FROM Customers);

=SQL Execution Log=

Figure 13.3: Using ANY with an inequality

for whom there are customers that follow them in alphabetical

order (the output is shown in Figure 13.3):

SELECT *

FROM Salespeople

USING THE OPERATORS ANY, ALL, AND SOME 153

WHERE sname < ANY
(SELECT cname

FROM Customers);

All rows were selected save for those of Serres and Rifkin,

because there are no customers whose names follow these in alpha-

betical order. Notice that this is basically equivalent to the following

EXISTS query, whose output is shown in Figure 13.4:

SELECT *

FROM Salespeople outer

WHERE EXISTS
(SELECT *

FROM Customers inner

WHERE outer.sname < inner.cname);

SQL Execution Log=
SELECT »

FROM Salespeople outer
WHERE EXISTS
(SELECT *

FROM Customers inner
WHERE outer.sname < inner.cname):

Figure 13.4: Using EXISTS as an alternative to ANY

Any query that can be formulated with ANY (or, as we shall

see, ALL) could also be formulated with EXISTS, although the

reverse is not true. Strictly speaking, the EXISTS versions are

not quite identical to the ANY or ALL versions because of a dif-

ference in how NULLs are handled (to be discussed later in this

chapter). Nonetheless, technically speaking, you could do with-

out ANY and ALL if you became very adroit with the use of

154 UNDERSTANDING SQL

CH. 13

EXISTS (and IS NULL). Many users, however, find ANY and
ALL easier to use than EXISTS, which requires correlated sub-

queries. In addition, depending on the implementation, ANY
and ALL can, at least in theory, be more efficient than EXISTS.
An ANY or ALL subquery can be executed once and have its

output used to determine the predicate for every row of the main
query. EXISTS, on the other hand, takes a correlated subquery,

which requires the entire subquery to be reexecuted for each row

of the main query. SQL attempts to find the most efficient way to

execute any command, so it may try to convert a less efficient

formulation of a query to a more efficient one (but you can't

always count on it finding the most efficient formulation).

The main reason for offering the EXISTS formulation as an

alternative to ANY and ALL is that ANY and ALL can be

somewhat counterintuitive, because of the way we use these

terms in English, as you shall soon see. By being aware of differ-

ent ways to formulate a given query, you can work around proce-

dures that you happen to find difficult or awkward.

HOWANY CANBE AMBIGUOUS
As implied above, ANY is not entirely intuitive. If we con-

struct a query to select customers who have a greater rating than

any customer in Rome, we would get output that might be a lit-

tle different from what we expected (as shown in Figure 13.5):

SELECT *

FROM Customers
WHERE rating > ANY

(SELECT rating

FROM Customers
WHERE city = 'Rome');

In English, the way we would normally be inclined to inter-

pret a rating as being "greater than any (where the city equals

Rome)" is to say that the rating value must be higher than the

rating value in every case where the city value equals Rome. This

is not, however, the way ANY is conceived in SQL. ANY evalu-

ates to true if the subquery finds any value(s) that make the con-

dition true.

USING THE OPERATORS ANY, ALL, AND SOME 155

=SQL Execution Log=
SELECT *

FROM Customers
WHERE rating > ANY
(SELECT rating
FROM Customers
WHERE city = 'Rome');

2002 Giovanni Rome
2003 Liu San Jose
2004 Grass Berlin
2008 Cisneros San Jose

200 1003
200 1002
300 1002
300 1007

Browse : ti«--» - I I
«— Home

Figure 13.5: Greater than ANY as interpreted by SQL

If we were evaluating ANY the way we normally would in

English, only the customers with a rating of 300 would beat

Giovanni, who is in Rome and has a rating of 200. However, the

ANY subquery also found Periera in Rome with a rating of 100.

Because all the customers with a rating of 200 were higher than

that, they were selected, even though there was another Rome
customer (Giovanni) whose rating they did not beat (the fact that

one of the customers selected is also in Rome is irrelevant). Since

the subquery did produce at least one value that would make the

predicate true for these rows, the rows were selected.

To give another example, suppose we were to select all orders

that had amounts that were greater than at least one of the

orders from October 6th:

SELECT *

FROM Orders

WHERE amt > ANY
(SELECT amt

FROM Orders

WHERE odate = 10/06/1990);

156 UNDERSTANDING SQL

CH. 13

The output for this query' is shown in Figure 13.6.

Even though the highest amount in the table (9891.88) is on
October 6th, the preceding rows have higher amounts than the

other row for October 6th. which had an amount of 1309.95.

Had the relational operator been > = instead of simply >, this

row would also have been selected, because it is equal to itself.

Naturally, you can use ANY with other SQL techniques, such

as joins. This query will find all orders with amounts smaller

than any amount for a customer in San Jose (the output is shown

in Figure 13.7):

SELECT *

FROM Orders

WHERE amt < ANY
(SELECT amt

FROM Orders a, Customers b

WHEREa.cnum = b.cnum
AND b.city = 'San Jose');

Even though the smallest order in the table was for a customer

in San Jose, so was the second largest; therefore almost all the

rows were selected. An easy thing to remember is that < ANY
means less than the largest value selected, and > ANY means

i. SQL Execution Log
[SELECT *

J
FROM Orders
WHERE amt > ANY
[(SELECT amt
IFROM Orders
WHERE odate = 10/06/1990);

BEZC3H
3002 1900.10 10/03/1990 2007 1004
3005 5160.45 10/03/1990 2003 1002
3009 1713.23 10/04-/1990 2002 1003
3008 4723.00 10/05/1990 2006 1001
3011 9891.88 10/06/1990 2006 1001

Browse : T4«--» PaDn PaLI

Figure 13.6: Selecting amounts greater than ANY from Oct. 6

USING THE OPERATORS ANY, ALL, AND SOME 157

=SQL Execution Log=
WHERE amt < ANY
(SELECT amt
FROM Orders a, Customers b
WHERE a.cnum = b.cnum
AND b.city = 'San Jose');

3001 18 69 10/03/1990 2008
3003 767 19 10/03/1990 2001
3002 1900 10 10/03/1990 2007
3006 1098 16 10/03/1990 2008
3009 1713 23 10/04-/1990 2002
3007 75 75 10/04/1990 2004
3008 4723 00 10/05/1990 2006
3010 1309 95 10/06/1990 2004

1007
1001
1004
1007
1003
1002
1001
1002

Figure 13. 7: Using ANY with a join

greater than the smallest value selected. In fact, the above com-

mand could also have been given like this (the output is shown in

Figure 13.8):

SELECT *

FROM Orders

SQL Execution Log=
WHERE amt <

(SELECT MAX (amt)
FROM Orders a, Customers b
WHERE a.cnum = b.cnum
AND b.citv 'San Jose'):

3001 18 69 10/03/1990 2008
3003 767 19 10/03/1990 2001
3002 1900 10 10/03/1990 2007
3006 1098 16 10/03/1990 2008
3009 1713 23 10/04/1990 2002
3007 75 75 10/04/1990 2004
3008 4723 00 10/05/1990 2006
3010 1309 95 10/06/1990 2004

Figure 13.8: Using an aggregate function in place of ANY

158 UNDERSTANDING SQL

CH. 13

WHERE amt <
(SELECT MAX (amt)

FROM Orders a, Customers b

WHEREa.cnum = b.cnum
AND b.city = 'San Jose);

THE SPECIAL OPERATOR ALL
With ALL, the predicate is true if every value selected by the

subquery satisfies the condition in the predicate of the outer

query. If we wanted to revise our previous example to output only

those customers whose ratings are, in fact, higher than every cus-

tomer in Paris, we would enter the following to produce the out-

put shown in Figure 13.9:

SELECT *

FROM Customers
WHERE rating > ALL

(SELECT rating

FROM Customers
WHERE city = 'Rome');

—=SQL Execution Lo
SELECT
FROM Customers
WHERE rating > ALL
(SELECT rating
FROM Customers
WHERE city = ' Rome

') ;

Browse : Ti«--» Pi

Figure 13. 9: Using the ALL operator

USING THE OPERATORS ANY, ALL, AND SOME 159

This statement examined the rating values of all customers in

Rome. It then found those customers with a higher rating than

every one of the Rome customers. The highest rating in Rome is

Giovanni, with a value of 200. Therefore, only those with a

value higher than 200 were selected.

Just as with ANY, we can use EXISTS to produce an alterna-

tive formulation of the same query (the output is shown in Fig-

ure 13.10):

SELECT *

FROM Customers outer

WHERE NOT EXISTS
(SELECT *

FROM Customers inner

WHERE outer.rating < = inner.rating

AND inner.city = 'Rome');

SOL Execution Log=
SELECT *

FROM Customers outer
WHERE NOT EXISTS
(SELECT •

FROM Customers inner
WHERE outer.rating = inner.rating
AND inner.city = 'Rome');

2004 Grass
2008 Cisneros

Berlin
San Jose

300
300

Figure 13. 10: Using EXISTS as an alternative to ALL

EQUALITIES VS. INEQUALITIES

ALL is used primarily with inequalities rather than equalities

because a value can be "equal to all" of the results of a subquery

160 UNDERSTANDING SQL

CH. 13

only if all of the said results are, in fact, identical. Examine the

following query:

SELECT *

FROM Customers
WHERE rating = ALL

(SELECT rating

FROM Customers
WHERE city = 'San Jose');

This command would be legal, but we would, with the current

data, get no output. The only way output would be produced by
this query is if all rating values in San Jose happened to be iden-

tical. In this case, it would be similar to saying

SELECT *

FROM Customers
WHERE rating =

(SELECT DISTINCT rating

FROM Customers
WHERE city = 'San Jose');

The main difference is that this last command would fail if the

subquery produced multiple values, whereas the ALL version

would simply give no output. In general, it is not a good idea to

use queries that would work only in special cases like this.

Because your database will constantly be changing, it is not a

good practice to make assumptions about its content.

ALL can, however, be used effectively with nonequalities, that is

to say with the < > operator. To say in SQL that a value does not

equal all the results of a subquery, however, is different from saying

it in English. Obviously, if the subquery returns multiple distinct

values, as is usually the case, no single value can be equal to all of

them in the usual sense. In SQL, <> ALL really means "is not

equal to any" of the subquery results. In other words, the predicate

is true if the value is not found among the results of the subquery.

Therefore, our previous example put in the negative looks like this

(with the output shown in Figure 13.11):

USING THE OPERATORS ANY, ALL, AND SOME 161

SELECT *

FROM Customers
WHERE rating <> ALL

(SELECT rating

FROM Customers
WHERE city = 'San Jose);

=SQL Execution Log=
SELECT »

FROM Customers
WHERE rating <> ALL
(SELECT rating
FROM Customers
WHERE city = 'San Jose');

2001 Hoffman
2006 Clemens
2007 Pereira

London
London
Rome

100
100
100

1001
1001
1004

Figure 13. 11: Using ALL with < >

The above subquery selected all ratings where the city was

San Jose. This produced a set of two values: 200 (for Liu) and

300 (for Cisneros). The main query then selected all rows whose

rating matched neither of these— that is, all rows with a rating of

100. You could have formulated the same query using NOT IN:

SELECT *

FROM Customers
WHERE rating NOT IN

(SELECT rating

FROM Customers
WHERE city = San Jose');

You could also have used ANY:

SELECT *

FROM Customers

162 UNDERSTANDING SQL

CH. 13

WHERE NOT rating = ANY
(SELECT rating

FROM Customers
WHERE city = 'San Jose');

The output would be the same for all three statements.

KEEPING ANYAND ALL STRAIGHT
In SQL, saying a value is greater (or less) than ANY of a set

of values is the same as saying it is greater (or less) than any sin-

gle one of those values. Conversely, saying a value does not

equal ALL of a set of values, means that there is no value in the

set to which it is equal.

HOWANY, ALL,
AND EXISTS DEAL WITH
MISSING DATA AND UNKNOWNS

As mentioned, there are some differences between EXISTS
and the operators introduced in this chapter with regard to how
NULLs are handled. ANY and ALL also differ from each other

in how they react if the subquery produces no values to use in a

comparison. These differences can give your queries unexpected

results if you do not account for them.

WHEN THE SUBQUERY COMES BACK EMPTY
One significant difference between ALL and ANY is the way

they deal with the situation in which the subquery returns no

values. Basically, whenever a legal subquery fails to produce out-

put, ALL is automatically true, and ANY is automatically false.

This means that the following query

SELECT *

FROM Customers
WHERE rating > ANY

USING THE OPERATORS ANY, ALL, AND SOME 163

(SELECT rating

FROM Customers
WHERE city = 'Boston');

would produce no output, whereas this query

SELECT *

FROM Customers
WHERE rating > ALL

(SELECT rating

FROM Customers
WHERE city = 'Boston');

would produce the entire Customers table. As there are no cus-

tomers in Boston, of course, neither of these comparisons is very

meaningful.

ANYAND ALL VS. EXISTS WITH NULLS
NULL values are also a bit of a problem with operators like

these. When SQL compares two values in a predicate, one of

which is NULL, the result is unknown (refer to Chapter 5). The
unknown predicate, like false, causes a row to not be selected, but

this will work out differently for some otherwise-identical queries,

depending on whether they use ALL or ANY as opposed to

EXISTS. Consider our previous examples:

SELECT *

FROM Customers
WHERE rating > ANY

(SELECT rating

FROM Customers
WHERE city = 'Rome');

and:

SELECT *

FROM Customers outer

WHERE EXISTS
(SELECT *

164 UNDERSTANDING SQL

CH. 13

FROM Customers inner

WHERE outer.rating > inner.rating

AND inner.city = 'Rome');

In general, these two queries will behave just the same. But sup-

pose there were a NULL value in the rating column of the cus-

tomer table:

CNUM CNAME CITY RATING SNUM

2003 Liu San Jose NULL 1002

In the ANY version, when Mr. Liu's rating is selected by the

main query, the NULL value makes the predicate unknown, and

Liu's row is not selected for output. However, when the NOT
EXISTS version selects this row in the main query, the NULL
value is used in the predicate of the subquery, making it unknown
in every case. This means the subquery will produce no values,

and EXISTS will be false. This, naturally, makes NOT EXISTS
true. Therefore, Mr. Liu's row is selected for output. This dis-

crepancy stems from the fact that, unlike other types of predicates,

the value of EXISTS is always true or false—never unknown.

This constitutes an argument for using the ANY formulation.

We do not ordinarily think of a NULL value as being higher than

a valid value. Moreover, the result would have been the same if

we had been checking for a lower value.

USING COUNT INPLACE OF EXISTS
It has been pointed out that ANY and ALL formulations can

all be (imprecisely) rendered with EXISTS, while the reverse is

not true. Although this is the case, it is also true that EXISTS
and NOT EXISTS subqueries can be circumvented by execut-

ing the same subqueries with COUNT (*) in the subquery 's

SELECT clause. If more than zero rows of output are counted,

it is the equivalent of EXISTS; otherwise it is the same as NOT
EXISTS. The following is an example (the output is shown in

Figure 13.12):

SELECT *

FROM Customers outer

USING THE OPERATORS ANY, ALL, AND SOME 165

WHERE NOT EXISTS
(SELECT *

FROM Customers inner

WHERE outer.rating < = inner.rating

AND inner.city = 'Rome');

SOL Execution Log=
SELECT «

FROM Customers outer
WHERE NOT EXISTS
(SELECT »

FROM Customers inner
WHERE outer.rating <= inner.rating
AND inner.city = 'Rome');

Figure 13.12: Using EXISTS with a correlated subquery

This could also be rendered as

SELECT *

FROM Customers outer

WHERE 1 >
(SELECT COUNT (*)

FROM Customers inner

WHERE outer.rating < = inner.rating

AND inner.city = 'Rome');

The output to this query is shown in Figure 13.13.

We are now beginning to see clearly how many ways there are

of doing things in SQL. If it all seems a bit confusing at this

stage, there is no need to worry. You will learn to use those tech-

niques that best suit your needs and are most intuitive for you.

At this point, we want to expose you to many different possibili-

ties, so that you will be able to find your own best approach.

166 UNDERSTANDING SQL

CH. 13

SQL Execution Log=
SELECT *

FROM Customers outer
WHERE 1 >

(SELECT COUNT (»)
FROM Customers inner
WHERE outer. rating <= inner. rating
AND inner. city = 'Rome');

2004- Grass
2008 Cisneros

Berlin
San Jose

Browse : T±«--» PgDn PgU

Figure 13. 13: Using COUNT in place of EXISTS

SUMMARY
Well, you have covered a lot of ground in this chapter. Sub-

queries are not a simple topic, so we have spent this time discus-

sing their variations and ambiguities. The mastery you now have

of them is not superficial. You know several techniques for solv-

ing a given problem, so that you can choose the one that suits

your purposes best. Also, you understand how different formula-

tions will handle errors and NULL values.

Now that you have thoroughly mastered queries, the most

important, and probably the most complex, aspect of SQL, the

bulk of the other material will be relatively easy to understand.

We have one more chapter about queries, which will show you

how to combine the output from any number of queries into a

single body by forming a union of multiple queries using the

UNION statement.

USING THE OPERATORS ANY, ALL, AND SOME 167

Putting SQL to Work

1. Write a query that selects all customers whose ratings are

equal to or greater than ANY (in the SQL sense) of Serres'

.

2. What would be the output of the above command?

3. Write a query using ANY or ALL that will find all sales-

people who have no customers located in their city.

4. Write a query that selects all orders for amounts greater

than any (in the usual sense) for the customers in London.

5. Write the above query using MAX.

(See Appendix A for answers.)

14

Using the UNION Clause

1 70 UXDERS TAXDIXG SQL

CH. 14

IX THE PRECEDIXG FEW CHAPTERS. WE DISCUSSED
the various ways queries can be placed inside one another. There

is another way of combining multiple queries—that is. by form-

ing a union of them. In this chapter, you will learn about the

UXIOX clause in SQL. Unions differ from subqueries in that

neither of the two (or more) queries controls another. Rather, the

queries are all executed independently, but their output is

merged.

UNITING
MULTIPLE QUERIES AS ONE

You can put multiple queries together and combine their out-

put using the UXTOX clause. The UXTOX clause merges the

output of two or more SQL queries into a single set of rows and

columns. To have all salespeople and customers located in Lon-

don output as a single body, for example, you could enter

SELECT snum, sname
FROM Salespeople

WHERE city = 'London'

UNION

SELECT cnum, cname
FROM Customers
WHERE city = 'London';

to get the output shown in Figure 14.1.

As you can see. the columns selected by the two commands
are output as though they were one. The column headings are

omitted because no columns produced by a union are directly

extracted from a single table. Therefore, these are all output

columns and have no names (refer to Chapter 7 for a discussion

of output columns).

Also notice that only the final query ends with a semicolon.

The absence of the semicolon is what makes SQL cognizant that

there is another query coming.

USING THE UNION CLA USE 1 71

SQL Execution Log=
SELECT snum, sname
FROM Salespeople
WHERE city = 'London'
UNION
SELECT cnum, cname
FROM Customers
WHERE city = 'London';

1001 Peel
1004 Motika
2001 Hoffman
2006 Clemens

Browse : tl«--» PgDn PgUi

Figure 14. 1: Forming a union of two queries

WHEN CAN YOUMAKE A
UNIONBETWEEN QUERIES?

In order for two (or more) queries to undergo a union, their

output columns must be union compatible. This means that the que-

ries must each specify the same number of columns and in such

an order that the first, second, third, and so on, of each is of a

compatible type with the first, second, third, and so on, of all the

others. The meaning of compatibility of types varies. ANSI
defines it very tightly, so that numeric fields must be of the exact

same numeric type and size, although a few of the names ANSI
uses for these types are synonyms. (Refer to Appendix B for

details on the ANSI numeric types.) In addition, character fields

should have the exact same number of characters (meaning the

same number allotted, not necessarily the same number used).

Happily, some SQL products are more flexible than this. Non-
ANSI types, such as DATE and BINARY, usually have to be

matched with other columns of the same nonstandard type.

Length can be a problem. Many products allows fields of vary-

ing length, but they cannot necessarily use them with UNION.
On the other hand, some products (and ANSI) require character

1 72 UNDERSTANDING SQL

CH. 14

fields to be of exactly equal length. These are matters on which

you should consult your own product's documentation.

Another limitation on compatibility is that, if NULLs are for-

bidden for any column in a union, they must also be forbidden for

all corresponding columns in other queries of the union. NULLS
are forbidden with the NOT NULL constraint, which is discussed

in Chapter 18. Also, you cannot use UNION in subqueries, nor

can you use aggregate functions in the SELECT clauses of queries

in a union. (Many products relax these restrictions.)

UNIONAND DUPLICATE ELIMINATION
UNION will automatically eliminate duplicate rows from the

output. This is something of an idiosyncracy of SQL, since sin-

gle queries must specify DISTINCT to eliminate duplicates. For

example, this query, whose ouput is shown in Figure 14.2,

SELECT snum, city

FROM Customers;

has a duplicate combination of values (1001 with London)
because we did not tell SQL to eliminate duplicates. However, if

I SELECT snum, city
FROM Customers;

=SQL Execution Log

nassM massx^m
1001 London
1003 Rome
1002 San Jose
1002 Berlin
1001 London
1004 Rome
1007 San Jose

Browse : fi«--» PgDn PgUi

Figure 14.2: A single query with duplicated output

USING THE UNION CLA USE 1 73

we use UNION to combine this query with a similar one on the

Salespeople table, the same redundant combination is elimi-

nated. Figure 14.3 shows the output of the following query.

SELECT snum. city

FROM Customers

UNION

SELECT snum, city

FROM Salespeople;

FROM Customers
UNION
SELECT snum, city
FROM Salespeople;

=SQL Execution Log=

Browse : TA«--» PgDn PgUi

Figure 14.3: A union eliminates duplicate output

You can get around this (in some SQL products) by specifying

UNION ALL in place of UNION, like this:

SELECT snum, city

FROM Customers

UNION ALL

SELECT snum, city

FROM Salespeople;

1 74 UNDERSTANDING SQL

CH. 14

USING STRINGSAND
EXPRESSIONS WITH UNION

Sometimes, you can insert constants and expressions in the

SELECT clauses used with UNION. This does not follow the

ANSI specifications strictly, but it is a useful and not uncom-
monly used feature. The constants and expressions you use,

however, must meet the standards of compatibility we have out-

lined. This feature is useful, for example, to provide comments
indicating which query produced a given row.

Suppose you have to make a report of which salespeople pro-

duce the largest and smallest orders on each date. We could unite

the two queries, inserting text to distinguish the two cases.

SELECT a.snum, sname, onum, 'Highest on', odate

FROM Salespeople a, Orders b

WHERE a.snum = b.snum
AND b.amt =

(SELECT MAX (amt)

FROM Orders c

WHERE c.odate = b.odate)

UNION

SELECT a.snum, sname, onum, 'Lowest on', odate

FROM Salespeople a, Orders b

WHERE a.snum = b.snum
AND b.amt =

(SELECT MIN (amt)

FROM Orders c

WHERE c.odate = b.odate);

The output from this command is shown in Figure 14.4.

We had to add an extra space to the 'Lowest on' string to

make it match 'Highest on' for length. Note also that Peel is

selected for having both the highest and lowest (in fact the only)

order for October 5. Because the inserted strings of the two que-

ries are different, the rows are not eliminated as duplicates.

USING THE UNION CLA USE 1 75

i, SQL Execution Log —--— - - — ****
AND b.amt =

(SELECT min (amt)
FROM orders c
WHERE c.odate = b.odate);

1001 Peel 3008 Highest on 10/05/1990
1001 Peel 3008 Lowest on 10/05/1990
1001 Peel 3011 Highest on 10/06/1990
1002 Serres 3005 Highest on 10/03/1990
1002 Serres 3007 Lowest on 10/04/1990
1002 Serres 3010 Lowest on 10/06/1990
1003 Axelrod 3009 Highest on 10/04/1990
1007 Rifkin 3001 Lowest on 10/03/1990

n PgUp — >\ |«

Figure 14.4: Selecting highest and lowest orders, identified by strings

USING UNION WITH ORDER BY
Up until now, we have not been assuming that the data from

the multiple queries would be output in any particular order. We
have simply been showing the output first from one query and
then from the other. Of course, you could not rely on the output

coming in this order automatically. We just did it that way to

make the examples easier to follow. You can, however, use the

ORDER BY clause to order the output from a union, just as you

do the output from individual queries. Let's revise our last

example to order the names by order number. This will make
discrepancies, such as Peel's in the last command, more obvious,

as you can see from the output shown in Figure 14.5.

SELECT a.snum, sname, onum, 'Highest on', odate
FROM Salespeople a, Orders b

WHERE a.snum = b.snum
AND b.amt =

(SELECT MAX (amt)

FROM Orders c

WHERE c.odate = b.odate)

1 76 UNDERSTANDING SQL

CH. 14

1 (SELECT min (amt)
=SOL Execution Log ~~

FROM orders c
WHERE c.odate = b odate)
ORDER BY 3;

1007 Rifkin 3001 Lowest on 10/03/1990
1002 Serres 3005 Highest on 10/03/1990
1002 Serres 3007 Lowest on 10/04/1990
1001 Peel - 3008 Highest on 10/05/1990
1001 Peel 3008 Lowest on 10/05/1990
1003 Axelroc I 3009 Highest on 10/04/1990
1002 Serres 3010 Lowest on 10/06/1990
1001 Peel 3011 Highest on 10/06/1990

Browse : Ti<--> PgDn PgUp — <i—

Figure 14.5: Forming a union using ORDER BY

UNION

SELECT a.snum, sname, onum, 'Lowest

FROM Salespeople a, Orders b

WHEREa.snum = b.snum
AND b.amt =

(SELECT MIN (amt)

FROM Orders c

WHERE c.odate = b.odate)

on', odate

ORDER BY 3;

Since ascending is the default for ORDER BY, we did not

have to specify it. We can order our output by several fields

within one another and specify ASC or DESC independently for

each, just as we do for single queries. Notice that the number 3

in the ORDER BY clause indicates which column in the

SELECT clause to order. Because the columns of a union are

output columns, they have no names and, therefore, must be

referred to by number. This number indicates their placement

among the other output columns. (Refer to Chapter 7 for a dis-

cussion of output columns.)

USING THE UNION CLA USE 1 77

THE OUTERJOIN
An operation that is frequently useful is a union of two queries

in which the second selects the rows excluded by the first. Most

often, you will do this so as not to exclude rows that failed to sat-

isfy the predicate when joining tables. This is called an outerjoin.

Suppose some of your customers had not yet been assigned to

salespeople. You might want to see the names and cities of all

your customers, with the names of their salespeople, without

leaving out those who have not yet been assigned. You can

achieve this by forming a union of two queries, one of which per-

forms the join, while the other selects customers with NULL
snum values. The latter could insert blanks in the field corres-

ponding to the sname field in the first query.

As you have seen, you can insert text strings in your output to

identify the query that produced a given row. Using this tech-

nique in an outer join enables you to use predicates to classify,

rather than exclude, output.

We have used the example of finding salespeople with cus-

tomers located in their cities in this book before. Instead of just

selecting only these rows, however, perhaps you want your out-

put to list all of the salespeople, and indicate those who do not

have customers in their cities as well as those who do. The fol-

lowing query, whose output is shown in Figure 14.6, will accom-

plish this:

SELECT Salespeople.snum, sname, cname, comm
FROM Salespeople, Customers
WHERE Salespeople. city = Customers. city.

UNION

SELECT snum, sname, 'NO MATCH ', comm
FROM Salespeople

WHERE NOT city = ANY
(SELECT city

FROM Customers)

ORDER BY 2 DESC;

1 78 UNDERSTANDING SQL

CH. 14

=SQL Execution Log=
FROM Salespeople
WHERE NOT city = ANY
(SELECT city
FROM Customers)
ORDER BY 2 DESC:

1002 Serres Cisneros 0. 1300
1002 Serres Liu 0. 1300
1007 Rifkin NO MATCH 0. 1500
1001 Peel Clemens 0. 1200
1001 Peel Hoffman 0. 1200
1004 Motika Clemens 0. 1 100
1004 Motika Hoffman 0. 1 100
1003 Axelrod NO MATCH 0. 1000

Figure 14.6: An outer join

The string 'NO MATCH' was padded with blanks, so that it

would match the cname field for length (this is not necessary on

all implementations of SQL). The second query selects which-

ever rows the first omits.

You can also add a comment or expression to your query as an

extra field. If you do this, you will have to add some compatible

comment or expression, at the same point among the selected

fields, to every query in the union operation. Union compatibil-

ity prevents you from adding an extra field to one of the queries

and not the other. Here is a query that appends strings to the

selected fields, indicating whether or not a given salesperson was

matched to a customer in his city:

SELECT a.snum, sname, a.city, 'MATCHED '

FROM Salespeople a, Customers b

WHERE a.city = b.city

UNION

SELECT snum, sname, city, 'NO MATCH
FROM Salespeople

USING THE UNION CLA USE 1 79

WHERE NOT city = ANY
(SELECT city

FROM Customers)

ORDER BY 2 DESC;

Figure 14.7 shows this query's output.

SQL Execution Log=
WHERE a. city = b.city
UNION
SELECT snum, sname, city, 'NO MATCH'
FROM Salespeople
WHERE NOT city = ANY
(SELECT city
FROM Customers)
ORDER BY 2 DESC;

1002 Serres
1007 Rifkin
1001 Peel
1004- Motika
1003 Axelrod

San Jose
Barcelona
London
London
New York

TA<--» PgDn PgUp

Figure 14. 7: An outer join with a comment field

This is not a full outer join, by the way, because it includes

only the unmatched fields from one of the joined tables. A com-

plete outer join would include all customers who do and do not

have salespeople in their cities. This is considerably more com-

plex, however, as you can see here (the output of the following

query is shown in Figure 14.8):

(SELECT snum, city, SALESPERSON
FROM Salespeople

WHERE city = ANY
(SELECT city

FROM Customers)

MATCHED'

UNION

180 UNDERSTANDING SQL

CH. 14

SELECT snum, city, 'SALESPERSON - NO MATCH'
FROM Salespeople

WHERE NOT city = ANY
(SELECT city

FROM Customers))

UNION

(SELECT cnum, city, 'CUSTOMER - MATCHED'
FROM Customers
WHERE city = ANY

(SELECT city

FROM Salespeople)

UNION

SELECT cnum, city, CUSTOMER - NO MATCH'
FROM Customers
WHERE NOT city = ANY

(SELECT city

FROM Salespeople))

ORDER BY 2 DESC;

I, SQL
FROM Salespeople)

txecution Log=

ORDER BY 2 DESC;

2003 San Jose CUSTOMER MATCHED
2008 San Jose CUSTOMER MATCHED
2002 Rome CUSTOMER NO MATCH
2007 Rome CUSTOMER NO MATCH
1003 New York SALESPERSON - MATCHED
1003 New York SALESPERSON - NO MATCH
2001 London CUSTOMER MATCHED
2006 London CUSTOMER MATCHED
2004 Berlin CUSTOMER NO MATCH
1007 Barcelona SALESPERSON - MATCHED
1007 Barcelona SALESPERSON - NO MATCH

11 —Browse : T*«-» PqDn PqUp —

Figure 14.8: A complete outer join

USING THE UNION CLA USE 181

(Of course, this formulation using ANY is equivalent to the join

in the previous example.)

The abbreviated outer join that we started with is probably

more frequently useful than this last one. This example does,

however, bring up another point. Whenever you perform a

union on more than two queries, you can use parentheses to

determine the order of evaluation. In other words, instead of

simply saying

query X UNION query Y UNION query Z;

you should specify either

(query X UNION query Y) UNION query Z;

or

query X UNION (query Y UNION query Z);

This is because UNION and UNION ALL can be combined
to eliminate some duplicates without eliminating others. The
statement

(query X UNION ALL query Y) UNION query Z;

will not necessarily generate the same results as

query X UNION ALL (query Y UNION query Z);

if there are duplicate rows to eliminate.

SUMMARY
Now you know how to use the UNION clause, which enables

you to combine any number of queries into a single body of out-

put. If you have a number of similar tables— tables containing

similar information but owned by different users and covering

different specifics, perhaps— a union can provide an easy way to

blend and order the output. Likewise, outer joins give you a new
way to use conditions, not to exclude output, but to label it or to

182 UNDERSTANDING SQL

CH. 14

treat the parts of it that meet the condition differently from those

that do not.

This concludes our chapters on queries. You now have a pretty

thorough mastery of data retrieval in SQL. The next step is to

deal with how the values are entered into the tables and how the

tables are created in the first place. As you will see, queries are

sometimes used within other types of commands, as well as by

themselves.

USING THE UNION CLA USE 183

Putting SQL to Work

1. Create a union of two queries that shows the names, cit-

ies, and ratings of all customers. Those with a rating of

200 or greater will also have the words "High Rating",

while the others will have the words "Low Rating".

2. Write a command that produces the name and number of

each salesperson and each customer with more than one

current order. Put the results in alphabetical order.

3. Form a union of three queries. Have the first select the

snums of all salespeople in San Jose; the second, the cnums
of all customers in San Jose; and the third the onums of all

orders on October 3. Retain duplicates between the last two

queries but eliminate any redundancies between either of

them and the first. (Note: in the sample tables as given,

there would be no such redundancy. This is beside the

point.)

(See Appendix A for answers.)

15

*'«

Entering, Deleting, and

Changing Field Values

186 UNDERSTANDING SQL

CH. 15

THIS CHAPTER INTRODUCES THE COMMANDS THAT
control which values are present in a table at any given time.

When you have finished this chapter, you will be able to place

rows into a table, remove them, and change the individual values

present in each row. The use of queries to generate entire groups

of rows for insertion will be explored, as will the use of predicates

to control the changing of values and the deletion of rows. The
material in this chapter constitutes the bulk of the knowledge you

need to create and manipulate the information in a database.

Some more advanced ways of designing predicates will be dis-

cussed in the next chapter.

DML UPDATE COMMANDS
Values are placed in and removed from fields with three Data

Manipulation Language (DML) commands: INSERT, UPDATE,
and DELETE. Confusingly enough, these are all referred to in

SQL as update commands in a generic sense. We shall simply use

the lowercase "update" to indicate these commands generically

and the uppercase for the keyword UPDATE, as for all keywords.

ENTERING VALUES
All rows in SQL are entered using the update command

INSERT. In its simplest form, INSERT uses the following syntax:

INSERT INTO Ktable name>
VALUES (<value>, <value> . . .);

So, for example, to enter a row into the Salespeople table, you

could use the following statement:

INSERT INTO Salespeople

VALUES (1001, 'Peel', London', .12);

DML commands produce no output, but your program should

give you some acknowledgment that data has been affected. The

ENTERING, DELETING, AND CHANGING FIELD VALUES 187

table name (in this case, Salespeople) must have been defined pre-

viously in a CREATE TABLE command (see Chapter 17), and

each value enumerated in the values clause must match the data

type of the column into which it is being inserted. In ANSI, these

values may not include expressions, which means that 3 is accept-

able, but 2 + 1 is not. The values, of course, are entered into the

table in the order named, so that the first value named goes into

column 1 automatically, the second into column 2, on so on.

INSERTING NULLS
If you have to enter a NULL, you do it just as you would a

value. Suppose you did not yet have a city field for Ms. Peel.

You could insert her row with a NULL in that field as follows:

INSERT INTO Salespeople

VALUES (1001, 'Peel', NULL, .12);

Since NULL is a special marker, not a character value, it is

not enclosed in single quotes.

NAMING COLUMNS FOR INSERT
You can also specify the columns you wish to insert a value

into by name. This allows you to insert into them in any order.

Suppose you are taking values for the customers table from a

printed report, which puts them in the order: city, cname, and

cnum. For simplicity's sake, you want to enter the values in that

same order:

INSERT INTO Customers (city, cname, cnum)
VALUES (London', Hoffman', 2001);

You will notice that the rating and snum columns have been

omitted. This means that they will be set to default values for

this row automatically. The default will be either NULL or an

explicitly defined default. If a constraint prevents a NULL from

being accepted in a given column, and that column has no

explicit default, that column must be provided with a value for

188 LSDERSTASDISG SQL

CH. 15

any INSERT command against the table (refer to Chapter 18 for

information on constraints against NULLS and on explicit

defaults).

INSERTING THE RESULTS OF A QUERY
You can also use the INSERT command to take or derive val-

ues from one table and place them in another by using it with a

query. To do this, you simply replace the VALUES clause with

an appropriate query as in this example:

INSERT INTO Londonstaff

SELECT
FROM Salespeople

WHERE city = 'London';

This takes all values produced by the query—that is, all rows

from the Salespeople table with the city values = London'—and

places them in the table called Londonstaff. In order for this to

work, the Londonstaff table must fulfill the following conditions:

• It must have already been created with a CREATE
TABLE command.

• It must have four columns that match those of the Sales-

people table in terms of data type; that is, the first, sec-

ond, and so on. columns of each table must be of the

same type (they need not have the same name).

The general rule is that the columns of the table being inserted into

must match the columns output by the query, in this case, the entire

Salespeople table.

Londonstaff is now an independent table that happens to have

some of the same values as Salespeople. If the values in Salespeo-

ple change, it will not be reflected in Londonstaff (although you

could create this effect by defining a view, as discussed in Chap-

ter 20). Because either the query or the INSERT command can

specify columns by name, you can. if you wish, move only

selected columns as well as reorder the columns that vou select.

ENTERING, DELETING, AND CHANGING FIELD VALUES 189

Suppose, for example, that you decide to build a new table

called Daytotals, which would simply keep track of the total dol-

lar amount ordered each day. You are going to enter this data

independently from the Orders table, but you first have to fill

Daytotals with the information already present in Orders.

Assuming that the Orders table covers the past fiscal year, rather

than the few days in our example, you can see the advantages of

using the following INSERT statement to calculate and enter the

values:

INSERT INTO Daytotals (date, total)

SELECT odate, SUM (amt)

FROM Orders

GROUP BY odate;

Note that, as suggested earlier, the column names of the

Orders and Daytotals tables do not have to match. Also, if date

and total are the only columns in the table, and they are in the

given order, their names could be omitted.

REMOVING ROWS FROM TABLES
You can remove rows from a table with the update command

DELETE. This can remove only entire rows, not individual field

values, so no field argument is needed or accepted. To remove

all the contents of Salespeople, you would enter the following

statement:

DELETE FROM Salespeople;

The table would now be empty and could be destroyed with a

DROP TABLE command (this is explained in Chapter 17).

Usually, you want to delete just some specific rows from a

table. To determine which rows are deleted, you use a predicate,

just as you do for queries. For instance, to remove salesperson

Axelrod from the table, you would enter

DELETE FROM Salespeople

WHERE snum = 1003;

190 UNDERSTANDING SQL

CH. 15

We used snum instead of sname because it is the best policy to

use primary keys when you want an action to affect one and only

one row. That is what primary keys are for.

Of course, you can also use DELETE with a predicate that

selects a group of rows, as in this example:

DELETE FROM Salespeople

WHERE city = 'London';

CHANGING FIELD VALUES
Now that you can enter and delete rows from a table, you

need to learn how to change some or all of the values in an exist-

ing row. This is done with the UPDATE command. This com-

mand has an UPDATE clause that names the table affected and

a SET clause that indicates the change(s) to be made to certain

column(s). For example, to change all customers' ratings to 200,

you would enter

UPDATE Customers
SET rating = 200;

UPDATING ONLY CERTAINROWS
Of course, you do not always want to set all rows of a table to

a single value, so UPDATE, like DELETE, can take a predicate.

Here's how to perform the same change on all customers of

salesperson Peel (snum 1001):

UPDATE Customers
SET rating = 200

WHERE snum = 1001;

UPDATE WITHMULTIPLE COLUMNS
You need not, however, restrict yourself to updating a single

column per UPDATE command. The SET clause can accept

.

ENTERING, DELETING, AND CHANGING FIELD VALUES 191

any number of column assignments, separated by commas. All

of the said assignments will still be made to the table a single row

at a time. Suppose Motika had resigned, and we wanted to reas-

sign her number to a new salesperson:

UPDATE Salespeople

SETsname = 'Gibson', city = 'Boston', comm = .10

WHERE snum = 1004;

This would give Gibson all of Motika's current customers and

orders, because these are linked to Motika by snum.

You cannot, however, update multiple tables in a single com-

mand, partly because you cannot use table prefixes with the

columns being changed by the SET clause. In other words, you

cannot say "SET Salespeople. sname = 'Gibson' ' in an UP-

DATE command, you can say only "SET sname = 'Gibson'."

USING EXPRESSIONS IN UPDATE
It is possible to use scalar expressions in the SET clause of the

UPDATE command, however, including expressions that employ

the field being modified. This is in contrast to the VALUES clause

of the INSERT command, which cannot use expressions; this is

quite a useful feature. Suppose you decide to double the commis-

sion of all your salespeople. You could use the following expression:

UPDATE Salespeople

SET comm = comm * 2;

Whenever you refer to an existing column value in the SET
clause, the value produced will be that of the current row before

any changes are made by UPDATE. Naturally, you can combine
features to, say, double the commission of all salespeople in Lon-
don with this statement:

UPDATE Salespeople

SET comm = comm * 2

WHERE city = London';

192 UNDERSTANDING SQL

CH. 15

UPDATING TO NULL VALUES

The SET clause is not a predicate. It can enter NULLs just as

it does values without using any special syntax (such as IS

NULL). So, if you wanted to set all ratings for customers in

London to NULL, you would enter the following statement:

UPDATE customers
SET rating = NULL
WHERE city = 'London';

This will null all the ratings of customers in London.

SUMMARY
You have now mastered the essentials of manipulating the contents

of your database with three simple commands: INSERT is used to

place rows in the database; DELETE, to remove them; and
UPDATE, to change the values in rows previously inserted. You
have learned to use predicates with UPDATE and DELETE to

determine which rows will be affected by the command. Of course,

predicates as such are not meaningful for INSERT, because the row

in question does not exist in the table until after the INSERT com-

mand is executed. You can, however, use queries with INSERT to

put entire sets of rows into a table at once. And you can do this with

the columns in any order. You have learned that default values can be

placed in columns if you do not explicitly state a value. You have also

seen the use of the standard default value, which is NULL. In addi-

tion, you understand that UPDATE can use value expressions,

whereas INSERT cannot.

The next chapter will extend your mastery of these commands
by showing you how to use subqueries with them. These sub-

queries are similar to those with which you are already familiar,

but there are some special issues and limitations when sub-

queries are used in DML commands, which we will discuss in

Chapter 16.

ENTERING, DELETING, AND CHANGING FIELD VALUES 193

Putting SQL to Work

1. Write a command that puts the following values, in their

given order, into the Salespeople table: city—San Jose,

name—Blanco, comm—NULL, cnum— 1100.

2. Write a command that removes all orders from customer

Clemens from the Orders table.

3. Write a command that increases the rating of all cus-

tomers in Rome by 100.

4. Salesperson Serres has left the company. Assign her cus-

tomers to Motika.

(See Appendix A for answers.)

16
I

Using Subq-ueries with

Update Commands

1K

196 UNDERSTANDING SQL

CH. 16

IN THIS CHAPTER, YOU WILL LEARN HOW TO USE
subqueries in update commands. You will find that it is similar to

something you already understand—using subqueries in queries.

Knowing how subqueries are used in SELECT commands
makes their usage in update commands smooth sailing, although

there are differences.

Subqueries, of course, are complete SELECT commands, not

predicates, so this is not the same as using simple predicates with

update commands, as you have already done with UPDATE and

DELETE. You have also used simple queries to produce values

for INSERT, but now we will expand those queries to include

subqueries.

An important principle to keep in mind with update commands
is that you cannot, in the FROM clause of any subquery, refer-

ence the table being modified by the main command. This applies

to all three update commands. Although there are many situa-

tions in which it would be useful to query the table you are modi-

fying while you are modifying it, this is too ambiguous and com-

plicated an operation to be practical, or at least that is what the

designers of SQL thought. This does not (necessarily) apply to

references to the current row of the table affected by the com-

mand, that is, correlated subqueries. We shall shortly elaborate on

this point.

USING SUBQUERIES WITH INSERT
INSERT is our simplest case. You have already seen how to

insert the results of a query into a table. You may use subqueries

within any query that generates values for an INSERT com-

mand in the same way that you do for other queries—within the

predicate or the HAVING clause.

Suppose we have a table called SJpeople with column defini-

tions that match those of our Salespeople table. We have already

seen how to fill a table like this with all customers in a given loca-

tion, such as San Jose:

INSERT INTO SJpeople

SELECT *

USING SUBQUERIES WITH UPDATE COMMANDS 197

FROM Salespeople

WHERE city = San Jose';

Now we can use a subquery to add to the SJpeople table all

salespeople who have customers in San Jose, whether the sales-

people reside there or not:

INSERT INTO SJpeople
SELECT *

FROM Salespeople

WHERE snum = ANY
(SELECT snum

FROM Customers
WHERE city = San Jose');

Both queries in this command operate exactly as they would if

they were not part of an INSERT expression. The subquery finds

all rows for customers in San Jose and builds a set of the snum
values. The outer query selects the rows from the Salespeople

table where those snums are found. In our example, the rows for

salespeople Rifkin and Serres, who are assigned the San Jose cus-

tomers Liu and Cisneros, are inserted into table SJpeople.

(NOT) INSERTING DUPLICATE ROWS
The sequence of commands in the preceding section might be

problematic. The salesperson Serres is located in San Jose, and

therefore would have been inserted by the first command. The
second command would attempt to insert him again, because he

has a customer in San Jose. If there are any constraints on

SJpeople that force values to be unique, this second insert would

fail (as it should). Duplicate rows are not a good idea. (See

Chapter 18 for details on constraints.)

It would be nice if you could check to see if a value were

already present in the table before you attempted to insert one, by

adding another subquery (using an operator such as EXISTS,
IN, OALL, and so on) to the predicate. Unfortunately, to make
this work, you would have to reference SJpeople itself in the

FROM clause of this new subquery, and, as we mentioned before,

198 UNDERSTANDING SQL

CH. 16

you cannot reference the table being affected (as a whole) in any

subquery of an update command. In the case of INSERT, this

also precludes correlated subqueries based on the table you are

inserting values into. This makes sense because, with INSERT,
you are creating a new row in the table. The "current row" does

not exist until after the INSERT is finished processing it.

USING SUBQUERIES
BUILT ON OUTER QUERY TABLES

The prohibition against referring to the table being modified

by an INSERT command does not prevent you from using sub-

queries that refer to the table(s) used in the FROM clause of an

outer SELECT command. The table from which you are select-

ing to produce values for an INSERT is not being affected by

the command; you can reference it in any of the same ways you

normally would if it were in a stand-alone query.

Suppose we have a table called Samecity in which we store

salespeople with customers in their home cities (our old standby).

We could fill the table by using a correlated subquery:

INSERT INTO Samecity

SELECT *

FROM Salespeople outer

WHERE city IN

(SELECT city

FROM Customers inner

WHERE inner.snum = outer.snum);

It is the Samecity table that must not be used in the outer or

inner queries of the INSERT, not the Salespeople table. For

another example, suppose you have a bonus for the salesperson

who has the largest order each day. You keep track of these in a

table called Bonus, which contains the snums of the salespeople

as well as the dates and amounts of the maximum orders. You

could fill this table with the information currently in the Orders

table using this command:

INSERT INTO Bonus
SELECT snum, odate, amt

USING SUBQUERIES WITH UPDATE COMMANDS 199

FROM Orders a

WHERE amt =

(SELECT MAX (amt)

FROM Orders b

WHERE a.odate = b.odate);

Even though this command has a subquery that is based on the

same table as the outer query, it doesn't reference the Bonus table,

which the command will affect. It is, therefore, perfectly accept-

able. The logic of the query, of course, is to traverse the Orders

table and, for each row, find the maximum order amount on that

given date. If that amount is the same as the current row, the cur-

rent row is the largest order for that date, and its data is inserted

into the Bonus table.

USING SUBQUERIES WITH DELETE
You can also use subqueries in the predicate of a DELETE

command. This enables you to define some fairly sophisticated

criteria for determining whether a row is to be deleted, which is

important because you do not want to delete rows inadvertently.

For example, if we have just closed our London office, we could

use the following query to remove all customers assigned to sales-

people in London:

DELETE
FROM Customers
WHERE snum = ANY

(SELECT snum
FROM Salespeople

WHERE city = London');

This would remove from the Customers table the rows of Hoffman
and Clemens (both assigned to Peel), and of Periera (assigned to

Motika). Naturally, you would want to make sure you performed

this operation before you removed or changed the rows of Peel and

Motika.

200 UNDERSTANDING SQL

CH. 16

This brings up an important point. Often, when we make a

change in a database that will necessitate other changes, our first

inclination is to make the basic change first, and then to trace

down the peripheral changes. This example shows why it is often

more efficient to work in the reverse manner, making the second-

ary changes first. If, for example, you had begun by changing the

city values of your salespeople to wherever they had been reas-

signed, you would have made the tracing of all their customers

more complicated. Since realistic databases tend to be vastly

larger than our abbreviated sample tables, this might have been a

serious problem. SQL can provide some help in this area with the

mechanism of referential integrity (discussed in Chapter 19), but

this is neither always available nor always applicable.

Although you cannot reference the table from which you are

deleting in the FROM clause of a subquery, you can, in the predi-

cate, reference the current candidate row of that table—that is,

the row currently being examined in the main predicate. In other

words, you can use correlated subqueries. These differ from the

correlated subqueries that you can use with INSERT, in that they

are actually based on candidate rows from the table being affected

by the command, rather than on a query on some other table.

DELETE FROM Salespeople

WHERE EXISTS
(SELECT *

FROM Customers
WHERE rating = 100

AND Salespeople.snum = Customers.snum);

Notice that the AND portion of the inner query's predicate refers

to the Salespeople table. Naturally, this means that the entire sub-

query will be executed separately for each row of the Salespeople

table, just as you have seen with other correlated subqueries. This

command deletes all salespersons who have at least one customer

with a rating of 100 from the Salespeople table. Naturally, there are

other ways to achieve this. Here is one:

DELETE FROM Salespeople

WHERE 100 IN

(SELECT rating

USING SUBQUERIES WITH UPDATE COMMANDS 201

FROM Customers
WHERE Salespeople.snum =

Customers.snum);

This finds all the ratings for each salesperson's customers, and

deletes the salesperson if 100 is among them.

Ordinary correlated subqueries—subqueries correlated with a

table referenced in an outer query (rather than the DELETE
clause itself)—are also perfectly usable. You could find the lowest

order for each day and delete the salesperson who produced it

with the following command:

DELETE FROM Salespeople

WHERE snum IN

(SELECT snum
FROM Orders a

WHERE amt
(SELECT MIN (amt)

FROM Orders b

WHERE a.odate = b.odate));

The subquery in the DELETE predicate itself takes a corre-

lated subquery. This inner query finds the minimum order

amount for the date of each row of the outer query. If this is the

same as the amount of the current row, the predicate of the outer

query is true, which means that the current row is the smallest

order on its date. The snum of the salesperson responsible for

this order is extracted and fed to the main predicate of the

DELETE command itself, which then deletes all rows with this

snum from the Salespeople table (since snum is the primary key

of the Salespeople table, of course, there should be only one row
to delete per snum output by the subquery. If there were more,

however, all would be deleted.) The snum's that would be

deleted are 1007, the minimum for October 3; 1002, the mini-

mum for October 4; 1001, the minimum and only order for

October 5 (this command seems rather harsh, especially since it

deletes Peel for producing the only order on Oct. 5, but it does

illustrate the point).

202 UNDERSTANDING SQL

CH. 16

If you wanted to save Peel, of course, you could add another

subquery, as this example does:

DELETE FROM Salespeople

WHERE snum IN

(SELECT snum
FROM Orders a

WHERE amt =

(SELECT MIN (amt)

FROM Orders b

WHERE a.odate = b.odate)

AND1 <
(SELECT COUNT (onum)
FROM Orders b

WHERE a.odate = b.odate));

Now dates on which only one order was placed would produce a

count of 1 in the second correlated subquery. This would make
the predicate of the outer query false, and these snum's would

therefore not be fed to the main predicate.

USING SUBQUERIES WITH UPDATE
UPDATE uses subqueries in the same way as DELETE—within

its optional predicate. You can use correlated subqueries of either of

the forms usable with DELETE—correlated with either the table

being modified or with a table referenced in an outer query. For

example, with a correlated subquery on the table being updated, you

can raise the commission of all salespeople who have been assigned at

least two customers:

UPDATE Salespeople

SET comm = comm + .01

WHERE 2 < =

(SELECT COUNT (cnum)

FROM Customers
WHERE Customers.snum =

Salespeople.snum);

USING SUBQUERIES WITH UPDATE COMMANDS 203

Now salespeople Peel and Serres, having multiple customers,

will have their commissions raised.

Here is a variation on the last example from the preceding

DELETE section. It reduces the commission of the salespeople

who produced the smallest orders, rather than dropping them
from the table:

UPDATE Salespeople

SET comm = comm - .01

WHERE snum IN

(SELECT snum
FROM Orders a

WHERE amt =

(SELECT MIN (amt)

FROM Orders b

WHERE a.odate = b.odate));

DEALING WITH THE
LIMITATIONS OFDML COMMAND SUBQUERIES
The inability to refer to the table affected in any subquery of an

update command eliminates whole categories of possible changes.

For example, you cannot easily perform such an operation as

deleting all customers with ratings below average. Probably the

best you could do for this would be to perform the query first,

obtaining the average, and then delete all rows with ratings below

this number:

Step 1.

SELECT AVG (rating)

FROM Customers;

The output is 200.

Step 2.

DELETE
FROM Customers
WHERE rating < 200;

204 UNDERSTANDING SQL

CH. 16

SUMMARY
Now you have mastered the three commands that control the

entire content of your database. There are only a few general

matters regarding entry and deletion of table values left for us to

explain, such as when these commands can be performed by a

given user on a given table and when the changes made become
permanent.

To summarize, you use the INSERT command to add rows to a

table. You can either name the values for these rows in a VALUES
clause (which means only one row will be added), or produce the

values with a query (which means any number of rows can be

added by a single command). If a query is used, it may not refer to

the table into which you are inserting in any way, neither in a

FROM clause, nor with an outer reference (as used in correlated

subqueries). This applies as well to any subqueries within this

query. The query, however, retains the liberty to use correlated sub-

queries or subqueries that name tables in their FROM clauses that

have already been named in the FROM clauses of outer queries

(this, of course, is the case for queries generally).

DELETE and UPDATE are used to remove rows from a table

and to change the values in it, respectively. Both of these apply to

all rows of a table, unless a predicate is used to determine which

rows are to be deleted or updated. This predicate may contain

subqueries, and these may be correlated with the table being

deleted from or updated through the use of an outer reference.

These subqueries, however, may not refer to the table being

modified in any FROM clause.

It may seem odd that we have been covering SQL material in

what is not the most obvious logical order. At first, we queried

ready-made tables that were already filled with data. Then we
showed you how you would actually put those values into the

tables in the first place. But, as you can see, a thorough knowl-

edge of queries is invaluable here. Now that we have shown you

how to fill tables that have already been created (defined) with

values, we shall, starting in the next chapter, explore where these

tables come from in the first place.

USING SUBQUERIES WITH UPDATE COMMANDS 205

Putting SQL to Work

1. Assume there is a table called Multicust, with all of the

same column definitions as Salespeople. Write a com-

mand that inserts all salespeople with more than one cus-

tomer into this table.

2. Write a command that deletes all customers with no cur-

rent orders.

3. Write a command that increases by twenty percent the

commissions of all salespeople with total current orders

above $3,000.

(See Appendix A for answers.)

I

17

Creating Tables

208 UNDERSTANDING SQL

CH. 17

UP UNTIL NOW, WE HAVE BEEN QUERYING TABLES
for data and performing update commands on them, assuming

that the tables had already been created for us by someone else.

Indeed, this is frequently the situation in the real world—a few

people create tables that many people use. Our purpose has been

to cover the information most widely needed first, progressing to

more specialized needs as we go on.

In this chapter, we will discuss the creating, altering, and

dropping of tables. This refers to the definitions of the tables

themselves, not to the data stored in them. You may or may not

need to perform these operations yourself, but a conceptual

understanding of them will increase your comprehension of SQL
and of the nature of the tables that you use. This puts us in the

area of SQL called DDL (Data Definition Language), where

SQL data objects are created.

This chapter will also discuss another kind of SQL data object:

the index. Indexes are used to make retrieval more efficient and,

sometimes, to force values to be different from one another.

They mostly operate invisibly, but if you try to put values in a

table and they are rejected because they are not unique, it means
that another row has the same value for that field, and that the

field has a unique index or a constraint that enforces uniqueness.

The former is discussed here, the latter in Chapter 18.

THE CREATE TABLE COMMAND
Tables are defined with the CREATE TABLE command. This

command creates an empty table— a table with no rows. Values

are entered with the DML command INSERT (See Chapter

15). The CREATE TABLE command basically defines a table

name as describing a set of named columns in a specified order.

It also defines the data types and sizes of the columns. Each table

must have at least one column. Here is the syntax of the CRE-
ATE TABLE command:

CREATE TABLE <table-name>
(<column name> <data type>[(<size>)],

<column name > <data type >[(< size >)],...);

CREATING TABLES 209

As mentioned in Chapter 2, data types vary considerably

between products. For the sake of compatibility with the stan-

dard, however, they should all at least support the standard

ANSI types. These are enumerated in Appendix B.

Since blank spaces are used to separate parts of commands in

SQL, they may not be part of a table's name (or that of any

other object, such as an index). An underscore (_) is most com-

monly used to separate words in table names.

The meaning of the size argument varies with the data type. If

you omit it, your system will assign a value automatically. For

numeric values, this is usually the best course, because it will

make all your fields of a given type the same size and release you

from concern about union compatibility (see Chapter 14).

Besides, the use of the size argument with some of the numeric

types is not a simple matter. If you need to store large numbers,

however, you will naturally want to ensure that the fields are

large enough to contain them.

The one data type for which you should generally assign a size is

CHAR. Here the size argument is an integer that specifies the

maximum number of characters that the field can hold. The field's

actual number of characters can range from zero (if the field is

NULL) to this number. The default is 1 , which means the field can

contain only a single letter. This is not usually what you want.

Tables are owned by the user who creates them, and the names of

all tables owned by a given user must be different from one another,

as must the names of all the columns within a given table. Separate

tables may use the same column names, even if they are owned by

the same user. An example of this is the city column in both the Sales-

people and Customers tables. Users other than the owner of a table

will refer to that table by preceding its name with that of its owner fol-

lowed by a dot; for example, Smith's table Employees would become

Smith. Employees when referred to by another user. (We are assum-

ing that Smith is the authorization ID of said user. Your authoriza-

tion ID is your name as far as SQL is concerned. This issue is

discussed in Chapter 2, and will come up again in Chapter 22).

210 UNDERSTANDING SQL

CH. 17

This command would create the Salespeople table:

CREATE TABLE Salespeople

(snum integer,

sname char(10).

city char(10),

comm decimal);

The order of the columns in the table is determined by the

order in which they are specified. The column definitions do not

have to be on separate lines (that is only done for readability) but

they do have to be separated by commas.

INDEXES
An index is an ordered (alphabetic or numeric) list of the con-

tents of a column or group of columns in a table. Tables can have

a large number of rows, and, since the rows are in no particular

order, searching them for a particular value can be quite time

consuming. Indexes address this problem and, at the same time,

provide a way of forcing all values in a group of one or more
rows to be different from one another. In Chapter 18, we will

describe a more direct way to force your values to be unique.

But this method did not exist in the early days of SQL. Because

uniqueness is frequently needed, indexes were used to fulfill this

purpose.

Indexes are a feature of SQL that has come from the market-

place, rather than from ANSI. Because of this, the ANSI stan-

dard itself does not currently support indexes, but they are quite

common and useful.

When you create an index on a field, your database stores a

appropriately ordered list of all the values of that field in its

memory space. Suppose our Customers table had thousands of

entries, and you wanted to find customer number 2999. Since

the rows are not ordered, your program would normally go

through the entire table, one row at a time, and check for the

cnum value 2999. If there were an index on the cnum field, how-

ever, the program could go right to number 2999 in the index

and get information about how to find the correct row of the

CREATING TABLES 211

table. While this can greatly improve the performance of que-

ries, maintaining an index slows up DML update operations

(such as INSERT and DELETE) somewhat, and the index itself

takes up memory. Therefore, you must make a decision each

time you create a table whether or not to index it.

Indexes can be of multiple fields. If more than one field is speci-

fied for a single index, the second is ordered within the first, the

third within the second, and so on. If you had first and last names

in two different fields of a table, you might create an index that

ordered the former within the latter. This could be done regardless

of the way the columns were ordered in the table.

The syntax to create an index is usually as follows (this is not

ANSI standard, remember):

CREATE INDEX Kindex name> ON <table name> (Kcolumn
name>

[,<column name>]. .);

The table, of course, must already have been created and

must contain the column(s) named. The index name must not be

used for anything else in the database (by any user). Once cre-

ated, the index will be invisible to the user. SQL will decide

when it is appropriate to refer to it and will do so automatically.

If, for instance, the Customers table is going to be most fre-

quently referred to by salespeople inquiring about their own cli-

ents, it would be appropriate to create an index on the snum
field of the Customers table.

CREATE INDEX Clientgroup ON Customers (snum);

Now, salespeople referring to this table will be able to find

their own clients quickly.

UNIQUE INDEXES
The index in the previous example (luckily) does not enforce

uniqueness, even though, as we said, that is one purpose of an

index. A given salesperson can still have any number of cus-

tomers. However, this would not be the case if we had used the

212 UNDERSTANDING SQL

CH. 17

keyword UNIQUE before the keyword INDEX. The cnum field,

as primary key, would be a prime candidate for a unique index:

CREATE UNIQUE INDEX Custid ON Customers (cnum);

Note: this command will be rejected if there are already iden-

tical values in the cnum field. The best way to deal with indexes

is to create them immediately after the table is created and
before any values are entered. Also note that, for a unique index

of more than one field, it is the combination of values, not each

individual value, that must be unique.

The preceding example is an indirect way of forcing cnum to

function as the primary key of the Customers table. Databases

are beginning to enforce primary and other keys more directly.

We will discuss this issue further in Chapters 18 and 19.

DROPPING INDEXES
The main reason indexes are named is so that they can be

dropped. Normally users will not be aware of the existence of an

index. SQL automatically determines if it is appropriate to use

an index, and will do so if it is. If you want to eliminate an

index, however, you have to be able to name it. This is the syn-

tax used to eliminate an index:

DROP INDEX <index name>;

The destruction of the index does not affect the content of the

field(s).

ALTERING A TABLE
ONCE ITHAS BEEN CREATED
The ALTER TABLE command is not part of the ANSI stan-

dard, but it is widely available, and its form is fairly consistent,

although it capabilities vary considerably. It is used to change the

definitions of extant tables. Usually, it can add columns to a

table. Sometimes it can delete columns or change their sizes,

CREATING TABLES 213

and, in some programs, add or delete constraints (discussed in

Chapter 18). Typically the syntax to add a column to a table is

as follows:

ALTER TABLE < table name> ADD <column name>
<datatype> <size>;

The column will be added with NULL values for all rows cur-

rently in the table. The new column will be the last column of

the table. It is generally possible to add several new columns,

separated by commas, in a single command. It may be possible

to drop or alter columns. Most often, altering columns will sim-

ply be a matter of increasing their size, or adding or dropping

constraints. Your system should check to make sure that any

modifications you make do not contradict the extant data—that

is, an attempt to add a constraint to a column that already has

values in violation of that constraint should be rejected. It is best

to double check this, however. At least, refer to the documenta-

tion of your system to see if it guarantees that this will be the

case. Because of the nonstandard nature of the ALTER TABLE
command, you will have to refer to your system documentation

for specifics in any case.

ALTER TABLE is invaluable when a table needs to be rede-

fined, but you should design your database as much as possible

to avoid relying on it. Changing the structure of a table already

in use is full of hazards. Views of the table, which are secondary

tables extracting data from other tables (see Chapter 20), may no

longer function properly, and programs using embedded SQL
(Chapter 25) may run incorrectly or not at all. In addition, the

implications of the change will have to be made clear to all users

accessing the table. For these reasons, you should try to design

your tables to meet your anticipated, as well as current, needs

and use ALTER TABLE only as a last resort.

If your system doesn't support ALTER TABLE, or if you

want to avoid using it, you can simply create a new table, with

the desired change in its definition, and use an INSERT com-

mand with a SELECT * query to transfer the old data to it.

Users with access to the old table (see Chapter 22) will have to be

granted access to the new table independently.

214 UNDERSTANDING SQL

CH. 17

DROPPING A TABLE
You must own (have created) a table in order to drop it. So

that you will not accidentally destroy your data, SQL requires

you to empty a table before you eliminate it from the database.

A table with rows in it cannot be dropped. Refer to Chapter 15

for details on how to remove rows from your table. The syntax to

remove the definition of your table from the system once it is

empty is

DROP TABLE <table name>;

Once this command is given, the table name is no longer recog-

nized and no more commands can be given on that object. You
should make sure that this table is not referenced by a foreign key

in another table (foreign keys are discussed in Chapter 19), and

that it is not used in the definition of a view (Chapter 20).

This command is actually not part of the ANSI standard, but

it is generally supported (and useful). Happily, it is simpler, and
therefore more consistent across implementations, than ALTER
TABLE. ANSI itself simply does not specify a way to destroy or

invalidate table definitions.

SUMMARY
You are now fluent in the basics of data definition. You can

create, modify, and drop tables. Since only the first of these func-

tions is part of the official SQL standard, the details of the others

will vary, particularly ALTER TABLE. DROP TABLE allows

you to get rid of tables that have outlived their usefulness. It

drops only empty tables, and therefore does not destroy data.

You now know about indexes and how to create and drop

them. SQL doesn't give you much control over how it does

things, so the implementation you use pretty much determines

how quickly different commands will be performed. Indexes are

one tool that enables you to affect the performance of your com-

mands in SQL directly. We have covered indexes here to keep

them separate from constraints, with which they should not be

confused. Constraints are the subject of Chapters 18 and 19.

CREATING TABLES 215

Putting SQL to Work

1. Write a CREATE TABLE statement that would produce

our Customers table.

2. Write a command that will enable a user to pull orders

grouped by date out of the Orders table quickly.

3. If the Orders table has already been created, how can

your force the onum field to be unique (assume all cur-

rent values are unique)?

4. Create an index that would permit each salesperson to

retrieve his or her orders grouped by date quickly.

5. Let us suppose that each salesperson is to have only one

customer of a given rating, and that this is currently the

case. Enter a command that enforces it.

(See Appendix A for answers.)

18
*<&

A'*

Constraining the Values of

Your Data

;£S*

218 UNDERSTANDING SQL

CH. 18

IN CHAPTER 17, YOU LEARNED HOW TABLES ARE
created. Now we will elaborate on that point to show you how
you can place constraints on tables. Constraints are parts of a table

definition that limit the values you can enter into its columns.

Up until now in this book, the only restriction on the values that

you could enter has been that the data types and sizes of the val-

ues entered have to be compatible with those of the columns into

which the values were being placed (as defined in a CREATE
TABLE or ALTER TABLE command). Constraints give you

considerably more control than this, as you shall see.

You will also learn how to define default values in this chapter.

A default is a value that is inserted automatically into any

column of a table when a value for that column is omitted from

an INSERT command to that table. NULL is the most widely

used default, but this chapter will show you how to define others.

Technically, defaults are not constraints, but the procedures

involved in defining the two are quite similar.

CONSTRAINING TABLES
When you create a table (or, sometimes, when you alter one),

you can place constraints on the values that can be entered into its

fields. If you do this, SQL will reject any values that violate the

criteria you define. The two basic types of constraints are column

constraints and table constraints. The difference between the two

is that column constraints apply only to individual columns, whereas

table constraints apply to groups of one or more columns.

DECLARING CONSTRAINTS
You append column constraints to the end of column defini-

tions after the data type and before the comma. Table constraints

are placed at the end of the table definition after the last column

definition, but before the closing parenthesis. The following is

the syntax for the CREATE TABLE command, expanded to

include constraints:

CREATE TABLE <table name>
(<column name> <datatype> Kcolumn constraint,

CONSTRAINING THE VALUES OF YOUR DATA 219

<column name> <data type> < column constraint> . .

.

<table constraint> (<column name>
[,<column name> ...]).. .);

(For the sake of brevity, we have omitted the size argument, which

is sometimes used with data type.) The fields given in parentheses

after the table constraint(s) are the fields to which they apply. The
column constraints, naturally, apply to the columns whose defini-

tions they follow. The rest of this chapter will describe the various

types of constraints and their use.

USING CONSTRAINTS TO EXCLUDE NULLS
You can use the CREATE TABLE command to prevent a field

from permitting NULLS by using the NOT NULL constraint.

This constraint can be only of the column variety.

You will recall that NULLs are special designations that mark
a field as empty. As useful as NULLs can be, there are cases

where you will want to ensure against them. Obviously, primary

keys should never be NULL, as this would severely undermine

their functionality. In addition, fields such as names should, in

many cases, be required to have definite values. For example,

you would probably want a name for every customer in the Cus-

tomers table.

If you place the keywords NOT NULL immediately after the

data type (including size) of a column, any attempts to put

NULL values in that field will be rejected. Otherwise, SQL will

assume that NULLs are permitted.

For example, let us improve our definition of the Salespeople

table by not allowing NULLs in the snum or sname columns:

CREATE TABLE Salespeople

(snum integer NOT NULL,
sname char(10) NOT NULL,
city char(10),

comm decimal);

It is important to remember that any column with a NOT NULL
constraint must be assigned values in every INSERT clause that

220 UNDERSTANDING SQL

CH. 18

affects the table. In the absence of NULLs, SQL will have no val-

ues to put in these columns unless a default value, described later

in this chapter, is assigned.

If your system supports the use of ALTER TABLE to add
columns to an existing table, you can probably also place column
constraints, such as NOT NULL, on the new columns. If you
declare a new column NOT NULL, however, the table must
currently be empty.

MAKING SURE VALUES ARE UNIQUE
In Chapter 17, we discussed using unique indexes to force fields

to have a different value for each row. In a sense, this practice is a

leftover from the days before SQL supported the UNIQUE con-

straint. Uniqueness is a property of the data in a table, and is

therefore more logically defined as a constraint on that data,

rather than as a property of a logically distinct, but related, data

object (the index).

Nonetheless, unique indexes are one of the easiest and most

efficient methods of enforcing uniqueness. For this reason, some

implementations of the UNIQUE constraint employ unique

indexes;that is, they create an index without telling you about it.

The fact remains that you are less likely to run into confusion (or

incompatibility) if you enforce uniqueness with a constraint.

UNIQUE AS A COLUMN CONSTRAINT At times, you will

want to make sure that all of the values entered into a column

are different from one another. For example, primary keys

clearly call for this. If you place the UNIQUE column constraint

on a field when you create a table, the database will reject any

attempt to introduce into that field a value in one row that is

already present in another. This constraint can be applied only

to fields that have also been declared NOT NULL, because it

does not make much sense to allow one row of a table to be

NULL and then exclude other NULLs as duplicates. Here is a

further refinement of our definition of the Salespeople table:

CREATE TABLE Salespeople

(snum integer NOT NULL UNIQUE,

CONSTRAINING THE VALUES OF YOUR DATA 221

sname char(1 0) NOT NULL UNIQUE,
city char(10),

comm decimal);

What you accomplish by declaring the sname field to be unique

is to ensure that two Mary Smith's will be entered in different

ways—Mary Smith and M. Smith, for example. While this is not

necessary from a functional standpoint—the snum field as pri-

mary key provides a distinction between the two rows— it may be

easier for people using the data in the tables to keep the two

Smiths separate in their minds if the names are not identical.

Columns (other than primary keys) whose values are required to

be unique are called candidate keys or unique keys.

UNIQUE AS A TABLE CONSTRAINT You can also define a

group of fields as unique with a UNIQUE table constraint. Declar-

ing a group of fields unique differs from declaring the individual

fields unique in that it is the combination of values, not each indi-

vidual value, which must be unique. Group uniqueness is respec-

tive of order, so that a pair of rows with the column values 'a', 'b'

and 'b', 'a' are considered to be different from one another.

Our database is structured so that each customer is assigned

one and only one salesperson. This means that each combination

of customer number and salesperson number in the Customers

table should be unique. You can ensure this by defining the Cus-

tomers table in this manner:

CREATE TABLE Customers
(cnum integer NOT NULL,
cname char(10) NOT NULL,
city char(10),

rating integer,

snum integer NOT NULL,
UNIQUE (cnum, snum));

Notice that both of the fields in the UNIQUE table constraint

still use NOT NULL column constraints. If we had used the

UNIQUE column constraint on cnum, this table constraint would

not be necessary. If cnum field is different for each row, there

222 UNDERSTANDING SQL

CH. II

cannot be two rows with identical combinations of cnum and

snum. The same would apply if we had declared the snum field

unique, although this would not be appropriate in this instance

because salespeople can be assigned multiple customers. There-

fore, the UNIQUE table constraint is most useful when you do

not want to force the individual fields to be unique.

Suppose, for example, that we designed a table to keep track

of the total orders per day per salesperson. Each row of this table

would represent a total of any number of orders, rather than an

individual order. In this case, we could eliminate some possible

errors by ensuring that each day has no more than one row for a

given salesperson, that is, that each combination of snum and

odate is unique. Here's how we could create such a table called

Salestotal:

CREATE TABLE Salestotal

(snum, integer NOT NULL,
odate, date NOT NULL,
totamt, decimal,

UNIQUE (snum, odate));

Here then, is the command you would use to put the current

data into this table:

INSERT INTO Salestotal

SELECT snum, odate, SUM (amt)

FROM Orders

GROUP BY snum, odate;

THE PRIMARYKEY CONSTRAINT
Up until now. we have been discussing primary keys solely as

logical concepts. Although we should know, for any table, what the

primary kev is. and how it is to be used, we have not assumed that

SQL "knows". We have therefore used UNIQUE constraints or

unique indexes on primary keys to enforce their uniqueness. In

earlier versions of the SQL language, this was necessary, and it still

can be done this way. Now. however. SQL supports primary keys

directly with the PRIMARY KEY constraint. This constraint may
or mav not be available on vour svstem.

CONSTRAINING THE VALUES OF YOUR DATA 223

The PRIMARY KEY constraint can be of the table or column

variety. It is functionally the same as the UNIQUE constraint,

except that only one primary key (of any number of columns) can

be defined for a given table. There is also a difference between

primary keys and unique columns in the way they are used with

foreign keys, which will be explained in Chapter 19. The syntax

and the definition of uniqueness follow those of the UNIQUE
constraint.

Primary keys cannot allow NULL values. This means that, like

fields in UNIQUE constraints, any field used in a PRIMARY
KEY constraint must already be declared NOT NULL. Here is

an improved version of our definition of the Salespeople table:

CREATE TABLE Salespeople

(snum integer NOT NULL PRIMARY KEY,

sname char(1 0) NOT NULL UNIQUE,
city char(10),

comm decimal);

As you can see, UNIQUE fields can also be declared in the

same table. It is best to put the PRIMARY KEY constraint on

the field(s) that will constitute your unique row identifier, and

save the UNIQUE constraint for fields that should be unique for

logical reasons (such as phone numbers or sname above), rather

than for row identification.

PRIMAR Y KE YS OF MORE THAN ONE FIELD The PRI
MARY KEY constraint can also apply to multiple fields, forcing

a unique combination of values. Suppose your primary key is a

name, and you have first and last names stored in two different

fields (so you could organize the data by either one). Obviously,

neither the first nor last names can be forced to be unique by
themselves, but we may well wish every combination of the two

to be unique. We can apply the PRIMARY KEY table con-

straint to the pair:

CREATE TABLE Namefield

(firstname char(1 0) NOT NULL,
lastname char(1 0) NOT NULL,

224 UNDERSTANDING SQL

CH. 18

city char(10),

PRIMARY KEY (firstname, lastname));

One problem with this approach is that we may have to force

the uniqueness—by entering Mary Smith and M. Smith for

example. This can easily be confusing, because your employees

may not know which is which. It is usually a safer bet to define

some numeric field that can distinguish one row from another,

have it be the primary key, and apply the UNIQUE constraint to

the two name fields.

CHECKING FIELD VALUES

Of course, there are any number of restrictions you might

want to place on the data that can be entered into your tables

—

to see if the data is in the proper range or the correct format, for

example—that SQL cannot possibly account for beforehand. For

this reason, SQL provides the CHECK constraint, which allows

you to define a condition that a value entered into the table has

to satisfy before it can be accepted. The CHECK constraint con-

sists of the keyword CHECK followed by a parenthesized predi-

cate, which employs the field(s) in question. Any attempt to

update to or insert field values that will make this predicate false

will be rejected.

Let's look once more at the Salespeople table. The commission

column is expressed as a decimal, so that it can be multiplied

directly with a purchase amount to produce the right dollar fig-

ure. Someone used to thinking of it in terms of percentages,

however, might be inclined to forget this. If that person were to

enter 14 instead of .14 for a commission, it would be equivalent

to 14.0, a legitimate decimal value, and would be accepted. To

guard against this, we can impose a CHECK column constraint

to make sure that the value entered is less than 1

.

CREATE TABLE Salespeople

(snum integer NOT NULL UNIQUE,
sname char(1 0) NOT NULL UNIQUE,
city char(10),

comm decimal CHECK (comm < 1));

CONSTRAINING THE VALUES OF YOUR DATA 225

USING CHECK TO PREDETERMINE VALID INPUT
VALUES We can even use a CHECK constraint to restrict a

field to specific values, and thereby reject mistakes. For example,

suppose the only cities in which we had sales offices were Lon-

don, Barcelona, San Jose, and New York. As long as we know
that all of our salespeople will be operating from one of these

offices, there is no need to allow other values to be entered. If

nothing else, using a restriction such as this will prevent typo-

graphical and similar errors from being accepted. Here is how
we would do it:

CREATE TABLE Salespeople

(snum integer NOT NULL UNIQUE,
sname char(1 0) NOT NULL UNIQUE,
city char(10) CHECK
(city IN ('London', 'New York/San Jose', Barcelona')),

comm decimal CHECK (comm < 1));

Of course, if you are going to do this, you should be pretty sure

that your company is not opening any more sales offices soon.

Changing the definition of a table once it is created is a very use-

ful, if hazardous, feature that is not part of the ANSI standard.

Most database programs do support the ALTER TABLE com-

mand (see Chapter 17) that allows you to change the definition of

a table, even when it is in use. However, changing or deleting

constraints is not always a feature of this command, even where it

is supported. If you were using a system that cannot remove con-

straints, you would have to CREATE a new table and transfer the

information from the old table over to it whenever you need to

change a constraint. This is not something you will want to do

often, and at times it may not be practical at all.

Here is a definition of the Orders table:

CREATE TABLE Orders
(onum integer NOT NULL UNIQUE,
amt decimal,

odate date NOT NULL,
cnum integer NOT NULL,
snum integer NOT NULL);

226 UNDERSTANDING SQL

CH. 18

As we discussed in Chapter 2, the DATE type is widely sup-

ported, but is not part of the ANSI standard. What should we do

if we are using a database that, following ANSI, does not recog-

nize the DATE type? If we declare odate to be any kind of num-
ber, we cannot use either a slash (/) or a dash (-) as a delimiter.

Since printable numbers are also ASCII characters, we could

declare odate to be of the CHAR type. The main problem with

this is that we would have to remember to use single quotes

whenever we referred to odate's value in a query. There is no

simple solution to this problem, which is why the DATE type has

become so popular. For the purpose of illustration, let's assume

that we are declaring odate to be of the CHAR type. We can at

least impose our format on it with a CHECK constraint:

CREATE TABLE Orders

(onum integer NOT NULL UNIQUE,
amt decimal,

odate char (1 0) NOT NULL CHECK (odate LIKE

'__/__/ '),

cnum integer NOT NULL,
snum integer NOT NULL);

In addition, if you wanted to, you could impose constraints

ensuring that the characters entered are numerals, and that they

are within sensible ranges.

CHECK CONDITIONS BASED ON MULTIPLE FIELDS
You can also use CHECK as a table constraint. This is useful for

those cases where you want to involve more than one field of a

row in a condition. Suppose that commissions of .15 and above

were permitted only for salespeople in Barcelona. We could

enforce this with the following CHECK table constraint:

CREATE TABLE Salespeople

(snum integer NOT NULL UNIQUE,
sname char(1 0) NOT NULL UNIQUE,
city char(10),

comm decimal,

CHECK (comm < .15 OR city = 'Barcelona'));

CONSTRAINING THE VALUES OF YOUR DATA 22 7

As you can see, two different fields have to be examined to

determine if the predicate is true. Keep in mind, however, that

they are two different fields of the same row. Although you can

use multiple fields, SQL is not capable of checking more than

one row at a time. You could not use a CHECK constraint easily

to make sure that all commissions in a given city were the same,

for example. To do this, SQL would have to look at the other

rows of the table, whenever you update or insert a row, to see

what the commission value should be for the current city. SQL is

not designed to do this.

Actually, you might be able to use an elaborate CHECK con-

straint for the above, if you know in advance what the commis-

sions for the various cities should be. For instance, you could

define a constraint such as this:

CHECK ((comm = .15 AND city = 'London')

OR (comm = .14 AND city = 'Barcelona')

OR (comm = 1 1 AND city = 'San Jose) .
.

)

You get the idea. Rather than imposing a constraint this com-

plex, however, you might consider defining a view with a WITH
CHECK OPTION clause that has all of these conditions in its

predicate (refer to Chapters 20 and 2 1 for information on views and

WITH CHECK OPTION). Users could access the view instead

of the table. One advantage of this would be that making a change

in the constraints would not be nearly as painful or difficult. Views

WITH CHECK OPTION are frequently a good alternative to

CHECK constraints as will be elaborated in Chapter 21

.

ASSIGNING DEFA ULT VALUES

When you insert a row into a table without having a value in

it for every field, SQL must have a default value to put in the

excluded field(s), or the command will be rejected. The most

common default value is NULL. This is the default for any
column that has not been given a NOT NULL constraint or had
another default assigned.

DEFAULT value assignments are defined in the CREATE
TABLE command in the same way as column constraints,

228 UNDERSTANDING SQL

CH. 18

although, technically speaking, DEFAULT values are not con-

straints—they do not limit the values you can enter, but merely

specify what happens if you do not enter any. Suppose you are

running the New York office of your company and the vast

majority of your salespeople are based in New York. You might

decide to define New York as the default city value for your

Salespeople table, saving the trouble of entering it each time:

CREATE TABLE Salespeople

(snum integer NOT NULL UNIQUE,
sname char(1 0) NOT NULL UNIQUE,
city char(10) DEFAULT = 'New York',

comm decimal CHECK (comm < 1));

Of course, entering New York into a table each time a new
salesperson is assigned is not such a great deal of trouble, and

habitually omitting a field may lead to its being neglected even

when it should have some other value. A default value of this

type might be more advisable if, for example, you had a long

office number, indicating your own office, in the Orders table.

Long numeric values are error prone, so, if the vast majority (or

all) of your orders will have your own office number on them, it

may be advisable for that number to become the default.

Another way to use default values is as an alternative to

NULLs. Since NULLs are (in effect) false in any comparison

other than IS NULL, they tend to be excluded by a lot of predi-

cates. Sometimes, you may want to see your empty field values

without having to treat them in a special way. You can define a

special default value, such as zero or blank, which actually func-

tions less as a value than as an indication that there is no value

present— in other words, a custom-made NULL. The difference

between this and a regular NULL is that SQL will treat this the

same as any other value.

Suppose that customers are not assigned ratings initially. Every

six months, you raise the rating of all your lower-rated customers,

including those who previously had no rating assigned, provided

that all has gone well with them. If you want to select all these cus-

tomers as a group, a query such as the following would exclude all

CONSTRAINING THE VALUES OF YOUR DATA 229

customers with NULL ratings:

SELECT *

FROM Customers
WHERE rating <= 100;

However, if you had defined a DEFAULT of 000 for the rating

field, customers without ratings would have been selected along

with the others. Which method is better depends on the situation.

If you were querying by the field in question, would you usually

want to include the rows without values, or exclude them?

Another characteristic of defaults of this type is that they do

allow you to declare the field in question NOT NULL. If you

are using a default in order to avoid NULLs, this is probably

good protection against mistakes.

You could also use a UNIQUE or PRIMARY KEY constraint

with this field. If you do, however, keep in mind that only one row

at a time may have the default value. Any row that contains the

default value will have to be updated before another row with

the default could be inserted. This is not how you usually want to

use defaults, so UNIQUE and PRIMARY KEY constraints (espe-

cially the latter) are not usually placed on rows with default values.

SUMMARY
You have now mastered several ways of controlling the values

that can be entered into your tables. You can use the NOT
NULL constraint to exclude NULLS, the UNIQUE constraint

to force all the values in a group of one or more columns to be

different, the PRIMARY KEY constraint to do basically the

same thing as UNIQUE but to a different end, and the CHECK
constraint to define your own custom-made criteria that values

have to meet before they can be entered. In addition, you can

use a DEFAULT clause, which will automatically insert a default

value into any field not named in an INSERT, just as NULLS
are inserted when the DEFAULT clause is not present and there

is no NOT NULL constraint.

230 UNDERSTANDING SQL

CH. 18

The FOREIGN KEY or REFERENCES constraint that you

will learn about in Chapter 19 is similar to these, except that it

relates a group of one or more fields to another, and thereby

affects the values that can be entered into either of these groups

at once.

CONSTRAINING THE VALUES OF YOUR DATA 231

Putting SQL To Work

1. Create the Orders table so that all onum values as well as

all combinations of cnum and snum are different from

one another, and so that NULL values are excluded from

the date field.

2. Create the Salespeople table so that the default commis-

sion is 10% with no NULLS permitted, snum is the pri-

mary key, and all names fall alphabetically between A
and M, inclusive (assume all names will be uppercase).

3. Create the Orders table, making sure that the onum is

greater than the cnum, and the cnum is greater than the

snum. Allow no NULLS in anv of these three fields.

(See Appendix A for answers.)

19

Maintaining the Integrity of

Your Data

w

234 UNDERSTANDING SQL

CH. 19

EARLY IN THIS BOOK, WE POINTED OUT CERTAIN
relationships that existed among some fields of our sample

tables. The snum field of the Customers table, for example,

matches the snum field of the both Salespeople and the Orders

tables. The cnum field of the Customers table matches the cnum
field of the Orders table, as well. We called this type of relation-

ship referential integrity; over the course of the book, you have

seen some ways that this can be used.

In this chapter, you will be investigating referential integrity

more closely and finding out about the constraint that you can use

to maintain it. You will also see how this constraint is enforced

when you use the DML update commands. As referential integ-

rity involves relating fields or groups of fields, often in different

tables, to one another, its enforcement can be somewhat more
complex than that of the other constraints. For this reason, it is

good to have a basic familiarity with it, even if you do not plan to

create tables. Your update commands can be affected by referen-

tial-integrity constraints (as by other constraints, but referential-

integrity constraints can affect other tables besides those in which

they are located), and certain query functions, such as joins, are

frequently structured in terms of referential-integrity relationships

(as we pointed out in Chapter 8).

FOREIGNAND PARENTKE YS
When all of the values in one field of a table have to be present in

a field of another table, we say that the first field refers to or references

the second. It indicates a direct relationship between the meaning

of the two fields. For example, the customers in the Customers

table each have an snum field that indicates the salesperson he or

she is assigned to in the Salespeople table. For each order in the

Orders table, there is one and only one salesperson and one and

only one customer. These are indicated by the snum and cnum
fields in the Orders table.

When a field in a table refers to another, it is called a foreign

key, the field to which it refers is called its parent key. So the snum
field of the Customers table is a foreign key, and the snum field it

references in the Salespeople table is its parent key. Likewise, the

MAINTAINING THE INTEGRITY OF YOUR DATA 235

cnum and snum fields of the Orders table are foreign keys refer-

ring to their parent keys of the same names in the Customers

and Salespeople tables. The names of foreign and parent keys do

not necessarily have to be the same, by the way; this is just a

convention we have followed to make the connection more clear.

MULTICOLUMNFOREIGNKEYS

In actuality, a foreign key need not consist only of a single

field. Like a primary key, a foreign key can be of any number
of fields, all of which are treated as a unit. A foreign key and the

parent key it references must, of course, have the same number
and types of fields, in the same order. Single-field foreign keys

are what we have used exclusively in our sample tables; they are

perhaps the most common. For the sake of keeping our discus-

sion simple, we will often speak of a foreign key as a single

column. This is not necessarily the case. Unless otherwise noted,

whatever is said about a field that is a foreign key will also hold

true for a group of fields that is a foreign key.

THE MEANING OF FOREIGNAND PARENTKEYS
When a field is a foreign key, it is specially linked to the table

it references. You are, in effect, saying "every value in this field

(the foreign key) is directly related to a value in another field (the

parent key)." Each value (each row) of the foreign key should

unambiguously refer to one and only one value (row) of the par-

ent key. If this is, in fact, the case, your system is said to be in a

state of referential integrity.

You can see why this is the case. The foreign key snum in the

Customers table has the value 1001 for the rows of Hoffman and

Clemens. Suppose we had two rows in the Salespeople table with

the snum = 1001. How would we know to which of the two

salespeople Hoffman and Clemens were assigned? Likewise, if

there were no such rows in the Salespeople table, we would have

Hoffman and Clemens assigned to a salesperson who did not

236 UNDERSTANDING SQL

CH. 19

exist! The implication is clear: every value in the foreign key

must be present once, and only once, in the parent key.

The fact that a given foreign-key value can refer to only one

parent-key value does not imply the reverse: any number of for-

eign keys can refer to the same parent-key value. You can see

this in the sample tables. Both Hoffman and Clemens are

assigned to Peel, so both of their foreign-key values match the

same parent key, which is fine. A foreign-key value must refer to

only a single parent-key value, but that parent-key value can be

referred to by any number of foreign-key values.

For the sake of illustration, the foreign-key values from the

Customers table, matched to their parent keys in the Salespeople

table, are shown in Figure 19.1. We have left out unnecessary

fields for readability.

THE FOREIGNKEY CONSTRAINT
SQL supports referential integrity with the FOREIGN KEY

constraint. Although quite important, the FOREIGN KEY con-

straint is something of a new feature to SQL, so it is not yet uni-

versally supported. Moreover, some implementations of it are

more sophisticated than others. Its function is to restrict the val-

ues you can enter into your database to force a foreign key and

its parent key to conform to the principles of referential integrity.

One effect of an enforced FOREIGN KEY constraint is to reject

values for the field(s) constrained as a foreign key that are not

already present in the parent key. This constraint also affects

your ability to change or remove the values of the parent key (we

will discuss this later in the chapter).

HOW TO DECLARE FIELDS AS FOREIGNKEYS
You use the FOREIGN KEY constraint in the CREATE

TABLE (or possibly ALTER TABLE) command that contains

the field you wish to declare as a foreign key. You name the par-

ent key you are referencing within the foreign key constraint.

The placement of this constraint in the command is the same as

that of the other constraints discussed in the previous chapter.

MAINTAINING THE INTEGRITY OF YOUR DATA 23 7

a CM co _ in ©
£

w
-J

o
u

<
H
w C3 -o
j u in j* C o
0, a

(4 13 o 3 X
<m

a,
C
a s 5

CA

<
X E

»—

i

CM * r^ COQ © o © ©
9 o o o © ©
e

.

N

1\ X

E CO CM CM

\
t>i "*

© o o © © o ©
3 o o o © © o ©
c
(/i

H
-1
-
<
H c £ 1/3 V)

C/5

OS
w

09

E
(4

G
u

1
o

c

>
o

3
3

V3
C/J

au
O

a

E
V

ou

e

o
"C

a.

E
,H CM CO tJ- VD CC r-^o o o © © o ©

3 o o © © © c ©
C CM CM CM CM CM CM CM
u

4—

»

C
u

a

c

238 UNDERSTANDING SQL

CH. 19

Like most constraints, it can be of the table or column variety,

with the table form allowing multiple fields to be used as a single

foreign key.

FOREIGNKEYAS A TABLE CONSTRAINT
Here is the syntax of the FOREIGN KEY table constraint:

FOREIGN KEY <column list> REFERENCES <pktable>
[<column list>]

The first column list is a parenthesized list of one or more

columns of the table being created or altered in this command, sep-

arated by commas. The pktable is the table containing the parent

key. This may be the same table that is being created or altered by

the current command (more on this point later). The second

column list is a parenthesized list of those columns that will consti-

tute the parent key. The two column lists must be compatible:

• They must have the same number of columns.

• In the sequence given, the first, second, third, and so on,

column of the foreign-key column list must have the

same data types and sizes as the first, second, third, and

so on, of the parent-key column list. The columns in the

two column lists need not have the same names, although

we have done it this way in our examples to make the

relationship clearer.

Here is the definition of the Customers table with snum
defined as a foreign key referencing the Salespeople table:

CREATE TABLE Customers
(cnum integer NOT NULL PRIMARY KEY,

cname char(10),

city char(10),

snum integer,

FOREIGN KEY (snum) REFERENCES Salespeople

(snum));

MAINTAINING THE INTEGRITY OF YOUR DATA 239

An important thing to keep in mind if you are using ALTER
TABLE instead of CREATE TABLE to apply the FOREIGN
KEY constraint is that the values currently present in the foreign

and parent keys you indicate must be in a state of referential

integrity. Otherwise, the command will be rejected. Although

ALTER TABLE is very useful because of the adaptability it pro-

vides, you should build structural principles, such as referential

integrity, into your system from the start whenever possible.

FOREIGNKEYAS
A COLUMN CONSTRAINT
The column-constraint version of the FOREIGN KEY con-

straint is also called the REFERENCES constraint, because it

does not actually contain the words FOREIGN KEY; it simply

uses the word REFERENCES, and then names the parent key,

like this:

CREATE TABLE Customers
(cnum integer NOT NULL PRIMARY KEY,

cname char(10),

city char(10),

snum integer REFERENCES Salespeople (snum));

The above defines Customers.snum as a foreign key whose parent

key is Salespeople. snum. It is equivalent to this table constraint:

FOREIGN KEY (snum) REFERENCES Salespeople (snum)

OMITTING PRIMAR Y-KEY COLUMN LISTS

With either table or column FOREIGN KEY constraints, you

may omit the column list of the parent key if the parent key has

the PRIMARY KEY constraint. In case of multiple-field keys,

naturally, the order of the columns in the foreign and primary

keys must match, and, in any case, the principles of compatibility

between the two keys still apply. For example, if we had placed the

PRIMARY KEY constraint on the snum field in the Salespeople

240 UNDERSTANDING SQL

CH. 19

table, we could use it as a foreign key in the Customers table (sim-

ilar to the previous example) with this command:

CREATE TABLE Customers
(cnum integer NOT NULL PRIMARY KEY,

cname char(10),

city char(10),

snum integer REFERENCES Salespeople);

This feature has been built into the language to encourage you to

use primary keys as parent keys. The logic behind this will be

outlined shortly.

HOWREFERENTIAL INTEGRITY
RESTRICTS PARENTKEY VALUES

Maintaining referential integrity necessitates some restrictions on

the values that can be present in fields declared as foreign and par-

ent keys. The parent key must be structured to ensure that each

foreign-key value will match one specific row. This means it must

be unique and contain no NULLS. It is not sufficient for the par-

ent key to happen to fulfill these requirements at the time the for-

eign key is declared. SQL must be assured that duplicate or NULL
values cannot be entered into the parent key. Therefore you must

make sure that all fields to be used as parent keys have either a

PRIMARY KEY or a UNIQUE constraint as well as the NOT
NULL constraint.

PRIMARY VS. UNIQUE PARENTKEYS
Having your foreign keys reference only primary keys, as we

have done in the sample tables, is a good policy. When you use

foreign keys, you are not linking them simply to the parent keys

that they reference; you are linking them to the specific row of the

table where that parent key is found. The parent key by itself pro-

vides no information that is not already present in the foreign key.

The significance, for example, of the snum field as a foreign

key in the Customers table is the link it provides, not to the

snum value that it references, but to the other information in the

MAINTAINING THE INTEGRITY OF YOUR DATA 241

Salespeople table, such as the salespeople's names, their loca-

tions, and so on. A foreign key is not simply a link between two

identical values; it is a link, through those two values, between

two entire rows of the tables in question. That snum field can be

used to relate any information in a row from the Customers table

to the referenced row of the Salespeople table—such as whether

they live in the same city, who has a longer name, whether the

salesperson of a given customer has any other customers, and

so on.

Since the purpose of a primary key is to identify rows

uniquely, it is the most logical and least ambiguous choice for a

foreign key. For any foreign key that takes a unique key as a par-

ent key, you should be able to create a foreign key that takes the

primary key of that same table to the same effect. Having a for-

eign key that has no other purpose but to link rows, like having

a primary key with no other purpose but to identify them, is a

good way to keep the structure of your database clear and sim-

ple, and is therefore less likely to create difficulties.

FOREIGNKEYRESTRICTIONS
The foreign key, for its part, may contain only values that are

actually present in the parent key or NULLs. Any other values

you attempt to enter into that key will be rejected. You may
declare foreign keys to be NOT NULL, but it is not necessary

and, in many cases, not desirable. For example, suppose you

enter a customer without first knowing to which salesperson he

will be assigned. The best way to deal with this situation would

be with a NULL that could be updated to a valid value later.

WHATHAPPENS WHEN YOU
PERFORM UPDATE COMMANDS

Let's assume that all of the foreign keys built into our sample

tables are declared and enforced with FOREIGN KEY con-

straints, as follows:

CREATE TABLE Salespeople

(snum integer NOT NULL PRIMARY KEY,

242 UNDERSTANDING SQL

CH. 19

sname char(10) NOT NULL,
city char(10),

comm decimal);

CREATE TABLE Customers
(cnum integer NOT NULL PRIMARY KEY,

cname char(10) NOT NULL,
city char(10),

rating integer,

snum integer,

FOREIGN KEY (snum) REFERENCES Salespeople,

UNIQUE (cnum, snum));

CREATE TABLE Orders

(onum integer NOT NULL PRIMARY KEY,

amt decimal,

odate date NOT NULL,
cnum integer NOT NULL
snum integer NOT NULL
FOREIGN KEY (cnum, snum) REFERENCES
CUSTOMERS (cnum, snum));

IMPLICATIONS OF THE TABLE DEFINITIONS
There are several attributes of these definitions that merit dis-

cussion. The reason we chose to make the cnum and snum fields

of the Orders table a single foreign key is because this insures

that for every customer credited with an order, the salesperson

credited with that order is the same as indicated in the Cus-

tomers table. In order to create this foreign key, we had to place

a UNIQUE table constraint on the two fields of the Customers

table, even though this is not necessary for the purposes of that

table in itself. Since cnum in that table has the PRIMARY KEY
constraint, it will be unique in any case, and it is therefore

impossible to have a nonunique combination of cnum with any

other field.

Defining the foreign key in this manner maintains the integ-

rity of the database, even though it does prevent you from mak-

ing exceptions and crediting any salesperson other than the one

assigned to a customer with sales for that customer. Excluding

MAINTAINING THE INTEGRITY OF YOUR DATA 243

mistakes often means also excluding the ability to make excep-

tions, and, of course, whether to allow exceptions is a manage-

ment, not a database, decision. From the viewpoint of

maintaining the integrity of the database, however, exceptions

are not desirable. If you wanted to allow them and still maintain

some integrity, you could declare snum and cnum in the Orders

table as independent foreign keys of the same fields in the Sales-

people and Customers tables, respectively.

Actually, using the snum field in the Orders table as we have

done is not necessary, although it has been useful to us for deriving

examples. The cnum field links each order to a customer in the

Customers table, and the Orders and Customers tables could

always be joined to find the correct snum for a given order (assum-

ing no exceptions are allowed). This means we are recording a

piece of information—which customer is assigned to which sales-

person—twice, and extra work will have to be performed to make

sure the two versions agree. If we didn't have foreign-key con-

straints as above, this situation would be especially problematic,

because each order would have to be manually checked (with a

query) to make sure the proper salesperson was credited with each

sale. Having this sort of redundant information in your database is

called denormalization; it is not desirable in an ideal relational data-

base, although in practical situations there may be reasons for

allowing it. Denormalization can make some queries execute faster,

as a query on a single table will execute considerably faster than

ajoin.

THE EFFECTS OF THE CONSTRAINTS
How do these constraints affect what you can and cannot do

with DML update commands? For the fields defined as foreign

keys, the answer is fairly straightforward: any values you put

into these fields with an INSERT or UPDATE command must

already be present in their parent keys. You may put NULLS in

these fields, even though NULLS are not allowed in the parent

keys, unless they have NOT NULL constraints. You may
DELETE any rows with foreign keys without affecting the par-

ent keys at all.

244 UNDERSTANDING SQL

CH. 19

As far as changes to the parent-key values are concerned, the

answer, as defined by ANSI, is still straightforward, but perhaps

a little restrictive: any parent-key value currently referenced by a

foreign-key value cannot be deleted or changed. This means, for

example, that you could not remove a customer from the Cus-

tomers table while he or she still has orders in the Orders table.

Depending on exactly how you are using these tables, this can be

either desirable or troublesome. It is certainly better, however,

than a system that would allow you to remove a customer with

current orders and leave the Orders table referencing nonexist-

ent customers.

An implication of this system of enforcement is that the crea-

tor of the Orders table, by using the Customers and Salespeople

tables as parent keys, is putting considerable restrictions on what

can be done to them. For this reason, you cannot use a table you

do not own for a parent key unless the owner of that table specif-

ically gives you that right (this will be explained in Chapter 22).

There are some other possible effects of changing the parent

key that are not part of ANSI, but can be found in some commer-

cial products. If you want to change or remove a currently refer-

enced parent-key value, there are essentially three possibilities:

• You can restrict, or forbid, the change (ANSI's way),

which means the change on the parent key is restricted.

• You can make the change in the parent key and have that

same change made in the foreign key automatically,

which means the change cascades.

• You can make the change in the parent key, and set the

foreign key to NULL automatically (assuming NULLS
are allowed in the foreign key), which is to say the change

nulls the foreign key.

Even within these three categories, you may not want to treat

all of the update commands in the same way. INSERT, of course,

is irrelevant. It puts new parent-key values in the table, so none of

its values can currently be referenced. However, you may want to

allow updates to cascade, but not deletions, or vice versa. The

best situation, then, might be one that allows you to specify any of

MAINTAINING THE INTEGRITY OF YOUR DATA 245

the three categories independently for UPDATE and DELETE
commands. We shall therefore refer to update effects and delete effects

that determine what happens when you perform an UPDATE or

a DELETE on the parent key. These effects, as we mentioned, are

RESTRICTED, CASCADES, and NULLS.
The actual capabilities of your system could be anything from

a strict ANSI standard—update and delete effects both automat-

ically restricted— to the more ideal situation outlined above. For

the sake of illustration, we will show you a few examples of what

you could do with a complete selection of update and delete

effects. Of course, these update and delete effects, being non-

standard features, lack a standard syntax. The syntax we use

here is simple and descriptive and will serve to illustrate how
these effects function.

For the sake of argument, let us suppose you have reason to

change the snum field of the Salespeople table on occasion, per-

haps when our Salespeople change divisions. (Routinely chang-

ing primary keys is actually not something we recommend in

practice. This is one argument for having primary keys that have

no other use or meaning than to act as primary keys: they should

not need to be changed.) When you change a salesperson's num-
ber, you want him to keep all of his customers. If he is leaving

the company, however, you do not want to remove his customers

when you remove him from the database. Instead, you want to

make sure you assign them to someone else. To achieve this, you

could specify an UPDATE effect of CASCADES, and a

DELETE effect of RESTRICTED.

CREATE TABLE Customers
(cnum integer NOT NULL PRIMARY KEY,

cname char(10) NOT NULL,
city char(10),

rating integer,

snum integer REFERENCES Salespeople,

UPDATE OF Salespeople CASCADES,
DELETE OF Salespeople RESTRICTED);

If you now tried to remove Peel from the Salespeople table,

the command would not be accepted unless you changed the

246 UNDERSTANDING SQL

CH. 19

snum values of customers Hoffman and Clemens to that of

another salesperson. On the other hand, you could change Peel's

snum value to 1009, and Hoffman and Clemens would automat-

ically have theirs changed as well.

The third effect is NULLS. Perhaps when salespeople leave

the company their current orders are not credited to anyone.

On the other hand, you want to cancel all orders automatically

for customers whose accounts you remove. Changes of salesper-

son or customer number can simply be passed along. This is how
you would create the Orders table to have these effects.

CREATE TABLE Orders

(onum integer NOT NULL PRIMARY KEY,

amt decimal,

odate date NOT NULL,
cnum integer NOT NULL REFERENCES Customers,
snum integer REFERENCES Salespeople,

UPDATE OF Customers CASCADES,
DELETE OF Customers CASCADES,
UPDATE OF Salespeople CASCADES,
DELETE OF Salespeople NULLS);

Of course, in order for the DELETE effect of NULLS on

Salespeople to work the NOT NULL constraint had to be

removed from the snum field.

FOREIGNKEYS THATREFER
BACK TO THEIR OWN TABLES

As mentioned before, the FOREIGN KEY constraint can

name its own table as its parent-key table. Far from being a sim-

ple anomaly, this is a feature that can come in handy. Suppose

we had an Employees table with a field called "manager". This

field contains the employee number of each employee's manager.

However, since each manager is also an employee, he or she will

be present in this table as well. Let's create the table, declaring

empno (employee number) as the primary key, and manager as a

MAINTAINING THE INTEGRITY OF YOUR DATA 24 7

foreign key referencing it:

CREATE TABLE Employees
(empno integer NOT NULL PRIMARY KEY,

name char(10) NOT NULL UNIQUE,
manager integer REFERENCES Employees);

(Since the foreign key is referencing the primary key of the table,

the column list can naturally be omitted.) Here are some possi-

ble contents of this table:

EMPNO NAME MANAGER

1003 Terrence 2007

2007 Atali NULL
1688 McKenna 1003

2002 Collier 2007

As you can see, everybody but Atali references another

employee in the table as his or her manager. Atali, being the

highest in the table, has to have his value set to NULL. This

brings up another principle of referential integrity. A foreign key

that refers back to its own table must allow NULLs. If it did not,

how could you insert the first row? Even if this first row referred

to itself, the parent-key value is supposed to be already present

when the foreign-key value is entered.

This principle holds true even if a foreign key refers back to its

own table indirectly— that is, by referring to another table that

then refers back to the foreign key's table. For example, suppose

our Salespeople table had an additional field that referenced the

Customers table, so that each table referred to the other, as

shown in the following CREATE TABLE statement:

CREATE TABLE Salespeople

(snum integer NOT NULL PRIMARY KEY,

sname char(10) NOT NULL,
city char(10),

comm decimal,

cnum integer REFERENCES Customers);

248 UNDERSTANDING SQL

CH. 19

CREATE TABLE Customers
(cnum integer NOT NULL PRIMARY KEY,

cname char(10) NOT NULL,
city char(10),

rating integer,

snum integer REFERENCES Salespeople);

This is called circularity or cross referencing. SQL supports it theo-

retically, but it can present problems in practice. Whichever table

of the two is created first will be referencing a table that does not

yet exist, for one thing. In the interest of supporting circularity,

SQL will actually allow this, but neither table is usable until both

are created. On the other hand, if these two tables are created by

different users, the problems become more difficult. Circularity

can be a useful tool, but it is not without its ambiguities and haz-

ards. The preceding example, for instance, is not very usable: it

restricts salespeople to a single customer, and needn't be circular,

even to achieve that. We recommend that you be very careful how
you use it and study closely exactly how your system handles

update and delete effects as well as privileges and transaction

processing before you create a circular system of referential integ-

rity. (Privileges and transaction processing will be discussed in

Chapters 22 and 23, respectively.)

SUMMARY
Now you have a pretty good handle on referential integrity.

The basic idea is that all foreign-key values refer to a specific row

of the parent key. This means that each foreign-key value must

be present once and only once in the parent key. Whenever a

value is placed in a foreign key, the parent key is checked to

make sure that value is present; otherwise, the command is

rejected. The parent key must have a PRIMARY KEY or

UNIQUE constraint to ensure that a value will not be present

more than once. Attempts to change a parent-key value that is

currently present in the foreign key will generally be rejected.

Your system may, however, offer you the option to have the for-

eign-key value set to NULL or to the new parent-key value, and

MAINTAINING THE INTEGRITY OF YOUR DATA 249

to specify which of these will happen independently for

UPDATE and for DELETE commands. This completes our dis-

cussion of the CREATE TABLE command. Next we will intro-

duce you to another type of CREATE command.
In Chapter 20, you will learn about views, data objects that

look and act like tables, but are actually the results of queries.

Some of the functions of constraints can also be fulfilled by

views, so you will be better able to evaluate your need for con-

straints after you have read the next three chapters.

250 UNDERSTANDING SQL

CH. 19

Putting SQL to Work

Create a table called Cityorders. This will contain the

same onum, amt, and snum fields as the Orders table,

and the same cnum and city fields as the Customers

table, so that each customer's order will be entered into

this table along with his or her city. Onum will be the pri-

mary key of Cityorders. All of the fields in Cityorders

will be constrained to match the Customers and Orders

tables. Assume the parent keys in these tables already

have the proper constraints.

Here is an advanced problem. Redefine the Orders table

as follows: add a new column called prev, which will

identify, for each order, the onum of the previous order

for that current customer. Implement this with a foreign

key referring to the Orders table itself. The foreign key

should refer as well to the cnum of the customer, provid-

ing a definite enforced link between the current order

and the one referenced.

(See Appendix A for answers.

)

.^w

20

Introducing: Views

**

252 UNDERSTANDING SQL

ch. 20

A VIEW IS A DATA OBJECT THAT CONTAINS NO DATA
of its own. It is a kind of table whose contents are taken from

other tables through the execution of a query. As the values in

those tables change, so, automatically, will the values the view

exhibits.

In this chapter, you will learn what views are, how they are

created, and a bit about their limitations and restrictions. The
use of views based on advanced query features, such as joins and

subqueries, will be elaborated, as will some special consider-

ations that come into play with queries made against views.

WHATARE VIEWS?
The kinds of tables that you have been dealing with up until

now are called base tables. These are tables that contain data.

There is another kind of table, however: the view. Views are

tables whose contents are taken or derived from other tables.

They are operated on in queries and DML statements just as

base tables are, but they contain no data of their own. Views are

like windows through which you view information (as is, or in a

derived form, as you will see) that is actually stored in a base

table. A view is actually a query that is executed whenever the

view is the subject of a command. The output of the query

becomes the content of the view at that moment.

THE CREATE VIEW COMMAND
You define views with the CREATE VIEW command. This con-

sists of the words CREATE VIEW, the name of the view to be cre-

ated, the word AS, and then a query, as in the following example:

CREATE VIEW Londonstaff

AS SELECT *

FROM Salespeople

WHERE city = 'London';

You now own a view called Londonstaff. You can use this view

just like any other table. It can be queried, updated, inserted

INTRODUCING: VIEWS 253

into, deleted from, and joined with other tables and views. Let's

query this view (shown in Figure 20. 1):

SELECT *

FROM Londonstaff;

=SQL Execution Log=
SELECT » FROM Londonstaff:

I

'

-=Browse t*«-» PgDn PgUp -

Figure 20.1: The Londonstaff view

When you told SQL to SELECT all rows from the view, it

executed the query contained in the definition of Londonstaff,

and returned all of its output. Had there been a predicate in the

query of the view, only those rows of the view that satisfied it

would have been output.

You may remember that in Chapter 15, you had a table called

Londonstaff, into which you inserted these same contents (of

course, we are assuming that table is no longer extant. If it were,

you would have to pick another name for your view). The
advantage of using a view, instead of a base table, is that the

view will be updated automatically whenever the underlying

table changes. The contents of the view are not fixed, but are

reevaluated each time you reference the view in a command. If

you added another London-based salesperson tomorrow, she

would automatically appear in the view.

254 UNDERSTANDING SQL

ch. 20

Views greatly extend the control you have over your data.

They are an excellent way to give people access to some but not

all of the information in a table. If you wanted your salespeople

to be able to look at the Salespeople table, but not to see each

other's commissions, you could create a view for their use

(shown in Figure 20.2) with the following statement:

CREATE VIEW Salesown
AS SELECT snum, sname, city

FROM Salespeople;

Figure 20.2: The Salesown view

In other words, this view is the same as the Salespeople table,

except that the comm field was not named in the query, and is

therefore not included in the view.

UPDATING VIEWS
This view can now be modified by DML update commands,

but the modifications will not affect the view itself. They will be

INTRODUCING: VIEWS 255

passed along to the underlying table:

UPDATE Salesown
SET city = 'Palo Alto'

WHERE snum = 1004;

The effect of this is identical to performing the same command
on the Salespeople table. However, if a salesperson tried to

UPDATE his commission

UPDATE Salesown
SETcomm = .20

WHERE snum = 1004;

it would be rejected, because there is no comm field in the Sales-

own view. It is important to note that not all views can be updated.

We will explore the issue of updating views thoroughly in Chap-

ter 21.

NAMING COLUMNS
In our examples so far, the fields of our views have had their

names taken directly from the names of the fields in the underly-

ing table. This is the easiest course. However, sometimes you

will have to provide new names for your columns:

• When some of the columns are output columns, and

therefore unnamed.

• When two or more columns in a join have the same name
in their respective tables.

The names that will become the names of the fields are given in

parentheses after the table name. It does not matter if they

match the field names of the table being queried. Their data

types and sizes are still derived from the fields of the query that

are "piped" into them. Often you do not have to specify new
field names, but if you do, you will have to do so for every field

in the view.

256 UNDERSTANDING SQL

ch. 20

COMBINING THE PREDICATES OF
VIEWSAND QUERIES BASED ON VIEWS
When you query a view you are, in a sense, querying a query.

The main way SQL deals with this is to combine the predicates

of the two queries into one. Let's look again at our view named
Londonstaff:

CREATE VIEW Londonstaff

AS SELECT *

FROM Salespeople

WHERE city = 'London';

If we perform the following query on this view

SELECT *

FROM Londonstaff

WHERE comm > .12;

it is as though we performed this next on the Salespeople table:

SELECT *

FROM Salespeople

WHERE city = 'London'

AND comm > .12;

This is fine, except that it does bring up a possible problem

with views. It is quite possible to combine two perfectly accept-

able predicates and get a predicate that will not work. For exam-

ple, suppose we CREATE the following view:

CREATE VIEW Ratingcount (rating, number)

AS SELECT rating, COUNT (*)

FROM Customers
GROUP BY rating;

This will give us a count of how many customers we have at each

level of rating. You could then query this view to find out if there

INTRODUCING. VIEWS 257

are any ratings currently assigned to three customers:

SELECT *

FROM Ratingcount

WHERE number = 3;

Look what happens when we combine the two predicates:

SELECT rating, COUNT (*)

FROM Customers
WHERE COUNT (*) = 3

GROUP BY rating;

This is not a legal query. Aggregate functions, such as COUNT,
cannot be used in a predicate.

The proper way to form the above query, of course, would be

SELECT rating, COUNT (*)

FROM Customers
GROUP BY rating;

HAVING COUNT (*) = 3;

But SQL will not perform the conversion. Will the equivalent

query against Ratingcount therefore fail? It may. This is an ambig-

uous area of SQL where the technique for implementing views may
well affect the results. The best thing to do in a case like this, which

your system documentation may not address, is try it and see. If

the command is accepted, you may be able to use views to get

around some of SQLs restrictions on query syntax.

GROUPED VIEWS

Grouped views are views, like Ratingcount in the previous

example, that contain a GROUP BY clause, or that are based on

other grouped views.

Grouped views can be an excellent way to process derived

information continuously. Suppose each day you have to keep

track of the number of customers ordering, the number of sales-

people taking orders, the number of orders, the average amount
ordered, and the total amount ordered. Rather than constructing

258 UNDERSTANDING SQL

ch. 20

a complex query repeatedly, you can simply create the following

view:

CREATE VIEW Totalforday

AS SELECT odate, COUNT (DISTINCT cnum), COUNT
(DISTINCT snum), COUNT (onum), AVG
(amt), SUM (amt)

FROM Orders

GROUP BY odate;

Now you can see all this information with a simple query:

SELECT *

FROM Totalforday;

As we have seen, SQL queries can get quite complex, so views

provide you with an extremely flexible and powerful tool to

determine just how your data will be used. They can also make
your life easier by reformatting data in useful ways and eliminat-

ing repetitive work.

VIEWS ANDJOINS
Views need not be drawn from a single base table. Because

almost any valid SQL query can be used in a view, they can dis-

till information from any number of base tables, or other views.

We can, for example, define a view that shows, for each order,

the salesperson and the customer by name:

CREATE VIEW Nameorders
AS SELECT onum, amt, a.snum, sname, cname

FROM Orders a, Customers b, Salespeople c

WHERE a.cnum = b.cnum
AND a.snum = c.snum;

Now you can SELECT all orders by customer or by salesper-

son, or you can see this information for any order. For example,

INTRODUCING: VIEWS 259

to see all of salesperson Rifkin's orders, you would enter the fol-

lowing query (the output is shown in Figure 20.3):

SELECT *

FROM Nameorders
WHERE sname = 'Rifkin';

SQL Execution Log-
SELECT * FROM Nameorders
WHERE sname = 'Rifkin';

3001 1007 Rifkin
1007 Rifkin

Cisneros
Cisneros I

PgDn PgUp SUlis

Figure 20.3: Rifkin's orders as seen in Nameorders

You can also join views with other tables, either base tables or

views, so that you can see all of Axelrod's orders and her com-

mission on each one:

SELECT a.sname, cname, amt * comm
FROM Nameorders a, Salespeople b

WHERE a.sname = 'Axelrod'

AND b.snum = a.snum;

The output for this query is shown in Figure 20.4.

In the predicate, we could have said " WHERE a. sname =

'Axelrod' AND b. sname = 'Axelrod' ", but the predicate we
used is more general. All we have to change to make it apply to

anyone else is the name. Besides, snum is the primary key of

Salespeople, and therefore should definitely be unique. If there

260 UNDERSTANDING SQL

ch. 20

Figure 20. 4: A join of a base table to a view

were two Axelrod's, the name version would combine their data.

The preferred version would use the snum to keep them separate.

VIEWS AND SUBQUERIES

Views can also use subqueries, including correlated subqueries.

Perhaps your company provides a bonus for the salesperson who

has the customer with the highest order on any given date. You

could track that information with this view:

CREATE VIEW Elitesalesforce

AS SELECT b.odate, a.snum, a.sname,

FROM Salespeople a, Orders b

WHERE a.snum = b.snum
AND b.amt =

(SELECT MAX (amt)

FROM Orders c

WHERE c.odate = b.odate);

If, on the other hand, the bonus will go only to salespeople

when they have had the highest order at least ten times, you

INTRODUCING: VIEWS 261

might track them in another view based on the first:

CREATE VIEW Bonus
AS SELECT DISTINCT snum, sname

FROM Elitesalesforce a

WHERE 10 < =

(SELECT-COUNT (*)

FROM Elitesalesforce b

WHERE a.snum = b.snum);

Extracting from this table the salespeople who will receive

bonuses is simply a matter of entering the following:

SELECT *

FROM Bonus;

Now we are seeing the true power of SQL. Extracting this

derived information with an RPG or COBOL program would

have been a much lengthier procedure. In SQL, it is just a mat-

ter of two somewhat complex commands stored as view defini-

tions along with simple query. The query itself is all we would

have to be concerned with on a day-to-day basis, because the

information it extracts is continuously changed to reflect the cur-

rent state of the database.

WHAT VIEWS CANNOTDO
There are many types of views (including many of our exam-

ples in this chapter) that are read only. This means that they can

be queried, but they cannot be subjected to update commands.
(We will explore this topic in Chapter 21.)

There are also some aspects of queries that are not permissible in

view definitions. A single view must be based on a single query;

UNION and UNION ALL are not allowed. Neither is ORDER
BY to be used in the definition of a view. The output of the query

forms the content of the view, which like a base table, is by defini-

tion unordered.

262 UNDERSTANDING SQL

ch. 20

DROPPING VIEWS

The syntax to eliminate a view from the database is similar to

that for removing base tables:

DROP VIEW <view name>

There is no need, however, to first delete all the contents as

there is with base tables, because the contents of a view are never

defined, save for the duration of a particular command. The
underlying table(s) from which the view is drawn are not affected

when it is dropped. Remember, you must own the view in order

to drop it.

SUMMARY
Now that you can use views, your ability to track and process

the content of your database easily is greatly enhanced. Almost

anything you can create spontaneously with a query, you can

define permanently as a view. Queries against these views are. in

effect, queries on queries. The use of views for both convenience

and security as well as many of the capabilities of views for for-

matting and deriving values from the ever-changing content of

your database, have been explored. There is one major issue

regarding views, updatability, that we chose to defer until Chap-

ter 21. As indicated, you can update views as you would base

tables, with the changes applied to the table(s) from which the

view is derived, but this is not possible in all cases.

INTRODUCING: VIEWS 263

Putting SQL to Work

1. Create a view that shows all of the customers who have

the highest ratings.

2. Create a view that shows the number of salespeople in

each city.

3. Create a view that shows the average and total orders for

each salesperson after his or her name. Assume all names
are unique.

4. Create a view that shows each salesperson with multiple

customers.

(See Appendix A for answers.)

21

Changing Values

Through Views

266 UNDERSTANDING SQL

CH. 21

THIS CHAPTER TALKS ABOUT THE DML UPDATE
commands—INSERT, UPDATE, and DELETE—when they

are applied to views. As mentioned in the previous chapter,

using update commands on views is an indirect way of using

them on the tables referenced by the queries of the views. How-
ever, not all views can be updated. In this chapter, we will dis-

cuss the rules for determining whether or not a view is updatable

and explore their implications. In addition, you will learn to use

the clause WITH CHECK OPTION, which controls the spe-

cific values that can enter a table through a view. As mentioned

in Chapter 18, this can, in some cases, be a desirable alternative

to constraining a table directly.

UPDATING VIEWS
One of the most difficult and ambiguous aspects of views is

the implication of their usage with the DML update commands.
As mentioned in the previous chapter, these commands actually

affect the values in the underlying base tables of the view. This is

something of a contradiction. A view consists of the results of

a query, and when you update a view, you are updating a set

of query results. But the update is not to affect the query per se;

it is to affect the values in the table(s) on which the query was

made, and thereby change the output of the query. This is not

necessarily a simple matter. The following statement will create

the view shown in Figure 21.1:

CREATE VIEW Citymatch (custcity, salescity)

AS SELECT DISTINCT a.city, b.city

FROM Customers a, Salespeople b

WHEREa.snum = b.snum;

This view shows all matches of customers with salespeople

such that there is at least one customer in custcity served by a

salesperson in salescity.

For example, one row of this table—London London— indi-

cates that there is at least one customer in London served by a

salesperson in London. This row could have been produced by

the match of Hoffman with her salesperson Peel, both in London.

CHANGING VALUES THROUGH VIEWS 26

7

SELECT *

FROM Citymatch

=SQL Execution Log-

Berlin San Jose
London London
Rome London
Rome New York
San Jose Barcelona
San Jose San Jose

Browse : Tl<--» PgDn PgUp —H \4— Home '

Figure 21. 1: The Citymatch View

The same value, however, would be produced by matching Cle-

mens, also in London, with his salesperson, who also happens to

be Peel. Since distinct city combinations were specifically selected,

only one compound row with these values was produced. But

which match of underlying table values does it represent?

Even if you hadn't selected using distinct, you would still be in

the same boat, because you would then have two rows in the

view with identical values, that is, with both columns equal to

London. These two rows of the view would be indistinguishable

from one another, so you still would not be able to tell which row

of the view came from which input values of the base tables

(keep in mind that queries that omit the ORDER BY clause pro-

duce output in an arbitrary order. This applies as well to queries

used within views, which cannot use ORDER BY. So the order

of the two rows cannot be used to distinguish them). This means
that we would again be faced with output rows that could not be

definitely linked to specific rows of the tables queried.

What if you tried to delete the row London London from the

view? Would it mean deleting Hoffman from the Customers

table, Clemens, or both? Should SQL also delete Peel from the

Salespeople table? Such questions are impossible to answer

268 UNDERSTANDING SQL

CH. 21

definitively, so deletions are not permitted on views of this nat-

ure. The view Citymatch is an example of a read-only view, one

that can be queried, but not changed.

DETERMINING IFA VIEW IS UPDATABLE
If update commands can be performed on a view, the view is

said to be updatable; otherwise it is read-only. Consistent with

this terminology, we shall use the expression "updating a view"

to mean executing on the view any of the three DML update

commands (INSERT. UPDATE and DELETE) that can change

its values.

How do you determine if a view is updatable? In database the-

ory, this is still a debated topic. The basic principle is that an

updatable view is one on which an update command can be per-

formed, altering one and only one row of the underlying table at a

time without affecting any other rows of any table. Putting this

principle into practice, however, can be difficult. Moreover, some

views that are updatable in theory are not really updatable in

SQL. The criteria that determine whether or not a view is updat-

able in SQL are as follows:

• It must be drawn on one and only one underlying table.

• It must include the primary key of that table (this is not

technically enforced by the ANSI standard, but you

would be well-advised to stick to it).

• It must have no fields that are aggregate functions.

• It must not specify DISTINCT in its definition.

• It must not use GROUP BY or HAYING in its definition.

• It must not use subqueries (this is an ANSI restriction

that is not enforced in some implementations).

• It may be defined on another view, but that view must

also be updatable.

CHANGING VALUES THROUGH VIEWS 269

It must not use constants, strings, or value expressions (for

example: comm * 100) among the selected output fields.

For INSERT, it must include any fields of the underlying

table that have the NOT NULL constraint, unless

another default has been specified.

UPDATABLE VS. READ-ONLY VIEWS
One implication of these restrictions is that updatable views

are, in effect, like windows on the underlying tables. They show-

some, but not necessarily all, of a table's contents. They can be

restricted to certain rows (by the use of predicates), or to specifi-

cally named columns (with exceptions), but they present the val-

ues directly and do not derive information from them, such as by

using aggregate functions and expressions. They also do not com-

pare table rows to one another (as in joins and subqueries, and as

with DISTINCT).
The differences between updatable and read-only views are not

merely incidental. The purposes for which you use them are fre-

quently different. Updatable views are generally used just like base

tables. In fact, users may not even be aware of whether the object

they are querying is a base table or a view. They are an excellent

security mechanism for concealing parts of a table that are confi-

dential or are superfluous to a given user's needs. (In Chapter 22,

we shall show you how to allow users to access a view, but not the

underlying table).

Read-only views, on the other hand, allow you to derive and

reformat data extensively. They give you a library of complex

queries that you can execute and reexecute, keeping your derived

information strictly up to the minute. In addition, having the

results of these queries in tables that can then be used in queries

themselves (for example, in joins) has advantages over simply exe-

cuting the queries. Read-only views can also have security appli-

cations. For instance, you may want some users to see aggregate

data, such as the average salesperson's commission, without being

able to see individual commission values.

270 UNDERSTANDING SQL

CH. 21

TELLING WHICHARE UPDATABLE VIEWS
Here are some examples of updatable and read-only views:

CREATE VIEW Dateorders (odate, ocount)

AS SELECT odate, COUNT (*)

FROM Orders

GROUP BY odate;

This is a read-only view because of the presence of an aggregate

function and GROUP BY.

CREATE VIEW Londoncust

AS SELECT *

FROM Customers
WHERE city = 'London';

This is an updatable view.

CREATE VIEW SJsales (name, number, percentage)

AS SELECT sname, snum, comm * 100

FROM Salespeople

WHERE city = 'San Jose';

This is a read-only view because of the expression "comm * 100."

The reordering and renaming of the fields is permissable, however.

Some programs would allow deletions on this view or updates on the

snum and sname columns.

CREATE VIEW Salesonthird

AS SELECT *

FROM Salespeople

WHERE snum IN

(SELECT snum
FROM Orders

WHERE odate = 10/03/1990);

This is a read-only view in ANSI because of the subquery. In

some programs, it might be acceptable.

CHANGING VALUES THROUGH VIEWS 2 71

CREATE VIEW Someorders
AS SELECT snum, onum, cnum

FROM Orders

WHERE odate IN (10/03/1990, 10/05/1990);

This is updatable.

CHECKING THE
VALUES PLACED IN VIEWS
Another issue involving updates of views is that you can enter

values that get "swallowed" in the underlying table. Consider

this view:

CREATE VIEW Highratings

AS SELECT cnum, rating

FROM Customers
WHERE rating = 300;

This is an updatable view. It simply restricts your access to the

table to certain rows and columns. Suppose, then, you INSERT
the following row:

INSERT INTO Highratings

VALUES (2018, 200);

This is a legal INSERT command on this view. The row would

be inserted, through the Highratings view, into the Customers

table. Once it was there, however, it would disappear from the

view, as its rating value is not 300. This is usually a problem.

The 200 value might have been a simple typo, but now the row
is in the Customers table where you cannot even see it. A user

may not be aware that she has entered a row she cannot see, and
would be unable to delete it in any case.

You can ensure against modifications of this sort by including

WITH CHECK OPTION in the definition of the view. Had we

272 UNDERSTANDING SQL

CH. 21

used WITH CHECK OPTION in the definition of the Highrat-

ings view

CREATE VIEW Highratings

AS SELECT cnum. rating

FROM Customers
WHERE rating = 300

WITH CHECK OPTION;

the above insertion would have been rejected.

WITH CHECK OPTION is a kind of all-or-nothing affair.

You put it in the definition of the view, not in a DML command,
so either all update commands against the view will be checked,

or none will. Usually you do want to employ the check option, so

having it in the definition of the view may be a convenience.

Generally, you should use this option unless you have a specific

reason for allowing a view to put into a table values it will not

itself contain.

PREDICATESAND EXCLUDED FIELDS

A related problem that you should be aware of involves inserting

rows into a view with a predicate based on one or more excluded

fields. For instance, it might seem sensible to define Londonstaff

like this:

CREATE VIEW Londonstaff

AS SELECT snum. sname, comm
FROM Salespeople

WHERE city = London';

After all, why include the city value when all the city values will

be the same, and the name of the view tells us which city this view

is for? But picture what happens whenever we try to insert a row.

Since we cannot specify a city value, a default value, probably

NULL, would be entered in the city field (NULL would be used

unless another default were explicitly defined. See Chapter 18 for

details). Since the city field would not then equal London, the

inserted row would be excluded from the view. This would be true

CHANGING VALUES THROUGH VIEWS 273

for any row that you tried to insert into Londonstaff. They would

all be entered through the Londonstaff view into the Salespeople

table, and then be excluded from the view itself (unless the explic-

itly defined default were 'London', a special case). A user would

be unable to enter rows into this view, yet, perhaps unknowingly,

could enter rows into the underlying table. Even if we add WITH
CHECK OPTION to the definition of the view

CREATE VIEW Londonstaff

AS SELECT snum, sname, comm
FROM Salespeople

WHERE city = London'
WITH CHECK OPTION;

the problem would not necessarily be solved. The effect of this

would be to give us a view that we could update or delete from,

but not insert into. In some cases, this may be fine; perhaps there

is no reason for users with access to this view to be able to add

rows. But you should definitely determine that this is the case

before you create such a view.

Even though they may not always provide useful information,

it is frequently a good idea to include, in your view, all fields ref-

erenced in its predicate. If you do not want these fields in your

output, you can always omit them from a query on the view, as

opposed to the query within the view. In other words, you could

define the Londonstaff view like this:

CREATE VIEW Londonstaff

AS SELECT *

FROM Salespeople

WHERE city = 'London'

WITH CHECK OPTION;

This would fill the view with identical city values that you could

simply omit from the output with a query along these lines:

SELECT snum, sname, comm
FROM Londonstaff;

274 UNDERSTANDING SQL

CH. 21

CHECKING VIEWS THAT
ARE BASED ON OTHER VIEWS
One more thing should be mentioned about WITH CHECK

OPTION in ANSI: it does not cascade up: It applies only to the

view in which it is defined, not to other views based on that view.

For instance, in a previous example

CREATE VIEW Highratings

AS SELECT cnum, rating

FROM Customers
WHERE rating = 300
WITH CHECK OPTION;

attempts to insert or update to rating values other than 300 will

fail. However, we could create a second view (with identical con-

tent) based on the first:

CREATE VIEW Myratings

AS SELECT *

FROM Highratings;

We could then update to a rating other than 300:

UPDATE Myratings

SET rating = 200

WHERE cnum = 2004;

This command, which would have the same effect as if it were

performed on the first view, could be accepted.

The WITH CHECK OPTION clause merely ensures that any

update to the view it's in produces values that satisfy the predicate

of that view. Updates to other views based on the current one are

all still legal, unless prevented by WITH CHECK OPTION
clauses within those views. Even if such clauses are present, they

check only the predicates of views in which they are contained.

So, even if Myratings were defined as follows

CREATE VIEW Myratings

AS SELECT *

FROM Highratings

WITH CHECK OPTION;

CHANGING VALUES THROUGH VIEWS 275

the problem would not be solved. This WITH CHECK OPTION
would only examine the predicate of the Myratings view. Since

Myratings, in fact, has no predicate, the WITH CHECK
OPTION would do nothing. If there were a predicate used, it

would be checked whenever Myratings were updated, but the

predicate of Highratings would still be ignored.

This is a flaw in the ANSI standard that many products have

corrected. You might want to try using a view definition like the

last example and see if your system avoids this pitfall. (Trying

something out can sometimes be considerably easier and more

dependable than trying to extract the answer from system docu-

mentation.)

SUMMARY
You have now mastered views pretty thoroughly. In addition to

a checklist of rules to determine if a given view is updatable in

SQL, you know the basic concepts on which the rules are based

—

updates to views are permissible only if SQL can unambiguously

determine which values of the underlying table to change. This

means that the update command, when performed, must not

require changes to multiple rows at once, nor comparisons

between multiple rows of either the base table or the query out-

put. Since joins involve comparing rows, they are prohibited. You

also understand the differences between some of the ways that

updatable and read-only views are used.

You have learned to think of updatable views as windows,

showing the data of a single table, but optionally omitting or

rearranging its columns as well as selecting only certain rows

according to a predicate criteria.

Read-only views, on the other hand, can contain most valid

SQL queries; they can therefore be a way of keeping queries you

need to execute frequently in a permanent form. In addition,

having a query whose output is treated as a data object enables

you to have the clarity and convenience of making queries on the

output of queries.

You now can prevent update commands on a view from pro-

ducing rows in the underlying table that are not present in the

276 UXDERSTAXDIXG SQL

CH. 21

view itself by using the WITH CHECK OPTION clause in

the view definition. You can also use WITH CHECK OPTION
as an alternative to a constraint on the underlying table.

In stand-alone queries, you can usually use one or more
columns in a predicate that are not present among the selected

output without causing a problem. If these queries are used in

updatable views, however, they are problematic because they pro-

duce views that cannot have rows inserted into them (although, in

the absence of WITH CHECK OPTION, the rows may end up

in the underlying table). You have seen the implications of, and

some approaches to. this problem.

In Chapters 20 and 21. we have mentioned that views have

security applications. You can allow users to access views without

allowing them to access the tables on which the views are based

directly. Chapter 22 will explore the question of access to data

objects in SQL.

CHANGING VALUES THROUGH VIEWS 277

Putting SQL to Work

1. Which of these views are updatable?

#1 CREATE VIEW Dailyorders

AS SELECT DISTINCT cnum, snum, onum,
odate

FROM Orders;

#2 CREATE VIEW Custotals

AS SELECT cname, SUM (amt)

FROM Orders, Customers
WHERE Orders.cnum = customer.cnum
GROUP BY cname;

#3 CREATE VIEW Thirdorders

AS SELECT *

FROM Dailyorders

WHERE odate = 10/03/1990;

#4 CREATE VIEW Nullcities

AS SELECT snum, sname, city

FROM Salespeople

WHERE city IS NULL
OR sname BETWEEN A AND MZ';

2. Create a view of the Salespeople table called Commis-
sions. This view will include only the snum and comm
fields. Through this view, someone could enter or change

commissions, but only to values between .10 and .20.

3. Some SQL implementations have a built-in constant repre-

senting the current date, sometimes called "CURDATE".
The word CURDATE can therefore be used in a SQL
statement, and be replaced by the current date when
the value is accessed by commands such as SELECT or

INSERT. We will use a view of the Orders table called

278 UNDERSTANDING SQL

CH. 21

Entryorders to insert rows into the Orders table. Create the

Orders table, so that CURDATE is automatically inserted

for odate if no value is given. Then create the Entryorders

view so that no values can be given.

(See Appendix Afor answers.

)

22

Determining Who Can

Do What

280 UNDERSTANDING SQL

ch. 22

IN THIS CHAPTER, YOU WILL LEARN ABOUT PRIVI-
leges. As mentioned in Chapter 2, SQL is used mostly in envi-

ronments that require it to recognize and differentiate between

the various users of the system. Generally speaking, those in

charge of administering the database create the other users and

give them privileges. Users who create tables, on the other hand,

have control over those tables. Privileges are what determines

whether or not a particular user can perform a given command.
There are several types of privileges corresponding to several

types of operations. Privileges are given and taken away with

two SQL commands—GRANT and REVOKE. This chapter

will show you how these commands are used.

USERS
Each user in a SQL environment has a specific identifying

name or number. The specific terminology varies, but we have

chosen (following ANSI) to refer to this name or number as an

authorization ID. Commands given to the database are associ-

ated with a particular user; that is, a specific authorization ID.

As far as the SQL database is concerned, the authorization ID is

the name of the user, and SQL can use the special keyword

USER, which refers to the Authorization ID associated with the

current command. Commands are interpreted and permitted (or

prohibited) on the basis of information associated with the autho-

rization ID of the user issuing the command.

LOGGING ON
In systems with multiple users, there is generally some kind of

log-on procedure that a user has to go through when gaining

access to the computer system. This procedure determines which

authorization ID will be associated with the current user. Nor-

mally, each person using the database will have his own authoriza-

tion ID, so that the users as conceived by SQL will correspond to

actual users. However, often users with multiple functions can log

on to various authorization IDs, or an ID can be used by several

DETERMINING WHO CANDO WHAT 281

users. SQL generally has no way of making distinctions between

these cases; it simply sees the user as the authorization ID.

A SQL database may use a log-on procedure of its own, or it

may allow another program, such as the operating system (the

main program that runs your computer), to handle log ons and

obtain its authorization IDs from that program. One way or

another SQL, will have an authorization ID to associate with your

actions, and this will be the value of the keyword USER for you.

GRANTING PRIVILEGES
Each user in a SQL database has a set of privileges. These are

things that the user is permitted to do (one of which, presumably,

is log on, which can be considered a minimal privilege). These

privileges can change over time—new ones can be added, old

ones taken away. Some of these privileges are defined in ANSI
SQL, but there are additional ones that are necessary as well.

The SQL privileges as defined by ANSI are not sufficient for the

needs of many real-life situations. On the other hand, the types

of privileges that are needed may vary with the kind of system

you are running—something about which ANSI could make no

assumptions. Privileges that are not part of standard SQL will

still use a syntax similar, though not identical, to the standard,

for the sake of consistency.

THE STANDARD PRIVILEGES

The SQL privileges defined by ANSI are object privileges. This

means that a user has a privilege to perform a given command
only on a certain object in the database. Obviously, privileges

need to be able to distinguish between objects, but a privilege

system based solely on object privileges cannot address all of

SQL's needs, as we shall see later in this chapter.

Object privileges are associated simultaneously with both

users and tables. That is to say, a privilege is given to a particu-

lar user on a particular table, either a base table or a view. You
will recall that a user who creates a table (of either kind) owns

282 UNDERSTANDING SQL

ch. 22

that table. Among other things, this means the user has all privi-

leges on that table and can assign them to others. These are the

privileges a user can assign:

SELECT

INSERT

UPDATE

DELETE

REFERENCES

A user with this privilege can perform

queries on the table.

A user with this privilege can perform

the INSERT command on the table.

A user with this privilege can perform

the UPDATE command on the table.

You may limit this privilege to specified

columns of the table.

A user with this privilege can perform

the DELETE command on the table.

A user with this privilege can define a

foreign key that uses one or more
columns of this table as a parent key.

You may limit this privilege to specified

columns. (Refer to Chapter 19 for

details on foreign and parent keys.)

In addition, you may encounter nonstandard object privileges,

such as INDEX (the right to create an index on a table), SYNO-
NYM (the right to create a synonym for an object, which will be

explained in Chapter 23), and ALTER (the right to perform the

ALTER TABLE command on a table). The mechanism SQL
employs to give users these privileges is the GRANT command.

THE GRANT COMMAND
Let us say that user Diane owns the Customers table and wants

to let user Adrian perform queries on it. Diane would enter the

following command:

GRANT SELECT ON Customers TO Adrian;

DETERMINING WHO CANDO WHAT 283

Now Adrian can perform queries on the Customers table.

Without other privileges, he can only select; he cannot perform

any of the actions that affect the values in Customers (including

using Customers as the parent table of a foreign key, which

restricts the changes that can be made to the values in the Cus-

tomers table).

When SQL receives a GRANT command, it checks the privi-

leges of the user issuing it to determine if the GRANT is permissi-

ble. Adrian himself could not issue this command. Nor could Adr-

ian grant SELECT to another user: the table is still owned by

Diane (although we will show you shortly how Diane could enable

Adrian to grant SELECT).
The syntax is the same for the granting of the other privileges.

If Adrian owned the Salespeople table, he could allow Diane to

enter rows into it by entering

GRANT INSERT ON Salespeople TO Diane;

Now Diane could put new salespeople into the table.

GROUPS OF PRIVILEGES, GROUPS OF USERS You do

not have to restrict yourself to granting a single privilege to a sin-

gle user per GRANT command. Lists of privileges or users, sep-

arated by commas, are perfectly acceptable. Stephen could either

grant SELECT and INSERT on the Orders table to Adrian

GRANT SELECT, INSERT ON Orders TO Adrian;

or to both Adrian and Diane

GRANT SELECT, INSERT ON Orders TO Adrian, Diane;

When privileges and users are listed like this, all of the privi-

leges in the list are granted to all of the users. In a strict ANSI
interpretation, you cannot grant privileges on multiple tables in

a single command, but some implementations may relax this

somewhat, by allowing you to name several tables, separated by

commas, so that all listed users get all listed privileges on all

listed tables.

284 UNDERSTANDING SQL

ch. 22

RESTRICTING PRIVILEGES TO CERTAIN COLUMNS
All the object privileges use the same syntax except for UPDATE
and REFERENCES, which can optionally specify columns. An
UPDATE privilege can be granted like the other privileges:

GRANT UPDATE ON Salespeople TO Diane;

This command would allow Diane to alter the values in any or

all of the columns of the Salespeople table. However, if Adrian

wanted to restrict Diane to changing commissions, he could

instead enter

GRANT UPDATE (comm) ON Salespeople TO Diane;

In other words, he simply has to name the column to which

the UPDATE privilege is to apply in parentheses after the table

name. Multiple columns of the table can be named, in any

order, separated by commas:

GRANT UPDATE (city, comm) ON Salespeople TO Diane;

REFERENCES follows this same pattern. When you grant

the REFERENCES privilege to another user, he or she can cre-

ate foreign keys that reference columns of your table as parent

keys. Like UPDATE, the REFERENCES privilege can take a

list of one or more columns to which the privilege will be limited.

For example, Diane can grant Stephen the right to use the Cus-

tomers table as a parent-key table with this command:

GRANT REFERENCES (cname, cnum)
ON Customers TO Stephen;

This command gives Stephen the right to use the cnum and

cname columns as parent keys to any foreign keys in his tables.

Stephen has control over how this will be done. He can define

(cname, cnum) or, for that matter, (cnum, cname) as a two-

column parent key, matched by a two-column foreign key in one

of his own tables. Or he can create separate foreign keys to refer-

ence the fields individually, provided, in either case, that Diane

has appropriately constrained the parent key(s) (see Chapter 19).

DETERMINING WHO CANDO WHAT 285

There is no restriction on the number of foreign keys he could

base on these parent keys, and the parent keys of various foreign

keys are allowed to overlap.

As with the UPDATE privilege, you can omit the column list

and thereby allow all of your columns to be usable as parent

keys. Adrian could grant Diane the right to do this with the fol-

lowing command:

GRANT REFERENCES ON Salespeople TO Diane;

Naturally, the privilege will be usable only on columns that

have the constraints required for parent keys.

USING THE ALL AND PUBLIC ARGUMENTS
SQL supports two arguments to the GRANT command that

have special meaning: ALL PRIVILEGES (or simply ALL) and

PUBLIC. ALL is used in place of the privilege names in the

GRANT command to give the grantee all of the privileges on

the table. For example, Diane could give Stephen the entire set of

privileges on the Customers table with this command:

GRANT ALL PRIVILEGES ON Customers TO Stephen;

(The UPDATE and REFERENCES privileges naturally apply

to all columns.) The following is an alternate way of saying the

same thing:

GRANT ALL ON Customers TO Stephen;

PUBLIC is a similar sort of catch-all argument, but for users

rather than privileges. When you grant privileges to the public, all

users automatically receive them. Most often, this will apply to the

SELECT privilege on certain base tables or views that you want to

have available for anyone's perusal. To allow any user to look at the

Orders table, for instance, you could enter the following:

GRANT SELECT ON Orders TO PUBLIC;

286 UNDERSTANDING SQL

ch. 22

Of course, you can grant any or all privileges to the public,

but this is obviously not advisable. All privileges except

SELECT allow the user to change (or, in the case of REFER-
ENCES, constrain) the content of the table. Allowing all users to

change the content of your tables is inviting problems. Even if

you have a small company, and it is appropriate for all of your

current users to be able to perform update commands on a given

table, it still may be better to grant the privileges to each user

individually, rather than to the public. PUBLIC is not restricted

to current users. Any new user added to your system will auto-

matically receive all privileges assigned to PUBLIC, so if you

want to restrict access to the table at all, now or possibly in the

future, it is best to grant privileges other than SELECT to indi-

vidual users.

GRANTING WITH THE GRANT OPTION
Sometimes, the creator of a table wants other users to be able to

grant privileges on that table. This is particularly true in systems

where one or a few people may create most or all of the base tables

in the database and then delegate responsibility for them to those

who will actually be working with them. SQL allows this through

the use of the WITH GRANT OPTION clause.

If Diane wanted Adrian to have the right to grant the SELECT
privilege on the Customers table to other users, she would give

him the SELECT privilege and use the WITH GRANT
OPTION clause:

GRANT SELECT ON Customers TO Adrian

WITH GRANT OPTION;

Adrian would then have the right to give the SELECT privi-

lege to third parties; he could then issue the command

GRANT SELECT ON Diane.Customers TO Stephen;

or even

GRANT SELECT ON Diane.Customers TO Stephen

WITH GRANT OPTION;

DETERMINING WHO CANDO WHAT 287

A user with the GRANT OPTION on a particular privilege

for a given table can, in turn, grant that privilege on that table,

with or without the GRANT OPTION, to any other user. This

does not change the ownership of the table; tables are owned by

their creators. (And they must be prefixed by the authorization

ID of the owner, as above, when referred to by other users. The
next chapter will show you a way around this.) But a user with

the GRANT OPTION on all privileges for a given table has a

great deal of power over that table.

TAKING PRIVILEGES AWAY
Just as ANSI defines a CREATE TABLE command to make

tables but not a DROP TABLE to get rid of them, it supports a

GRANT command to allow you to give privileges to users, but

doesn't define a way for you to take them back. The need to

remove privileges is met by the REVOKE command, a defacto

standard feature that is pretty consistent in form.

The syntax of the REVOKE command is patterned after

GRANT, but with the reverse meaning. So, to take away Adr-

ian's INSERT privilege on Orders, you could enter

REVOKE INSERT ON Orders FROM Adrian;

Lists of privileges and users are acceptable just as for

GRANT, so you can also enter the following command:

REVOKE INSERT, DELETE ON Customers
FROM Adrian, Stephen;

There is some ambiguity here, however. Who has the right to

revoke a privilege? When a user with grant option on a privilege

loses it, do users to whom he or she has granted the privilege lose

it as well? Since this is not a standard feature, there are no
authoritative answers to these questions, but the most common
approach is this: Privileges are revoked by the user who granted

them, and revocations will cascade; that is, they will automatically

apply as well to all users who received the privilege from the

revokee.

288 UNDERSTANDING SQL

ch. 22

USING VIEWS TO FILTER PRIVILEGES

You can make the effects of privileges more precise by using

views. Whenever you grant a privilege on a base table to a user,

it automatically applies to all rows and, with the possible excep-

tions of UPDATE and REFERENCES, all columns of the table.

By creating a view that references the base table and then grant-

ing privileges on the view rather than the table, you can limit

these privileges in any way expressible in the query that the view

contains. This greatly refines the basic capabilities of the

GRANT command.

WHO CAN CREATE VIEWS? In order to create a view, you

must have the SELECT privilege on all the tables that you refer-

ence in that view. If the view is updatable, any INSERT,
UPDATE, and DELETE privileges that you have on the under-

lying table will automatically apply as well to the view. If you

lack update privileges on the underlying tables, you will not have

them on the views you create, even if the views themselves are

updatable. Since foreign keys as such are not used in views, the

REFERENCES privilege is never needed to create views. These

are the restrictions defined by ANSI. Nonstandard system privi-

leges (discussed later in this chapter) may also be involved. In

the following sections we will assume that the creators of the

views we discuss own or have the relevant privileges on all base

tables used.

LIMITING THE
SELECT PRIVILEGE TO CERTAIN COLUMNS Suppose

you wanted to give user Claire the ability to see only the snum
and sname columns of the Salespeople table. You could do this

by putting these columns in a view

CREATE VIEW Clairesview

AS SELECT snum, sname
FROM Salespeople;

DETERMINING WHO CANDO WHAT 289

and granting Claire the SELECT privilege on the view, but not

on the Salespeople table itself:

GRANT SELECT ON Clairesview to Claire;

You can create column-specific privileges like this using the

other privileges as well, but, for the INSERT command, this will

mean the insertion of default values, and, for the DELETE com-

mand, the column limitations will not be meaningful. The
UPDATE and REFERENCES privileges, of course, can be

made column specific without resorting to a view.

LIMITING PRIVILEGES TO CERTAIN ROWS An even

more useful way to filter privileges with views is to use the view to

make a privilege apply only to certain rows. You do this, naturally,

by using a predicate in the view that determines which rows are

included. To grant the user Adrian the UPDATE privilege on all

Customers located in London, you could create this view:

CREATE VIEW Londoncust
AS SELECT *

FROM Customers
WHERE city = London'
WITH CHECK OPTION;

You could then grant the UPDATE privilege on it to Adrian:

GRANT UPDATE ON Londoncust TO Adrian;

This differs from a column-specific UPDATE privilege in that

all of the columns of the Customers table are included, but the

rows in cities other than London are left out. The WITH
CHECK OPTION clause prevents Adrian from changing the

city field to any value besides London.

GRANTING ACCESS ONLY TO DERIVED DATA Another

possibility is to offer users access to derived data, rather than

actual table values. Aggregate functions can often be handy if

290 UNDERSTANDING SQL

ch. 22

used this way. You can create a view that gives the counts, aver-

ages, and totals for the orders on each order date:

CREATE VIEW Datetotals

AS SELECT odate, COUNT (*), SUM (amt), AVG (amt)

FROM Orders

GROUP BY odate;

Now you give user Diane SELECT on the Datetotals view:

GRANT SELECT ON Datetotals TO Diane;

USING VIEWS AS AN ALTERNATIVE TO CONSTRAINTS
One last application of this technique, mentioned in Chapter 18,

is the use of views WITH CHECK OPTION as an alternative

to constraints. Suppose you wanted to make sure that all city val-

ues in the Salespeople table were in one of the cities where your

company currently had an office. You could place a CHECK
constraint on the city column directly, but this may be difficult to

change later if your company opens more offices. An alternative

is to create a view that excludes incorrect city values:

CREATE VIEW Curcities

AS SELECT *

FROM Salespeople

WHERE city IN ('London', Rome', San Jose',

'Berlin')

WITH CHECK OPTION;

Now, instead of granting users update privileges on the Sales-

people table, you would grant them on the Curcities view. An
advantage of this approach is that, if you need to make a change,

you can drop this view, create a new one, and grant users privi-

leges on the new view, which is often easier than changing a con-

straint. A disadvantage is that the owner of the Salespeople table

also has to use this view if he wants to have his own mistakes

rejected.

On the other hand, this approach enables the owner of the

table, and any others granted update privileges on the table itself

rather than the view, to make exceptions to the restriction. This

DETERMINING WHO CANDO WHAT 291

is frequently desirable, and it cannot be done if you use con-

straints on the base table. Unfortunately, these exceptions will

not be seen in the view. If you choose this approach, you may
wish to create a second view containing only the exceptions:

CREATE VIEW Othercities

AS SELECT *

FROM Salespeople

WHERE city NOT IN ('London', 'Rome', San Jose',

'Berlin')

WITH CHECK OPTION;

You could choose to grant users only the SELECT privilege on

this view, so that they may see the excluded rows, but still not

place invalid city values in the base table. In fact, users could

query both views in a union and see all of the rows at once.

OTHER KINDS OF PRIVILEGES
You may have been wondering who has the right to create

tables in the first place. This is an area of privilege not addressed

as such by ANSI, but incapable of being ignored. All of the stan-

dard ANSI privileges emanate from this privilege; it is the crea-

tors of tables who grant the object privileges. Moreover, having

all of your users creating base tables in a system of any size

invites redundancy and inefficiency, to say the least. Connected

with this are other concerns: Who has the right to alter, drop, or

constrain tables? Should the right to create base tables be distin-

guished from that to create views? Should there be superusers—
users who are generally in charge of maintaining the database

and therefore have a great many or all privileges without their

being individually granted?

Since ANSI doesn't address these concerns, and SQL is used

in a variety of environments, we cannot offer a definitive answer

to these questions. What we present here is an indication of the

most common approach to these issues.

Privileges that are not defined in terms of specific data objects

are called system privileges, or database authorities. At the most basic

level, these will probably include the right to create data objects,

292 UNDERSTANDING SQL

ch. 22

probably (and desirably) distinguishing between base tables

(usually created by a few users) and views (commonly created by

many or all users). A system privilege to create views should sup-

plement, rather than replace, the object privileges that ANSI
requires of view creators (explained earlier in the present chap-

ter). In addition, in a system of any size, some kind of superuser

— a user who automatically has many or all privileges—will gen-

erally exist, and the superuser status may be conferred with a

privilege or group of privileges. Database Administrator, or

DBA, is the term most often used for such a superuser. as well as

for the privilege he or she enjoys.

TYPICAL SYSTEM PRIVILEGES
The approach in common usage is to have three basic system

privileges called CONNECT. RESOURCE, and DBA. To sim-

plify a bit. COXXECT consists of the right to log on and the right

to create views and synonyms (see Chapter 23) if granted the

appropriate object privileges. RESOURCE consists of the right to

create base tables. DBA is a superuser privilege giving a user vir-

tual carte-blanche authority over the database. One or a few users

with the function of administering the database will have this priv-

ilege. Some systems also have a special user, sometimes called

SYSADM or SYS, who has the highest authority; these are special

names, not just users with the special DBA privilege. An individ-

ual will actually log on with SYSADM as his or her authorization

ID. The distinction is subtle and operates differently in different

systems. For our purposes, we shall refer to highly privileged

user(s) who design and control the database as DBAs, reflecting

the fact that this is a function as well as a privilege.

The GRANT command, in a modified form, is usable with

system as well as object privileges. Initial grants will be made by

the DBA. For example, the DBA may grant the privilege to cre-

ate a table to the user Rodriguez as follows:

GRANT RESOURCE TO Rodriguez;

DETERMINING WHO CANDO WHAT 293

CREATING AND DESTROYING USERS

Of course, there is also the question of how the user called

Rodriguez is created. How is this authorization ID defined? In

many implementations, a DBA creates a user automatically by

granting the CONNECT privilege. In this case, an IDENTI-
FIED BY clause, indicating a password, is usually added. (If

not, the operating system should determine whether you can log

on to the database with a given authorization ID.) The DBA
could, for example, enter

GRANT CONNECT TO Thelonius IDENTIFIED BY Redwagon;

This creates a user called Thelonius, gives him the right to log

on, and assigns him the password Redwagon, all in one step.

Once Thelonious is a recognized user, he or the DBA could use

this same command to change the Redwagon password.

Although convenient, there are limitations to this approach. It is

impossible to have a user who cannot log on, even temporarily. If

you want to keep a user from logging on, you have to REVOKE
the CONNECT privilege, which "destroys" that user. Some
implementations may allow you to create and destroy users inde-

pendently of the privilege to log on.

When you grant the CONNECT privilege to a user you create

that user. You must yourself have the DBA privilege to do this. If

this user is to create base tables (instead of just views), she or he

must also be granted the RESOURCE privilege. But this brings

up another problem. If you attempted to revoke the CONNECT
privilege from a user who has tables, the command would be

rejected, because it would leave the tables without an owner,

which is not allowed. You must drop all of a user's tables before

revoking the CONNECT privilege from the user. If these tables

are not empty, you will probably want to transfer their data to

some other tables with an INSERT command that uses a query.

You do not have to revoke the RESOURCE privilege separately;

revoking CONNECT is sufficient to destroy the user.

Although the above is currently the standard approach to system

privileges, it has considerable limitations. Alternative approaches

are emerging that use more narrowly defined and precisely con-

trolled system privileges.

294 UNDERSTANDING SQL

ch. 22

These issues take us beyond the boundaries of the SQL stan-

dard as currently defined, and, in some implementations, may
be addressed outside of SQL entirely. These things probably will

not concern you much anyway, unless you are, in fact, a DBA or

similar high-level user. Ordinary users need only be aware of

system privileges conceptually, referring to their own documen-
tation for specifics as needed.

SUMMARY
Privileges have enabled you to see SQL from a new angle, that

of SQL actions performed by specific users in a specific database

system. The GRANT command itself is simple enough: with it

you grant one or more privileges on an object to one or more
users. If you grant a privilege WITH GRANT OPTION to a

user, that user can grant the privilege to others in turn.

You now understand the previously hinted-at uses of privileges

on views— to refine privileges on the base tables, or as an alter-

native to constraints—and some of the advantages and disadvan-

tages of this approach. System privileges, which are necessary

but outside the realm of standard SQL, have been discussed in

their most common form, so that they will be familiar when you

encounter them.

Chapter 23 will continue to discuss broader issues in SQL,
such as saving or reversing changes, creating your own names

for other people's tables, and understanding what happens when
different users attempt to access the same object at once.

DETERMINING WHO CANDO WHAT 295

Putting SQL to Work

1. Give Janet the right to change the ratings of the customers.

2. Give Stephen the right to give other users the right to

query the Orders table.

3. Take the INSERT privilege on Salespeople away from

Claire and all users to whom she has granted it.

4. Grant Jerry the right to insert or update the Customers

table while keeping his possible rating values in the range

of 100 to 500.

5. Allow Janet to query the Customers table, but restrict

her access to those Customers whose rating is the lowest.

(See Appendix A for answers.)

23
r :%i Global Aspects ofSQL

298 UNDERSTANDING SQL

ch. 23

THIS CHAPTER DISCUSSES ASPECTS OF THE SQL
language that have general relevance to the database as a whole,

including the use of multiple names for data objects, the alloca-

tion of data storage, the reversing or saving of changes to the

database, and the coordination of simultaneous actions by multi-

ple users. This material enables you to configure your database,

undo mistakes, and determine how one user's actions on a data-

base will affect other users.

RENAMING TABLES
Whenever you refer in a command to a base table or view that

you do not own, you must prefix it with the owner's name, so

SQL knows where to look for it. Since this can, at times, be awk-

ward, many implementations of SQL allow you to create syno-

nyms for tables (this is not ANSI standard). A synonym is an

alternative name, like a nickname, for a table. When you create

a synonym, you own it, so there is no need to precede it with

another user's authorization ID (user name).

If you have at least one privilege on one or more columns of a

table, you can generally create a synonym for it. (Some imple-

mentations may have a special privilege for creating synonyms.)

Adrian would create a synonym, say Clients, for Diane. Custo-

mers by using the CREATE SYNONYM command as follows:

CREATE SYNONYM Clients FOR Diane.Customers;

Now, Adrian could use the table name Clients in a command
with the same effect as using Diane.Customers. The Clients syn-

onym is owned and solely usable by Adrian.

RENAMING WITH THE SAME NAME
The user prefix is actually part of any table's name as far as

SQL is concerned. Whenever you omit your own user name with

GLOBAL ASPECTS OF SQL 299

a table you own, SQL fills it in for you. Therefore, two identical

table names associated with different owners are actually not iden-

tical and need not lead to any confusion (at least not on SQL's

part). This means that two users can create two completely unre-

lated tables with the same name, but it also means that one user

could create a view based on and named after another user's

table. This is sometimes done when the view is, for all practical

purposes, to be considered the same as the table itself—for exam-

ple, if the view merely uses the CHECK OPTION as a substitute

for a CHECK constraint in the base table (refer to Chapter 22 for

details). You can also create your own synonyms that are the same

as the original table names. For example, Adrian could define

Customers as his synonym for Diane.Customers like this:

CREATE SYNONYM Customers FOR Diane.Customers;

From SQL's standpoint there are now two different names for

the table: Diane. Customers and Adrian. Customers. Each of the

users, however, can simply refer to the table as Customers.

ONE NAME FOR EVERYBODY
If you plan to have the Customers table used by a great many

users, it might be best to have them all refer to it by the same

name. This will enable you, for instance, to use this name in your

internal correspondence without qualification. To define a single

name for all users, you create a public synonym. For example, if all

users are to call the Customers table Customers, you would enter

CREATE PUBLIC SYNONYM Customers FOR Customers;

We are assuming you own the Customers table, so no user-name

prefix is needed with the closing "Customers" of the command.
Generally, public synonyms are created by owners of the objects or

highly privileged users, such as DBAs. Users must still be granted

privileges on the Customers table in order to access it. Even though

the name is public, the table itself is not. Public synonyms are con-

sidered to be owned by PUBLIC, not by their creators.

300 UNDERSTANDING SQL

ch. 23

DROPPING SYNONYMS
Public and other synonyms can be dropped with the DROP

SYNONYM command. Synonyms are dropped by their owners,

except for public synonyms, which are dropped by appropriately

privileged individuals, usually DBA's. To drop his synonym Cli-

ents, now that the public synonym Customers is available, Adri-

an would enter

DROP SYNONYM Clients;

The Customers table itself is, of course, not affected.

HOW IS THE DATABASE
ALLOCATED TO USERS?

Tables and other data objects are stored in the database in asso-

ciation with the particular users who own them. In a sense, you

could say that they are stored in the "user's name space",

although this does not neccessarily reflect any physical location,

but is, like most things in SQL, strictly a logical construct. The
fact is, however, that data objects have to be stored in some physi-

cal sense, and the amount of storage that can be used by a partic-

ular object or user at a given time is finite. After all, no computer

has instant access to an infinite supply of media (disk, tape, or

internal memory) for storing data. Moreover, SQL performance

is enhanced if the logical structure of the data is reflected in some

physical way that commands can take advantage of.

In larger SQL systems, a database will be divided into areas

called databasespaces or tablespaces. These are areas of stored infor-

mation that are arranged so that the information within them is

close together for the purposes of executing commands; that is,

the program does not have to search far and wide for informa-

tion that is grouped in a single databasespace. Although the

physical details of this are implementation dependent, it is expe-

dient to operate on these areas within SQL itself. Systems that

employ databasespaces (hereafter abbreviated as dbspaces) gener-

ally allow you to treat them as objects in SQL commands.

GLOBAL ASPECTS OF SQL 301

Dbspaces are created with a CREATE DBSPACE, an

ACQUIRE DBSPACE, or a CREATE TABLESPACE command,
depending on the implementation. One dbspace can accomodate

any number of users, and a single user can have access to multiple

dbspaces. The privilege to create tables, although it can be granted

across the database, is often granted on a specific dbspace.

We can create a dbspace called Sampletables, with the follow-

ing command:

CREATE DBSPACE Sampletables

(pctindex 10,

pctfree 25);

The pctindex parameter specifies what percentage of the dbspace

is to be set aside to store indexes on tables. Pctfree is the percentage

of the dbspace that is set aside to allow tables to expand the

size of their rows (ALTER TABLE can add columns or increase

the size of columns, making each row longer. This is the expansion

that room is being allotted for). There are usually other parameters

you can specify as well, which vary from product to product. Most
products will provide automatic default values, so that you can cre-

ate dbspaces without specifying parameters. The dbspace may have

a specific size limitation, or it may be allowed to grow indefinitely

with the tables.

Once a dbspace has been created, users are granted the right

to create objects in it. You could grant Diane the right to create

tables in Sampletables like this:

GRANT RESOURCE ON Sampletables TO Diane;

This enables you to allocate more specifically the data storage

available. The first dbspace assigned to a given user is generally

the one where all of his or her objects will be created by default.

Users with access to multiple dbspaces can specify where they

want a particular object to be placed.

In dividing up your database into dbspaces, you should keep in

mind the types of operations that you will run frequently. Tables

that you know will be joined frequently, or that have one referenc-

ing the other in a foreign key, could go well together in a dbspace.

302 UNDERSTANDING SQL

ch. 23

For example, you can tell from the design of the sample tables,

that the Orders table will often be joined to one or both of the

other two, because the Orders table uses values from both of those

tables. Other things being equal, these three tables should go on

the same dbspace, regardless of who owns them. The possible

presence of foreign-key constraints in the Orders table simply

makes the case for sharing a dbspace stronger.

WHENDOES A CHANGE
BECOME PERMANENT?

It is easy in visualizing a database environment to picture

hoards of users entering and changing data constantly, assuming

that, if the system is well designed, it will function without glit-

ches. In the real world, however, mistakes due to human or com-

puter error happen all the time, and one of the things that good

computer programmers have learned is to give people ways of

undoing their actions.

A SQL command that affects the content or structure of the

database— a DML update command or a DROP TABLE com-

mand, for instance— is not necessarily irreversible. You can

determine after the fact whether a given group of one or more

commands will effect permanent changes to the database, or be

disregarded. For this purpose, commands are treated in groups

called transactions

.

A transaction is begun whenever you initiate a session with

SQL. All commands you enter will be part of this same transac-

tion, until you complete it by entering either a COMMIT WORK
or a ROLLBACK WORK command. COMMIT will make all of

the changes affected by the transaction permanent, and ROLL-
BACK will reverse them. A new transaction is begun after each

COMMIT or ROLLBACK command. This process is known as

transaction processing.

The syntax to make all of your changes since logging on, or

since the last COMMIT or ROLLBACK, permanent is

COMMIT WORK;

GLOBAL ASPECTS OF SQL 303

The syntax to reverse them is

ROLLBACK WORK;

In many implementations, you set a parameter called some-

thing like AUTOCOMMIT. This will automatically commit all

actions that execute normally. Actions that produce errors are

automatically rolled back in any case. If this is offered on your

system, you may choose to have all of your actions committed

with a command like this:

SET AUTOCOMMIT ON;

You could return to regular transaction processing with this command:

SET AUTOCOMMIT OFF;

It is also possible for AUTOCOMMIT to be automatically set

on for you by the system when you log in.

If a user session terminates abnormally— if the system crashes

or the user reboots, for example—the current transaction will

automatically be rolled back. This is one reason why, if you are

doing your transaction processing by hand, you want to divide up
your commands into many different transactions. A single trans-

action should not contain a lot of unrelated commands; in fact, it

can frequently consist of a single command. Transactions that

include an entire group of unrelated changes leave you no choice

but to save or reject the whole group, when you probably want

only to reverse one specific change. A good rule of thumb to fol-

low is to have your transactions consist of single or of closely

related commands.
For example, suppose you want to remove salesperson Motika

from the database. Before you delete her from the Salespeople

table, you first should do something with her orders and her cus-

tomers. (If the foreign-key constraints are appropriately used,

and your system, following ANSI, restricts parent key changes,

you would have no choice but to do this. It is appropriate to do it

in any case.)

304 UNDERSTANDING SQL

ch. 23

One logical solution would be to set the snum on her orders to

NULL, so that no salesperson receives a commission on those

orders, while giving her customers to Peel. Then you could

remove her from the Salespeople table:

UPDATE Orders

SET snum = NULL
WHERE snum = 1004;

UPDATE Customers
SET snum = 1001

WHERE snum = 1004;

DELETE FROM Salespeople

WHERE snum = 1004;

If you had a problem deleting Motika (perhaps there is

another foreign key referencing her that you did not know about

or account for), you might want to reverse all of the changes you

made until the problem could be identified and resolved. There-

fore, this would be a good group of commands to treat as a single

transaction. You could precede it with a COMMIT, and termi-

nate it with a COMMIT or a ROLLBACK.

HOWSQL DEALS WITH
MULTIPLE USERSAT ONCE
SQL is frequently used in multi-user environments—environ-

ments where more than one user can perform actions on the data-

base at the same time. This creates a potential for clashes between

the various actions performed. For example, suppose you are per-

forming the following command on the Salespeople table:

UPDATE Salespeople

SET comm = comm * 2

WHERE sname LIKE 'R%';

GLOBAL ASPECTS OF SQL 305

While this command is executing, Diane enters this query:

SELECT city, AVG (comm)
FROM Salespeople

GROUP BY city;

Will the averages Diane gets reflect the changes you make to the

table? It may not be important whether they do or not, but it is

important that they reflect either all or none of the changed com-

mission values. Any intermediate result is purely the accidental

and unpredictable result of the order in which the values were

physically altered, and the output of queries is not supposed to

depend on physical details, nor should it be accidental and

unpredictable.

Consider another point. Suppose you find a mistake and roll

back your update after Diane gets her output. Now Diane has a

series of averages based on changes that were cancelled, but she

has no way of knowing her information is inaccurate.

The handling of simultaneous transactions is called concurrency,

and there are a number of possible problems that can arise in it.

Here are some examples:

• Updates can be made without regard to one another. For

instance, a salesperson could query an inventory table,

find ten pieces of a merchandise item on stock, and order

six of them for a customer. Before this change is made,

another salesperson queries the table and orders seven of

this same item for one of his customers.

• Changes to the database can be rolled back after their

effect has already been felt, as when you cancelled your

mistake after Diane got her output.

• One action can be affected by the partial result of another

action, as when Diane took averages while you were per-

forming an update. Although this is not always a prob-

lem, in many cases functions such as aggregates should

reflect the state of the database at a point of relative sta-

bility. Someone auditing the books, for example, should

306 UNDERSTANDING SQL

ch. 23

be able to go back and determine that Diane's averages

existed at some point in time, and could have remained

the same had no further updates been made after that

point. This is not the case if an update is in progress

while the function is being evaluated.

• Deadlock. Two users can attempt to perform actions that

interfere with one another. This can occur, for example,

if two users try to change both a foreign- and its parent-

key value at the same time.

There are any number of nightmare scenarios that one could

envision if simultaneous transactions were uncontrolled. Luckily,

SQL provides concurrency controls to address precisely these issues.

What ANSI specifies for concurrency control is simply that all

simultaneous commands shall be executed in such a way that the

effect is the same as if no command were issued until the pre-

vious one was completed (including COMMIT or ROLLBACK
where appropriate).

The strictest interpretation of this would simply not allow a

table to be accessed by more than one transaction at a time. In

many business situations, however, the need to have the data-

base instantly accessible to multiple users requires some compro-

mise with concurrency control. Most SQL implementations offer

users options, allowing them to strike their own balance between

data consistency and database accessibility. These options can be

controlled by the user, the DBA, or both. Sometimes they are

actually handled outside of SQL proper, even though they affect

SQL operations.

The mechanisms SQL implementors use to control concurrent

operations are called locks. Locks restrict certain operations on

the database while other operations or transactions are active.

The restricted operations are lined up in a queue and executed

when the lock is released (some implementations give you the

option of specifying NOWAIT, which will cause the command to

be rejected instead of queued up, leaving you free to do some-

thing else).

GLOBAL ASPECTS OF SQL 307

Locks in multi-user systems are essential. Therefore, there will

be some kind of default locking scheme that is applied to all com-

mands on the database. This default scheme may be defined for

the entire database, or your implementation may allow you to

use it as a parameter in a CREATE DBSPACE or an ALTER
DBSPACE command, and thereby to define it differently for dif-

ferent dbspaces. In addition, systems typically provide some sort

of deadlock detector that finds situations where two operations

have locks that are blocking one another. In this case, one of the

commands will be rolled back and have its lock released.

Since the terminology and specifics of locking schemes vary

from product to product, we will pattern the following discussion

on IBM's database product DB2 as an example, emphasizing its

most generally applicable aspects. IBM is a leader in this field

(as in many others), so its approach is widely emulated. On the

other hand, some implementations may vary greatly from this in

syntax and in functional details, but the major effects are likely

to be similar.

TYPES OF LOCKS
There are two basic kinds of locks: share locks and exclusive

locks. Share locks (or S-locks) can be placed by more than one user

at a time. This enables any number of users to access the data,

but not to change it. Exclusive locks (or X-locks) allow no one but

the owner of the lock to access the data at all. Exclusive locks are

used for commands that change the content or structure of the

table. They are in effect until the end of the transaction. Share

locks are used for queries. How long they are in effect depends

on the isolation level.

What is the isolation level of the lock? It is what determines how

much of the table the lock ties up. In DB2, there are three isola-

tion levels, two of which can apply to both share and exclusive

locks, with the third limited to share locks. These are controlled

by commands issued outside of SQL itself, so we will explain

them without elaborating on exact syntax. The exact syntax of

commands related to locking is different for different implemen-

tations. The following discussion is useful primarily on a concep-

tual level.

308 UNDERSTANDING SQL

ch. 23

A read repeatability isolation level ensures that, within a given

transaction, all records retrieved by queries will not change. As
records updated in a transaction are subject to an exclusive lock

until the transaction terminates, these cannot be changed in any

case. With queries, on the other hand, read repeatability means

that you can decide in advance which rows you want to lock and

execute a query that selects them. Simply by executing the query,

you ensure that no changes will be made to those rows until you

terminate the current transaction. While read repeatability does

protect the user who places the lock, it can also slow things up
considerably.

A cursor stability level prevents each record from being changed

while it is being read or read while it is being changed. The latter

case, being an exclusive lock, applies until the change is commit-

ted or rolled back. Therefore, when you update a group of records

using cursor stability, those particular records are locked until the

transaction is finished, which is the same effect as read repeatabil-

ity. The difference between the two is in the effect on queries.

With cursor stability, rows of a table other than those a query is

examining at a given time can be changed.

The third DB2 isolation level is read only. Read only takes a

"snapshot" of the data; it doesn't really lock the table at all.

Therefore, it cannot be used with update commands. Whatever

the content of the table as a whole is at the moment the com-

mand is executed will be what is reflected in the query output.

This is not necessarily the case with cursor stability. Read only

locks ensure that your output will be internally consistent, if not

necessarily up to the second, without tying up large portions of

the table, as read repeatability does. Read only is handy on occa-

sions such as when you make reports, which have to be inter-

nally consistent and are likely to access many or all rows of a

table, but need not tie up the database.

OTHER WAYS OF LOCKING DATA
Some implementations do locking by page instead of row. This

can either be an option under your control or something built into

GLOBAL ASPECTS OF SQL 309

the design of the system. A page is a unit of memory storage, com-

monly 1024 bytes. A page will consist of one or more rows of a

table, likely accompanied by indexes and other peripheral informa-

tion, and perhaps even some rows from another table. If you lock

by page instead of by row, all of the data on that page is locked just

as the individual row would have been, in accordance with the iso-

lation levels explained above.

The main advantage of this approach is in performance. When
SQL doesn't have to keep locking and unlocking rows individually,

it can operate faster. On the other hand, this sullies SQL's hands

with implementation details that the language was designed to rise

above, and arbitrarily locks rows that may not need to be locked.

A similar option available on some systems is dbspace locking.

Dbspaces tend to be larger than pages, so this approach accentu-

ates both the performance advantages and the logical disadvan-

tages of page locking. You are generally better off to go with

lower-level locking unless there seem to be noticeable perform-

ance problems attributable to it.

SUMMARY
The key things you have learned about in this chapter are:

• Synonyms, or how to create new names for data objects.

• Databasespaces (dbspaces), or how to divide up available

storage in the database.

• Transaction processing, or how to save or disregard

changes to the database.

• Concurrency control, or how SQL keeps commands from

interfering with one another.

Synonyms are objects in the sense that they have names and

(sometimes) owners, but of course they have no independent

existence apart from the table whose name they replace. They
can be public and therefore accessible to everyone who has access

to the object, or they can be owned by a specific user.

310 UNDERSTANDING SQL

ch. 23

Dbspaces are subsections of the database that are allocated to

users. Related tables, such as tables that will frequently be

joined, are best stored in the same dbspace.

COMMIT and ROLLBACK are the commands used to take

all changes to the database since either the previous COMMIT
or ROLLBACK or the beginning of the session and save or dis-

regard them as a group.

Concurrency controls determine to what extent simultaneous

commands will affect one another. These are adjustable because

of the trade-off between database performance and isolation of

the effects of commands.

GLOBAL ASPECTS OF SQL 31

1

Putting SQL to Work

1. Create a database space called "Myspace" that allocates

15 percent of its space to indexes, and 40 percent to row

expansion.

2. You have been granted SELECT on Diane's Orders

table. Enter a command so that you will be able to refer

to this table as "Orders" without using the name
"Diane" as a prefix.

3. If there is a power failure, what should happen to all

changes contained in the current transaction?

4. If you cannot look at a row because a lock is in place,

what kind of lock is it?

5. If you want totals, maximums, and averages for all

orders, and you don't want to prevent others from using

the table, which isolation level is appropriate?

(See Appendix A for answers.)

24

How a SQL Database Is

Kept in Order

314 UNDERSTANDING SQL

ch. 24

IN THIS CHAPTER, YOU WILL LEARN HOW A TYPICAL
SQL database keeps itself organized. Not surprisingly, it is done

with a relational database created and maintained by the program

itself. You can access these tables yourself for information about

privileges, tables, indexes, and so on. This chapter will show you

some typical contents of such a database.

THE SYSTEM CATALOG
In order to operate as a SQL database, your computer system

has to keep track of a lot of different things: tables, views,

indexes, synonyms, privileges, users, and so on. There are vari-

ous ways to do this, but clearly the most logical, efficient, sensi-

ble, and consistent way in a relational environment is to store

this information in tables. This enables the computer to arrange

and manipulate the information it needs, using the same proce-

dures as it does to arrange and manipulate the data it stores for

your needs.

Although this is an implementation matter, and not part of the

ANSI standard as such, most SQL databases do, in fact, use a

set of SQL tables for internal information. This set is called vari-

ously the system catalog, the data dictionary, or simply the system

tables. (The term data dictionary can also refer to a more general

repository of data, including information on the physical param-

eters of the database that are kept out of SQL. Therefore, there

are database programs that have both a system catalog and a

data dictionary.)

The tables of the system catalog are like other SQL tables: rows

and columns of data. For example, one table of the catalog typi-

cally contains information about the tables in the database, with

one row for each database table; another contains information

about the various columns of the tables, with one row per column,

and so on. The catalog tables are considered to be created and
owned by the database itself, identified by a special name such as

SYSTEM. The database creates these tables and updates them
automatically as the system is used; catalog tables cannot be

HOWA SQL DATABASE IS KEPT IN ORDER 315

directly subjected to update commands. If this were to happen, it

would greatly confuse the system and make it disfunctional.

In many systems, however, the catalog can be queried by

users. This is very useful, because it enables you to find out spe-

cific things about the database you are using. Of course, all

information is not generally available to all users. Like other

tables, access to the catalog is restricted to users with the appro-

priate privileges.

Since the catalog is owned by the system itself, there is some

ambiguity as to who has and can grant privileges on it. Gener-

ally, catalog privileges will be granted by a superuser, such as a

system administrator logged on as SYSTEM, or a DBA. In

addition, some privileges may be granted to users automatically.

A TYPICAL SYSTEM CATALOG
Let's look at some of the tables we might find in a typical sys-

tem catalog:

Table InformationRegarding

SYSTEMCATALOG Tables (base and views)

SYSTEMCOLUMNS Columns of tables

SYSTEMTABLES Catalog View of

SYSTEMCATALOG

SYSTEMINDEXES Indexes on tables

SYSTEMUSERAUTH Users of database

SYSTEMTABAUTH Object privileges of users

SYSTEMCOLAUTH Column privileges of users

SYSTEMSYNONS Synonyms for tables

Now, if our DBA grants user Stephen the right to look at

SYSTEMCATALOG, with this command

GRANT SELECT ON SYSTEMCATALOG TO Stephen;

316 UNDERSTANDING SQL

ch. 24

Stephen can see some information about all of the tables in the

database (we will assume our DBA, Chris, owns our three sam-

ple tables, and that Adrian owns the Londoncust view).

SELECT tname, owner, numcolumns, type, CO
FROM SYSTEMCATALOG;

The output for this query is shown in Figure 24. 1

.

=SQL Execution Log =
SELECT tname, owner, numcolumns, type, CO
FROM SYSTEMCATALOG;

'H'lnii'fi'iiiiiri 372s 21
SYSTEMCATALOG SYSTEM 4- B
Salespeople Chris 4- B
Customers Chris 5 B
Londoncust Adrian 5 V Y

Orders Chris 5 B

Browse : t4«--> PgDn PgUp

Figure 24. 1: The content of the SYSTEMCATALOG table

As you can see, each row represents a table. The first column

is its name; the second, the name of the user who owns it; the

third, the number of columns it contains; and the fourth, a one-

letter code, either B (for base table) or V (for a view). The last

column is NULL unless the type is V; this column indicates

whether or not check option has been specified.

Note that SYSTEMCATALOG lists itself as one of the tables

present. For the sake of brevity, we have omitted the rest of the

system-catalog from the output of this command. The system-catalog

tables themselves ordinarily would show up in SYSTEMCATALOG.

HOWA SQL DATABASE IS KEPT IN ORDER 31

7

USING VIEWS ON CATALOG TABLES

Since SYSTEMCATALOG is a table, you can use it in a

view. In fact, we have assumed that there is one such view called

SYSTEMTABLES. This view of SYSTEMCATALOG includes

only those tables that constitute the system catalog; ordinary

(database) tables, such as Salespeople, will show up in

SYSTEMCATALOG, but not in SYSTEMTABLES. Let's

assume that only catalog tables are owned by SYSTEM. If you

wanted, you could define another view that specifically excludes

the catalog tables:

CREATE VIEW Datatables

AS SELECT *

FROM SYSTEMCATALOG
WHERE owner < > 'SYSTEM';

LETTING USERS SEE (ONLY) THEIR OWN OBJECTS
There are other uses for views of the catalog. Suppose you want

each user to be able to query the catalog for information only on

the tables that he or she owns. Since the value of USER in a

SQL command always stands for the authorization ID of the

user issuing the command, it can be used to give users access

only to their own tables. You can first create the following view:

CREATE VIEW Owntables
AS SELECT *

FROM SYSTEMCATALOG
WHERE Owner = USER;

Now you can grant all users access to this view:

GRANT SELECT ON Owntables TO PUBLIC;

Each user will now be able to SELECT only those rows from

SYSTEMCATALOG that show him to be the owner.

VIEWING SYSTEMCOLUMNS One possible extension of

this is to allow each user to view the SYSTEMCOLUMNS table

318 UNDERSTANDING SQL

ch. 24

for the columns of her own tables. First, let's look at the portion

of the SYSTEMCOLUMNS table that describes our sample

tables (in other words, excluding the catalog itself):

tname cname datatype cnumber tabowner

Salespeople snum integer 1 Diane

Salespeople sname char 2 Diane

Salespeople city char 3 Diane

Salespeople comm decimal 4 Diane

Customers cnum integer 1 Claire

Customers cname char 2 Claire

Customers city char 3 Claire

Customers rating integer 4 Claire

Customers snum integer 5 Claire

Orders onum integer 1 Diane

Orders odate date 2 Diane

Orders amt decimal 3 Diane

Orders cnum integer 4 Diane

Orders snum integer 5 Diane

As you can see, each row of this table represents a column of a

table in the database. Since each column of a given table must

have a different name, as must each table of a given user, all

combinations of user, table, and column names will be different

from one another. Therefore the tname (table name), tabowner

(table owner), and cname (column name) columns together con-

stitute the primary key of this table. The datatype column is self-

explanatory. The cnumber (column number) column indicates

the placement of the column within its table. For the sake of

brevity, we have omitted the column's length, precision, and

scale. These indicate the size of the column, with the first appli-

cable to character, and the others to number columns.

HOWA SQL DATABASE IS KEPTIN ORDER 319

For reference, here is the row from SYSTEMCATALOG that

refers to this table:

tname owner numcolumns type CO

SYSTEMCOLUMNS System 8 B

Some SQL implementations may provide you with more data

than this on the columns, but these are the basics.

To illustrate the procedure suggested at the outset of this sec-

tion, here is the way to allow each user to see the SYSTEM-
COLUMNS information only for his own tables:

CREATE VIEW Owncolumns
AS SELECT *

FROM SYSTEMCOLUMNS
WHERE tabowner = USER;

GRANT SELECT ON Owncolumns TO PUBLIC;

COMMENTING ON
THE CATALOG CONTENTS
Most versions of SQL allow you to put comments in a special-

remarks column of the SYSTEMCATALOG and SYSTEM-
COLUMNS catalog tables; this is handy, because these tables

are not always self explanatory. For the sake of simplicity, we
have been omitting this column from our illustrations of these

commands until now.

You use the COMMENT ON command with a string of text

to label any row in one of these tables. State TABLE to comment
on SYSTEMCATALOG, and COLUMN for SYSTEM-
COLUMNS. For example

COMMENT ON TABLE Chris. Orders

IS 'Current Customer Orders';

The text will be placed in the remarks column of SYSTEM-
CATALOG. Usually, the maximum length of remarks is 254

320 UNDERSTANDING SQL

CH. 24

characters. The comment itself is specific to a particular row, the

one with the tname = Orders, and owner = Chris. We see this

comment in the row for the Orders table in SYSTEM-
CATALOG:

SELECT tname, remarks

FROM SYSTEMCATALOG
WHERE tname = Orders'

AND owner = 'Chris';

The output for this query is shown in Figure 24.2.

SYSTEMCOLUMNS works just the same. First, we create the

comment:

COMMENT ON COLUMN Orders.onum
IS 'Order #';

Now we can select this row from SYSTEMCOLUMNS:

SELECT cnumber, datatype, cname, remarks

FROM SYSTEMCOLUMNS
WHERE tname = 'Orders'

AND tabowner = 'Chris'

AND cname = 'onum';

The output for this query is shown in Figure 24.3.

lb change a comment, you simply enter a new COMMENT
ON command for the same row. The old comment will be over-

written. If you want to eliminate a comment, overwrite it with

an empty comment, like this:

COMMENT ON COLUMN Orders.onum
IS ";

This empty comment will eliminate the previous remark.

HOWA SQL DATABASE IS KEPT IN ORDER 321

Figure 24.2: A comment on SYSTEMCATALOG

SQL Execution Log=
SELECT cnumber, datatype, cname, remarks
FROM SYSTEMCOLUMNS
WHERE tname 'Orders'
AND tabowner = 'Chris'
AND cname = 'onum'

wmifiifiTTM I'l-wwi^ EEHnM
1 integer onum

=Browse : ti<--» PgDn PgUi

Figure 24.3: A comment on SYSTEMCOLUMNS

322 UNDERSTANDING SQL

ch. 24

THE REST OF THE CATALOG
Here are the definitions of the rest of our system tables, with a

sample query on each:

SYSTEMINDEXES—INDEXES IN THE DATABASE
The names of the columns in the SYSTEMINDEXES table

and their descriptions are as follows:

Column Description

iname The name of the index (used to drop it)

iowner The name of the user who created the

index

tname The name of the table that contains the

index

cnumber The number of the column in the table

tabowner The user who owns the table that contains

the index

numcolumns The number of columns in the index

cposition The position of the current column among
those in index

isunique Whether the index is unique (Y or N)

A SAMPLE QUERY Assume a nonunique index, called sales-

person, on the snum column of the Customers table:

SELECT iname, iowner, tname, cnumber, isunique

FROM SYSTEMINDEXES
WHERE iname = 'salesperson';

The output for this query is shown in Figure 24.4.

HOWA SQL DATABASE IS KEPTIN ORDER 323

=SQL Execution Log —

—

SELECT iname, iowner, tname, cnumber, isunique
FROM SYSTEMINDEXES
WHERE iname = 'salesperson'

salesperson Customers 5 N

-Browse PgDn PgUp

Figure 24.4: A row from the SYSTEMINDEXES table

SYSTEMUSERAUTH—USERSAND
SYSTEM PRIVLEGES IN THE DATABASE
The column names for SYSTEMUSERAUTH and their

descriptions are as follows:

Column Description

username The authorization ID of the user

password The password the user enters to log on

resource Whether the user has the RESOURCE
privilege

dba Whether user has the DBA privilege

We are assuming a simple system-privilege scheme such as

that suggested in Chapter 22, where the three system privileges

that exist are CONNECT, RESOURCE, and DBA. All users

have CONNECT by definition, so it is not listed in the above
table. The possible values of the resource and dba columns are Y

324 UNDERSTANDING SQL

ch. 24

(the user has the privilege) and N (the user does not have the

privilege). The passwords are available only to highly privileged

users, if any. Therefore this table can generally only be queried

for information on users and system privileges.

A SAMPLE QUERY To find all users who have the

RESOURCE privilege, and see which of them were DBA's, you

would enter the following statement:

SELECT username, dba
FROM SYSTEMUSERAUTH
WHERE resource = 'Y';

The output for this query is shown in Figure 24.5.

SYSTEMTABAUTH—OBJECT
PRIVILEGES THATARE NOT COLUMN SPECIFIC

These are the names of the columns in the SYSTEMTAB-
AUTH table and their descriptions:

Column Description

username The user who has the privileges

grantor The user who granted privileges to username

tname The name of table on which privileges exist

owner The owner of tname

selauth Whether the user has the SELECT privilege

insauth Whether the user has the INSERT privilege

delauth Whether the user has the DELETE privilege

The possible values for each of the object privileges listed (all

of which have column names ending in "auth") are Y, N, and

G. A G indicates that the user has the privilege with the grant

option. In each row, at least one of these columns must have a

value other than N.

HOWA SQL DATABASE IS KEPTIN ORDER 325

SELECT username, dba
liFROM SYSTEMUSERAUTH
|WHERE resource = 'Y'

r

iDiane N
[Adrian Y

—Browse : T±«--» PqDn PgUp
!

\i— Home '

Figure 24.5: Users who have the RESOURCE privilege

The first four columns of this table constitute its primary key.

This means that every combination of tname, owner (remember

that two different tables with different owners can have the same

name), user, and grantor must be unique. Each row of this table

contains all privileges (that are not column specific) granted by

one specific user to another specific user on a particular object.

UPDATE and REFERENCES, being privileges that can be

column specific, are in a different catalog table. If a user gets

privileges on a table from more than one other user, there will be

separate rows created in this table. This is necessary to track cas-

cades when privileges are revoked.

A SAMPLE QUERY To find all SELECT, INSERT, and

DELETE privileges that Adrian has granted on the Customers

table, you would enter the following (the output is shown in Fig-

ure 24.6):

SELECT username, selauth, insauth, delauth

FROM SYSTEMTABAUTH
WHERE grantor = Adrian'

AND tname = 'Customers';

326 UNDERSTANDING SQL

ch. 24

IP
=SQL Execution Log

SELECT username, selauth, insauth, delauth
FROM SYSTEMTABAUTH
WHERE grantor = 'Adrian'
AND tname = 'Customers'

1

Wt&XTitnGM HJHINil fut^HKiii [•i^rumii

1 Claire G Y
Norman Y Y

N
Y

1' —Browse : TA*-» PgDn PgUp — >\ |«

—

Home

Figure 24. 6: Users granted privileges on customers by Adrian

The above shows that Adrian granted Claire the INSERT and

SELECT privileges on the Customers table, the latter with the

grant option. To Norman, he granted SELECT, INSERT, and

DELETE, but gave the grant option on none of them. If Clair

had the DELETE privilege on the Customers table from some

other source, it would not show up in this particular query of the

table.

SYSTEMCOLA UTH

Column Description

username The user who has the privileges

grantor The user who granted privileges to username

tname The name of table on which privileges exist

cname The name of the column on which privileges

exist

owner The owner of tname

HOWA SQL DATABASE IS KEPT IN ORDER 327

Column Description

updauth Whether the user has the UPDATE privilege

on this column

refauth Whether the user has the REFERENCES
privilege on this column

Updauth and refauth can be Y, N, or G; they cannot both be N
in the same row. It is the first five columns of this table that con-

stitute the primary key. This is different from SYSTEMTAB-
AUTH's primary key in that it includes the cname field, which

specifies a particular column of the table in question to which one

or both privileges apply. A separate row in this table will exist for

each column of any given table on which one user has been

granted column-specific privileges by another. As with SYSTEM-
TABAUTH, the same privilege will be listed in more than one

row of this table if it has been granted by more than one user.

A SAMPLE QUERY To find out which columns of which

tables you have the REFERENCES privilege on, you would

enter the following (the output is shown in Figure 24.7):

SELECT owner, tname, cname
FROM SYSTEMCOLAUTH
WHERE refauth IN ('Y', 'G')

AND username = USER
ORDER BY 1,2;

The preceding illustrates that two tables that have different

owners but the same name are, indeed, two different tables (this

is not the same as two synonyms for a single table).

328 UNDERSTANDING SQL

ch. 24

SQL Execution Log=
SELECT owner, tname, cname
FROM SYSTEMCOLAUTH
WHERE refauth IN ('Y', 'G')
AND username = USER
ORDER BY 1 , 2

Diane
Diane
Diane
Gillan

Customers
Salespeople
Salespeople
Customers

cnum
sname
snum
cnum

Figure 24. 7: Columns that user has REFERENCES privilege on

SYSTEMSYNONS—SYNONYMS
FOR TABLES IN THE DATABASE
These are the names of the columns in the SYSTEM-

SYNONS table and their descriptions:

Column Description

synonym The name of the synonym

synowner The user who owns the synonvm (may be

PUBLIC)

tname The name of table as used by the owner

tabowner The name of the user who owns the table

A SAMPLE QUER Y Assume Adrian has a synonym Clients for

Diane's table Customers, and that there is a public synonym Cus-

tomers for the same table. You query the table for all synonyms on

the Customers table (the output is shown in Figure 24.8):

SELECT *

FROM SYSTEMSYNONS
WHERE tname = 'Customers';

HOWA SQL DATABASE IS KEPTIN ORDER 329

Figure 24.8: Synonyms for the Customers table

OTHER USES OF THE CATALOG
Naturally, you can perform more sophisticated queries on the

system catalog. Joins, for instance, can be quite handy. This

command lets you see the columns of the tables and the indexes

based on each (the output is shown in Figure 24.9):

SELECT a.tname, a.cname, iname, cposition

FROM SYSTEMCOLUMNS a, SYSTEMINDEXES b

WHERE a.tabowner = b. tabowner
AND a.tname = b.tname
AND a.cnumber = b.cnumber

ORDER BY 3 DESC, 2;

This shows two indexes, one each on the Customers and Sales-

people tables. The latter is a single-column index called salesno

on the snum field; it was placed first because of the descending

(reverse alphabetical) sort on the iname column. The other

index, custsale, is used by salespeople to retrieve their cus-

tomers. It is based on the combination of the snum and cnum
fields within the Customers table, with the snum field coming

first in the index, as shown by the cposition field.

330 UNDERSTANDING SQL

ch. 24

=SQL Execution Log —
SELECT a.tname, a.cname, iname, cposition
FROM SYSTEMCOLUMNS a, SYSTEMINDEXES b

WHERE a.tabowner = b.tabowner
AND a.tname = b . tname
AND a.cnumber = b.cnumber
ORDER BY 3 DESC, 2;

Salespeople
Customers
Customers

snum salesno
cnum custsale
snum custsale

1 M.f.UIUI.Ii,

1

2

1

1 =Browse : TA<--> PgDn PgUp —! |
4— Home=

Figure 24. 9: Columns and their indexes

Subqueries also can be used. Here is a way to look at the column

data for columns of the catalog tables only:

SELECT *

FROM SYSTEMCOLUMNS
WHERE tname IN

(SELECT tname
FROM SYSTEMCATALOG);

In the interest of brevity, we will not illustrate the output of

this command, which consists of a single entry for each column

of every catalog table. You might want to place this query in a

view, called, let's say, SYSTEMTABCOLS, to go with the

SYSTEMTABLES view.

SUMMARY
To summarize, SQL systems use a set of tables called the sys-

tem catalog to structure the database. These tables can be queried

but not updated. In addition, you can add comment columns to

(and remove them from) the SYSTEMCATALOG and

HOWA SQL DATABASE IS KEPTIN ORDER 331

SYSTEMCOLUMNS tables. Creating views on these tables is an

excellent way to determine exactly which information users will be

able to access.

Now that you understand the catalog, you have completed

your orientation to SQL as used in interactive situations. The
next chapter of this book will deal with SQL as used in programs

that are written primarily in other languages but are able to ben-

efit from SQL's power and flexibility in interacting with database

tables.

332 UNDERSTANDING SQL

ch. 24

Putting SQL to Work

1. Query the catalog to produce, for each table with more
than four columns, the table's name, the owner, and the

names and data types of the columns.

2. Query the catalog to find out how many synonyms exist

for each table in the database. Remember that the same

synonym owned by two different users is in effect two dif-

ferent synonyms.

3. Find out how many tables have indexes on more than

fifty percent of their columns.

(See Appendix A for answers.

)

25

Using SQL
With Other Languages

(Embedded SQL)

/*,

334 UNDERSTANDING SQL

ch. 25

IN THIS CHAPTER YOU WILL LEARN HOW SQL IS

used to enhance programs written in other languages. Although

the nonprocedural character of SQL gives it many strengths, as

you have seen, it also produces a great many limitations. To over-

come these limitations, you can embed SQL in programs written

in one or another procedural language. For our examples, we
have chosen Pascal in the belief that this language is the easiest for

the uninitiated to interpret, and because Pascal is one of the lan-

guages for which ANSI has a (semiofficial) standard.

WHAT IS INVOLVED
INEMBEDDING SQL

In order to embed SQL in another language, you must be

using a software package that provides support for embedded
SQL in that language as well as, naturally, support for the lan-

guage itself. Obviously, you have to be familiar with the language

you are using. Mainly, you will be using SQL commands to oper-

ate on database tables, passing output to and taking input from

the program in which it is embedded, commonly referred to as the

host program (which may or may not get them from or pass them to

a user interactively).

WHYEMBED SQL?

Although we have spent some time illustrating what SQL can

do, if you are an experienced programmer, you have probably

noticed that it is not, in itself, very useful for writing programs.

The most immediately apparent limitation is that, while SQL can

accomplish a lot with a single command, interactive SQL basically

does things one command at a time. The if. . .then, for. . .do, and

while . . . repeat kinds of logical constructs used to structure most

computer programs are absent, so you cannot base a decision about

whether, how, or how long to perform an action on the result of

another action. In addition, interactive SQL cannot do much with

values besides entering them into tables, locating or deriving them
with queries, and outputting them directly to some device.

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 335

The more traditional languages are, however, strong in pre-

cisely these areas. They are designed so that a programmer can

begin a process and, based on the results, decide to do one thing

or another, or to repeat an action until some condition is met, cre-

ating logical paths and loops. Values are stored in variables that

can be used and changed by any number of commands. This

enables you to prompt users for input or to read it from a file, and

format the output in elaborate ways (converting numeric data to

diagrams, for example).

The purpose of embedded SQL is to combine these strengths,

allowing you to create complex procedural programs that address

the database itself through SQL—letting you set aside the com-

plexities of operating on tables in a procedural language that is not

oriented to this kind of data structure, while maintaining the

strengths of a procedural language.

HOWDO YOUEMBED SQL?

SQL commands are placed in the source code of the host pro-

gram preceded by the phrase EXEC SQL (think: EXECute
SQL). These include some commands that are special to the

embedded form of SQL, which will be introduced in this chap-

ter. Strictly speaking, the ANSI standard does not support

embedded SQL as such. It supports a concept called modules,

which are sets of SQL procedures called from, rather than

embedded in, another language. Defining an official embedded
SQL syntax would involve extending the official syntax of each

language in which SQL is to be embedded—a long and unre-

warding task, which ANSI chose to avoid. It does, however, pro-

vide four appendices (not part of the standard proper), which

define embedded SQL syntax for four languages: COBOL, Pas-

cal, FORTRAN, and PL/I. The language C is also widely sup-

ported, and other languages are occasionally used.

When you embed SQL commands in the text of a program

that is written in another language, you must precompile the pro-

gram before you compile it. A program called a precompiler (or a

preprocessor) will go through the text of your program and convert

SQL commands into a form usable by the main language. You

336 UXDERS TAXDIXG SQL

ch. 25

then use a compiler to convert the program from source code to

executable code, as usual.

According to the module-language approach defined by ANSI,
the main program calls SQL procedures. These take parameters

from, and return values to, the main program. A module can con-

tain any number of procedures, each of which consists of a single

SQL command. The idea is that the procedures can function in the

same way regardless of which language they are embedded in

(although a module must still identify the language of the host

because of differences in data types between host languages).

Implementations can (and do) conform to the standard by exe-

cuting embedded SQL in such a way that the effect is the same

as if modules were explicitly defined. Generally, the precompiler

will create a module, called an access module, for this purpose.

Only one module, containing any number of SQL procedures,

can exist for a given program. Placing SQL statements directly

in the host code is easier and more practical than directly creat-

ing the modules as such.

Programs using embedded SQL are each associated with an

authorization ID when they are executed. The authorization ID
associated with a program must have all the privileges to perform

the SQL operations executed in the program. Generally, the

embedded SQL program logs on to the database as the user execut-

ing the program. The details of this are implementor defined, but it

is likely to be necessary for you to include in your program a CON-
NECT or similar command to fulfill this function.

USING HOST
LANGUAGE VARIABLES WITH SQL
The basic way in which the SQL and host-language portions of

your programs will communicate with each other is through the

values in variables. Of course, different languages recognize dif-

ferent data types for variables. ANSI defines SQL equivalents for

the four host languages it recognizes—PL/I. Pascal. COBOL,
and FORTRAN; these are detailed in Appendix B. The equiva-

lents for other languages are implementor defined. Keep in mind.

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 337

of course, that types such as DATE are not recognized by ANSI;
therefore no equivalent data types for host languages exist in the

standard. Also, more complex host-language data types, such as

matrices, may not have SQL equivalents.

You can use variables from the host program in embedded
SQL statements wherever you would use value expressions.

(SQL, when used in this chapter, will refer to embedded SQL,
unless otherwise indicated.) The current value of the variable

will be the value used in the command. Host variables must

• Be declared in a SQL DECLARE SECTION (discussed

shortly)

• Be of a compatible data type for their function in the

SQL command (for example, a numeric type if they are

to be inserted into a numeric field)

• Be assigned a value at the time they are used in the SQL
command, unless the SQL command itself will assign

a value

• Be preceded by a colon (:) when referred to in the SQL
command

Since host variables are distinguished from SQL column names
by a colon, you can use variables with the same names as your

columns, if desired.

Suppose you have four variables in your program, called

id_num, salesperson, loc, and comm. These contain values that

you want to insert into the Salespeople table. You could embed
the following SQL command in your program:

EXEC SQL INSERT INTO Salespeople

VALUES (:id_num, salesperson, :loc, :comm)

The current values of these variables would be put into the table.

As you can see, the comm variable has the same name as the

column its value is being inserted into; the rest of the variables

do not. You will also notice that the semicolon at the end of the

command has been omitted. That is because the proper termina-

tion for an embedded SQL command varies with the language.

338 l XDERS TAXDLXG SQL

CH. 23

For Pascal and PL I. it is the semicolon: for COBOL, it is the

word END-EXEC: and for FORTRAN, no termination mark is

used. Other languages depend on the implementation, but we
will use the semicolon for the sake of consistency with interactive

SOL and with Pascal. Pascal terminates both embedded SQL
and its own commands with a semicolon.

The way to make a command such as the above powerful is to

enclose it in a loop and iterate it repeatedlv with different values

in the variables, such as in the following example:

while not end-of-file (input) do
begin

readln (id_num, salesperson, loc, comm);
EXEC SQL INSERT INTO Salespeople

VALUES (:id_num, salesperson, :loc, :comm);

end;

This Pascal program fragment defines a loop that will read val-

ues from a file, store them in the four named variables, store the

values of those variables in the Salespeople table, and then read

the next four values, repeating the process until the entire input

file has been read. It assumes that each set of values is termi-

nated with a carriage return (for those unfamiliar with Pascal,

the readln function reads input and moves to the next line of the

source). This gives you an easy way to transfer data from text

files into a relational structure. Naturally, you can first process

the data in whatever ways are possible in your host language,

such as excluding commission under .12:

while not end-of-file (input) do
begin

readln (id_num, salesperson, loc, comm);
if comm > = .12 then

EXEC SQL INSERT INTO Salespeople

VALUES (:id_num, salesperson, :loc, :comm);

end;

Only rows that meet the comm > = .12 condition are inserted.

This shows how you can use both loops and conditions as normal

in the host language.

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 339

DECLARING VARIABLES

All variables that are to be referenced in SQL statements must

first be declared in a SQL DECLARE SECTION, using the

ordinary host-language syntax. You may have any number of

these sections in a program, and they may be located anywhere

in code before the variable is used, subject to restrictions defined

by the host language. The declare sections will begin and end

with the embedded SQL commands BEGIN DECLARE SEC-
TION and END DECLARE SECTION, preceded, as usual,

with EXEC SQL. To declare the variables used in the previous

example, you could enter the following:

EXEC SQL BEGIN DECLARE SECTION;
Var

id-num: integer;

Salesperson: packed array (1

.

.10) of char;

loc: packed array (1

.

.10) of char;

comm: real;

EXEC SQL END DECLARE SECTION;

For those unfamiliar with Pascal, Var is a heading that precedes a

series of variable declarations, and packed (or unpacked) arrays

are variables holding a series of values distinguished by parenthe-

sized numbers (for example, the third character of loc would be

loc(3)). The use of a semicolon after each variable definition is a

Pascal, not a SQL, requirement.

RETRIEVING VALUES INTO VARIABLES

In addition to putting the values of variables into tables using

SQL commands, you can use SQL to obtain values for those

variables. One way to do this is with a variation of the SELECT
command that contains an INTO clause. Let's reverse our pre-

vious example and put Peel's row from the Salespeople table into

our host-language variables.

EXEC SQL SELECT snum, sname, city, comm
INTO :id_num, salesperson. :loc, xomrn
FROM Salespeople

WHERE snum = 1001;

340 UNDERSTANDING SQL

ch. 25

The values selected are placed in the variables named in the INTO
clause in order. Naturally, the variables named in the INTO clause

must be of the proper types to receive these values, and there must

be a variable for each column selected.

Except for the presence of the INTO clause, this query is like

any other. The INTO clause adds a considerable restriction to

the query, however. It must retrieve no more than one row. If it

retrieves multiple rows, they cannot all be inserted into the same

variables at the same time. The command will fail. For this rea-

son, SELECT INTO should be used only under the following

conditions:

• When you use the predicate to test for a value that you

know will be unique, as in this example. The values that

you know will be unique are those that have a constraint

forcing uniqueness or a unique index, as discussed in

Chapters 17 and 18.

• When you use one or more aggregate functions and do

not use GROUP BY.

• When you use SELECT DISTINCT on a foreign key

with a predicate referencing a single value of the parent

key (provided your system enforces referential integrity),

as in the following example:

EXEC SQL SELECT DISTINCT snum
INTO :salesnum

FROM Customers
WHERE snum =

(SELECT snum
FROM Salespeople

WHERE sname = Motika);

Assuming Salespeople. sname and Salespeople. snum are unique

and primary keys, respectively, of that table, and that Custo-

mers, snum is a foreign key referencing Salespeople. snum, you

can rely on this query to produce a single row.

There are other cases where you will know that a query should

produce a single row of output, but these are relatively obscure

and, in many cases, rely on your data having an integrity that

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 341

cannot be enforced with constraints. It is not good to rely on

this. You are creating a program that is likely to be used for some

time, and it is best to play it safe with regard to potential fail-

ures. At any rate, there is no need to grope for queries that pro-

duce single rows, as SELECT INTO is only a convenience. As

you will see, you can deal with queries that produce multiple

rows of output by using a cursor.

THE CURSOR
One of SQL's strengths is its ability to operate on all rows of a

table that meet certain criteria as a unit without foreknowledge

of how many such rows there may be. If ten rows satisfy a predi-

cate, a query will output ten rows. If ten million rows qualify, ten

million rows are produced. This does make things difficult, how-

ever, when you try to interface to other languages. How can you

assign the output of a query to variables when you don't know
how much output there will be? The solution is to use what is

called a cursor.

You are probably familiar with the cursor as that blinking item

that marks your place on the computer screen. \bu can think of a

SQL cursor as a device that, similarly, marks your place in the out-

put of a query, although the analogy is strained. Really, the design-

ers of SQL should have come up with a name that did not already

have another meaning.

A cursor is a kind of variable that is associated with a query.

The value of this variable will be each row, in turn, of that que-

ry's output. Like host variables, cursors must be declared before

they are used. This is done with the DECLARE CURSOR com-

mand, as follows:

EXEC SQL DECLARE CURSOR Londonsales FOR
SELECT *

FROM Salespeople

WHERE city = London';

The query is not executed immediately; this is only a definition. Cur-

sors are somewhat similar to views, in that the cursor contains a

342 l XDERSTAXDIXG SQL

CH 20

query', and the content of the cursor is whatever the output of the

query" is at the time the cursor is opened (explained shortrv). Unlike

base tables or views, however, the row's of a cursor are ordered: there

is a first, second . . . last row of a cursor This order can either be

explicitly controlled with an ORDER BY clause in the querv. be arbi-

trary; or follow an implementor-defined default ordering scheme.

When you reach the point in your program where you are

ready to execute the query, you open the cursor with the follow-

ing command:

EXEC SQL OPEN CURSOR Londonsales:

The values in the cursor will be those present when you execute

this command, not the previous DECLARE command nor any

equent FETCH commands. Next, you use the FETCH com-

mand to extract the output from this query, one row at a rime.

EXEC SQL FETCH Londonsales INTO :id_num.

:salesperson. :loc. :comm:

This will put the values from the first row selected into the varia-

bles. Another FETCH command will produce the next set of val-

The idea is to put the FETCH command inside a loop, so

that you fetch a row. do whatever you want to with the values

from that row. and loop back to fetch the next set of values into

the same variables. For example, perhaps you want to write the

output, one row at a time, prompting the user to see if she wants

to advance to the next row

Look_at_more : = True:

EXEC SQL OPEN CURSOR Londonsales:

while Look_at_more do
begin

EXEC SQL FETCH Londonsales

INTO :id_num. :Salesperson. :loc. :comm:
writeln (id_num. Salesperson, loc. comm):
writeln ('Do you want to see more data? (Y N)'):

readln (response):

if response = "N' then Look_at_more : = False

end:

EXEC SQL CLOSE CURSOR Londonsales:

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 343

In Pascal, :
= means "is assigned the value of", whereas = by

itself still has the usual meaning. The writeln function writes its

output, and then starts a new line. The single quotes around

character values in the second writeln and in the if. . .then state-

ment are a Pascal convention that happens to duplicate SQL.
The effect of this fragment is to set a Boolean variable called

Look_at_more to true, open the cursor, and enter the loop.

Within the loop, a row is fetched from the cursor and output to

the screen. Then the user is prompted to see if she wants to look

at the next row. Unless she responds with N for No, the loop is

repeated, and the next row of values is fetched. Although

Look_at_more and response must be declared as Boolean and

char, respectively, in a Pascal variable declaration section, they

need not be included in a SQL declare section, because they are

not used in the SQL commands.
As you can see, the colons before the variable names are not

used for the nonSQL statements. Also notice that there is a

CLOSE CURSOR statement corresponding to the OPEN CUR-
SOR statement. This, as you may have guessed, empties the cur-

sor of values, so that the query will have to be reexecuted, with an

OPEN CURSOR statement before more values can be fetched. It

is not necessary for all rows selected by the query to have been

fetched in order to close the cursor, although this is the usual pro-

cedure. Once the cursor is closed, SQL does not keep track of

which rows were fetched. If you open the cursor again, the query

is reexecuted at that point, and you start over from scratch.

This example does not provide any automatic exit from the loop

when all the rows have been fetched. When FETCH has no more

rows to retrieve, it simply does not change the values in the varia-

bles of the INTO clause. Therefore, once the data is exhausted,

these variables will be repeatedly output with the same values as

long as the user fails to terminate the loop with an entry of N.

SQLCODE
It would be nice to know when the data was exhausted, so we

could tell the user this and exit the loop automatically. It is even

more important that we know if a SQL command has produced

344 UNDERSTANDING SQL

ch. 25

an error. The SQLCODE (called SQLCOD in FORTRAN) vari-

able is provided to meet these functions. This must be defined as a

host-language variable and must be of the data type in that host

language that corresponds to one of SQL's exact numeric types as

shown in Appendix B. The value of SQLCODE is set each time a

SQL command is executed. There are basically three possibilities:

1. The command was executed without error, but did not

have any effect. This is defined for various commands as

follows:

a) For SELECT, no rows were selected by the query.

b) For FETCH, the last row had already been fetched, or

no rows were selected by the query in the cursor.

c) For INSERT, no rows were inserted (this implies that

a query was used to generate values for the insert, and

that it failed to retrieve any rows).

d) For UPDATE and DELETE, no rows met the predi-

cate's condition, and therefore no change was made to

the table.

In any of these cases, SQLCODE will be set to 100.

2. The command executed normally without any of the

above conditions being true. In this case, SQLCODE
will be set to 0.

3. The command generated an error. If this happens, any

changes made to the database by the current transaction

will be rolled back (see Chapter 23). In this case,

SQLCODE will be set to some negative number that is

implementor defined. The purpose of this number is to

identify the problem as precisely as possible. Generally,

your system will provide a subprogram to execute, which

will have information about the meaning of the negative

numbers your implementor has defined. Some error mes-

sage will be generated to a screen or file, and the pro-

gram will roll back changes from the current transaction,

disconnect from the database, and exit.

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 345

USING SQLCODE TO CONTROL LOOPS
Now we can refine our previous example to exit the loop auto-

matically if the cursor is empty, all rows have been fetched, or an

error is produced:

Look_at_more : = True;

EXEC SQL OPEN CURSOR Londonsales;

while Look_at_more
and SQLCODE = do

begin

EXEC SQL FETCH Londonsales
INTO :id_num, :Salesperson, :loc, :comm;

writeln (id_num, Salesperson, loc, comm);
writeln (Do you want to see more data? (Y/N)');

readln (response);

if response = 'N' then Look_at_more : = False;

end;

EXEC SQL CLOSE CURSOR Londonsales;

WHENEVER
This is fine for exiting when all rows have been fetched, but if

you produce an error, you need to do something about it, as

mentioned in the third case, above. For this purpose, SQL sup-

ports GOTO statements. In fact, it allows you to define these

globally, so that the program will execute a GOTO command
automatically if a certain SQLCODE value occurs. You do this

with the WHENEVER clause. Here are a couple of examples:

EXEC SQL WHENEVER SQLERROR GOTO Error. handler;

EXEC SQL WHENEVER NOT FOUND CONTINUE;

SQLERROR is another way of saying SQLCODE < 0; NOT
FOUND is another way of saying SQLCODE = 100. (Some
implementations also call the latter case SQLWARNING.)
Error_handler is a name for a place in the program that execu-

tion will jump to if an error occurs (GOTO can be either one or

two words). It is defined in whatever manner is appropriate for

the host language, such as a label in Pascal or a section name or

346 UXDERSTA.VDIXG SQL

ch. 25

paragraph name in COBOL (hereafter we shall use the term

label). This will most likely identify a standard procedure

intended by the implementor to be included in all programs.

CONTINUE means not to do anything special for the

SQLCODE value. This is also the default if you do not use a

WHENEVER command specifying that SQLCODE value. How-
ever, having this inactivity defined as an action gives you the abilitv

to switch back and forth between taking and not taking action at

various points in your program.

For example, if your program includes a series of INSERT
commands using queries that really should produce values, you

might want to print a special message or do something to indi-

cate that the queries are coming back empty, and no values are

being inserted. In this case, you could enter the following:

EXEC SQL WHENEVER NOT FOUND GOTO No.rows;

No_rows is a label on some code containing an appropriate

action. On the other hand, if you are doing a fetch later in the

program, you will want to enter the following at that point

EXEC SQL WHENEVER NOT FOUND CONTINUE;

because performing a fetch repeatedly until all rows are retrieved

is the normal procedure and does not require or want special

handling.

UPDATING CURSORS
Cursors can also be used to select a group of rows from a table

that can then be updated or deleted one by one. This enables

you to get around some of the restrictions of the predicates used

in the UPDATE and DELETE commands. Specifically, you can

refer to the table being affected in the predicate of the cursor's

query or any of its subqueries. which you cannot do in predicates

of these commands themselves. As pointed out in Chapter 16,

standard SQL does not accept an attempt in the following form

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 347

to delete all customers with ratings below average:

EXEC SQL DELETE FROM Customers
WHERE rating <

(SELECT AVG (rating)

FROM Customers);

However, you could get this effect by using a query to select

the appropriate rows, storing these in a cursor, and performing

the DELETE using the cursor. First you would declare the cur-

sor, like this:

EXEC SQL DECLARE Belowavg CURSOR FOR
SELECT *

FROM Customers
WHERE rating <

(SELECT AVG (rating)

FROM Customers);

Then you could create a loop to delete all the customers selected

by the cursor:

EXEC SQL WHENEVER SQLERROR GOTO Error_handler;

EXEC SQL OPEN CURSOR Belowavg;

while not SQLCODE = 100 do
begin

EXEC SQL FETCH Belowavg INTO :a, :b, :c, :d, :e:

EXEC SQL DELETE FROM Customers
WHERE CURRENT OF Belowavg;

end;

EXEC SQL CLOSE CURSOR Belowavg;

The WHERE CURRENT OF clause means that the DELETE
applies to the row currently retrieved by the cursor. This implies

that the cursor and the DELETE command both reference the

same table and, therefore, that the query in the cursor is not a

join. The cursor must also be updatable. To be updatable, a cur-

sor must satisfy the same criteria as a view (see Chapter 21). In

addition, ORDER BY and UNION, which are not allowed in

views, are permitted in cursors, but prevent the cursor from

348 UNDERSTANDING SQL

ch. 25

being updatable. Notice, in the above example, that we still had

to fetch the rows from the cursor into a set of variables, even

though we did not use these variables. This is required by the

syntax of the FETCH command.
UPDATE works in the same way. You can increase the com-

mission of all salespeople who have customers with a rating of

300, in the following way. First you declare the cursor:

EXEC SQL DECLARE CURSOR High.Cust AS
SELECT *

FROM Salespeople

WHERE snum IN

(SELECT snum
FROM Customers
WHERE rating = 300);

Then you perform the updates in a loop:

EXEC SQL OPEN CURSOR Hlgh_cust;

while SQLCODE = do
begin

EXEC SQL FETCH High_cust

INTO :id_num, salesperson, Hoc, :comm;
EXEC SQL UPDATE Salespeople

SETcomm = comm + .01

WHERE CURRENT OF High_cust;

end;

EXEC SQL CLOSE CURSOR High_cust;

Note: some implementations require you to specify in a cursor

definition that the cursor will be used to perform UPDATE com-

mands on certain columns. This is done by concluding the cur-

sor definition with a FOR UPDATE OF <column list> . To

declare the High_cust cursor in this manner, so that you could

UPDATE the comm column, you would enter this statement:

EXEC SQL DECLARE CURSOR High_Cust AS
SELECT *

FROM Salespeople

WHERE snum IN

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 349

(SELECT snum
FROM Customers
WHERE rating = 300)

FOR UPDATE OF comm;

This provides a measure of security against accidental updates,

which can be quite destructive.

INDICATOR VARIABLES
NULLS are special markers defined by SQL. They cannot be

placed into host variables. Attempting to insert a NULL into a host

variable is incorrect, because host languages do not support

NULLS as defined in SQL. Although the result of an attempt to

insert a NULL into a host variable is implementor defined, the

result most consistent with database theory is to produce an error:

SQLCODE will be set to a negative number, and an error-han-

dling routine will be called. You will usually want to avoid this. Fre-

quently, you may select NULLs along with valid values without it

being a reason for your program to crash. Even if the program does

not crash, the values in the host variables will be incorrect because

they will not be NULLs. Providing an alternative method of deal-

ing with this situation is a function of indicator variables.

Indicator variables are declared in the SQL declare section,

like other variables. They will be of the host-language type that

corresponds to a SQL exact numeric type. Whenever you per-

form an operation that might place a NULL in a host-language

variable, you should use an indicator variable as a safeguard.

You place the indicator in the SQL command directly after the

host-language variable you want to protect, without an interven-

ing blank or comma, although you may optionally insert the

word INDICATOR.
An indicator variable in a command is initially assigned a value

of 0. If a NULL is produced, however, the indicator variable is set

to a negative number. You may then test the indicator to see if a

NULL value was found. Let's assume the city and comm fields of

the Salespeople table do not have NOT NULL constraints, and

350 UNDERSTANDING SQL

ch. 25

that we have declared, in the SQL declare section, two Pascal vari-

ables of the integer type, i_a and i_b. (There is nothing in the

declare section itself that would mark these as indicator variables.

They become indicator variables when used as such.) Here is one

possibility:

EXEC SQL OPEN CURSOR High_cust;

while SQLCODE = do

begin

EXEC SQL FETCH High_cust

INTO :id_num. salesperson,

:loc:i_a, :commlNDICATOR:i_b;
If i_a > = and i_b > = then

{no NULLs produced}
EXEC SQL UPDATE Salespeople

SET comm = comm + .01

WHERE CURRENT OF High_cust;

Else

{one or both NULL}
begin

If i_a < Othen
writeln ('salesperson ', id_num, ' has no city');

If i_b < Othen
writeln ('salesperson ', id_num. ' has no
commission');

end;

{else}

end; {while}

EXEC SQL CLOSE CURSOR High_cust;

As you can see, we chose to include the keyword INDICATOR in

one case and exclude it in the other for the sake of illustration; the

effect is the same in either case. Each row is fetched, but the

UPDATE is performed only if NULLs were not found. If NULLs
were produced, the else part of the program is executed, which

will print a warning message identifying where each NULL was

found. Note: indicators should be tested in the host language, as

above, rather than in the WHERE clause of a SQL command.
The latter is not illegal, but the results are often unexpected.

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 351

USING INDICATOR
VARIABLES TO EMULATE SQL NULLS
Another possibility is to treat the indicator variable associated

with each host-language variable in a special way so as to emulate

the behavior of SQL NULLs. Whenever you use one of these val-

ues in your program, for example in an if. . .then statement, you

can check the associated indicator variable first to see if the value

is actually a NULL. If so, you treat the variable differently. For

example, if a NULL value were retrieved from the city field for

the host variable city, which is associated with the indicator varia-

ble i_city, you could set city equal to a series of blanks. This

would only be necessary if you wanted to print it; its value should

make no difference to your program logic. Of course, i_city is

automatically set to a negative value. Suppose you had the follow-

ing if. . .then construct in your program:

if city = 'London' then

comm := comm + .01

else comm : = comm - .01;

Any value entered into the city variable will either be equal to

'London' or it will not. Therefore, the commission will be either

incremented or decremented in every case. However, the equiva-

lent commands in SQL operate differently:

EXEC SQL UPDATE Salespeople

SET comm = comm + .01

WHERE city = 'London';

and

EXEC SQL UPDATE Salespeople

SET comm = comm - .01;

WHERE city <> 'London';

(Of course, the Pascal version operates only on single values,

whereas the SQL version operates on entire tables.) If the city

value in the SQL version were NULL, both of the predicates

would be unknown, and the comm value would therefore not be

352 UNDERSTANDING SQL

ch. 25

changed in either case. You could use the indicator variable to

make the behavior of your host language consistent with this by

defining a condition that excludes the NULLs:

If i_city > = then

begin

If city = 'London' then

comm : = comm + .01

else comm : = comm - .01

;

end;

{begin and end needed only for clarity in this case}

In a more complex program, you may want to set a Boolean var-

iable to true to indicate that city is NULL. Then you could sim-

ply test this variable whenever appropriate.

OTHER USES OF INDICATOR VARIABLES

Indicator variables can also be used to assign NULL values.

Simply append them to a host-variable name in an UPDATE or

INSERT command in the same way you would in a SELECT
command. If the indicator variable has a negative value, a

NULL will be placed in the field. For example, the following

command will place NULLs in the city and comm fields of the

Salesperson table whenever the indicators i_a or i_b are nega-

tive; otherwise it will place the values of the host variables there:

EXEC SQL INSERT INTO Salespeople

VALUES (:id_num, salesperson, :loc:i_a, :comm:i_b);

Indicator variables are also used to indicate string truncation.

This occurs if you insert a SQL character value into a host varia-

ble that is not large enough to contain all of the characters. This

is especially a problem with the nonstandard VARCHAR and

LONG data types (refer to Appendix C). In this case, the varia-

ble will be filled with the beginning characters of the string, and

the trailing characters will be lost. If an indicator variable is

used, it will be set to a positive number indicating the length of

the string before truncation, thereby letting you know how much

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 353

text was lost. You will test for this case by seeing if the indicator

is > rather than < 0.

SUMMARY
SQL commands are embedded in procedural languages in

order to combine the strengths of the two approaches. Some
extensions to SQL are necessary to make this work. Embedded
SQL commands are translated by a program called a precompiler

to a form usable by the compiler of the host language, basically as

procedure calls to subprograms that the precompiler creates,

called access modules. ANSI supports, in a roundabout way,

embedded SQL in these languages: Pascal, FORTRAN,
COBOL, and PL/I. Other languages are used by implementors

as well, most notably C.

In an attempt to describe embedded SQL in a nutshell, here

are the most important points in this chapter:

• All embedded SQL commands begin with the words

EXEC SQL and end in a manner that is dependant upon
the host language used.

• All host variables to be accessed in SQL commands must

be declared in a SQL declare section before they are used.

• All host variables must be preceded by a colon when they

are used in a SQL command.

• Queries can store their output directly in host variables

using the INTO clause if and only if they select a single

row.

• Cursors can be used to store the output of a query and

access it one row at a time. Cursors are declared (which

defines the query they shall contain), opened (which exe-

cutes said query), and closed (which removes the query's

output from the cursor). While a cursor is open, the

FETCH command is used to advance it to each row of the

query's output in turn.

354 UNDERSTANDING SQL

ch. 25

Cursors are updatable or read-only. To be updatable, a

cursor must satisfy all of the criteria that a view must sat-

isfy; in addition, it must not use ORDER BY or UNION,
clauses that views cannot use in any case. A cursor that is

not updatable is read-only.

If a cursor is updatable, it can be used to control which

rows are affected by embedded UPDATE and DELETE
commands through the WHERE CURRENT OF clause.

The DELETE or UPDATE must be against the same
table that the cursor accesses in its query.

SQLCODE must be declared as a variable of an exact

numeric type for every program that will use embedded
SQL. Its value is set automatically after the execution of

every SQL command.

If a SQL command executed normally but it did not pro-

duce output or the normally expected change to the data-

base, SQLCODE will equal 100. If the command pro-

duced an error, SQLCODE will equal some
implementor-defined negative number that describes the

error. Otherwise, SQLCODE will equal 0.

The WHENEVER clause can be used to define an action

to be taken as soon as a SQLCODE of 100 (NOT
FOUND) or a negative number (SQLERROR) occurs.

The action can be either to go to some target point in the

program (GOTO <label>) or to do nothing (CON-
TINUE). Naturally, doing nothing is the default.

Exact numeric variables can also be used as indicator vari-

ables. Indicator variables follow another variable name in

a SQL command, without any intervening characters

except for the (optional) word INDICATOR.

Normally, the value of an indicator variable is 0. If a

SQL command attempts to place a NULL into a host

variable that uses an indicator, the indicator will be set to

a negative number. This fact can be used to prevent

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 355

errors and to flag SQL NULLs for special treatment in

the host program.

Indicator variables can be used to insert NULLs in SQL
INSERT or UPDATE commands. They can also take

positive numbers to indicate string truncation.

356 UNDERSTANDING SQL

ch. 25

Putting SQL to Work
Note: The answers for these exercises are written in psuedo-

code, which is an English language description of the logic that

the program should follow. This is done to help the readers who
may not be familiar with Pascal (or any other language that

could be used). It also keeps the focus on the concepts involved,

rather than on the particulars of one or another language. For

the sake of consistency with the examples, the style of the

pseudocode will be similar to Pascal. We will omit from the pro-

grams everything that is extraneous to the matters at hand (such

as definitions of input/output devices, connections to a database,

and so on). Naturally, there is more than one way to do these

exercises; nor is mine necessarily the best (probably not).

1. Design a simple program that selects all snum and cnum
combinations from both the Orders and Customers tables

and checks to see that all such combinations in the former

are the same as in the latter. If a combination in the

Orders table is not found in the Customers table, the

snum value for that row is changed to match. You may
assume that a cursor with a subquery is updatable (an

ANSI restriction, also applicable to views, that is not

widely enforced), and that the basic integrity of the data-

base, other than the error you are checking for, is sound

(primary keys are unique, all cnums in the Orders table

are correct, and so on). Include a declare section, and be

sure also to declare any cursors used.

2. Suppose your program does enforce the ANSI prohibi-

tion against allowing cursors or views employing sub-

queries to be updatable. How would you have to modify

the above program?

3. Design a program that prompts the user to change the city

values of the salespeople, automatically increasing com-

USING SQL WITH OTHER LANGUAGES (EMBEDDED SQL) 35

7

missions by .01 for salespeople transferred to Barcelona

and decreasing them by .01 for salespeople transferred to

San Jose. In addition, salespeople currently in London
will lose .02 off their commission regardless of whether

their city is changed, while salespeople not currently in

London will have theirs increased by .02. The changes in

commission based on whether a salesperson is in London
will be applied independently of those based on where they

are being transferred to. Either the city or comm field can

contain NULLS, and these should be treated as they

would be in SQL. Warning: this is a slightly more convo-

luted program.

(See Appendix Afor answers.)

Z
"*>,

r^

I

A
Answers to Exercises

I

360 UNDERSTANDING SQL

APR A

CHAPTER 1

1. cnum

2. rating

3. Record is another word for row. Field is another word for

column.

4. Because the rows are, by definition, in no particular

order.

CHAPTER 2

1. Character (or text) and number

2. No

3. Data Manipulation Language (DML)

4. A word recognized by SQL as having a special instruc-

tive meaning

CHAPTER 3

l SELECT onum, amt, odate

FROM Orders;

2. SELECT *

FROM Customers
WHERE snum = 1001;

3. SELECT city, sname, snum, comm
FROM Salespeople;

4. SELECT rating, cname
FROM Customers
WHERE city = San Jose';

5 SELECT DISTINCT snum
FROM Orders;

ANSWERS TO EXERCISES 361

CHAPTER 4

1 SELECT * FROM Orders WHERE amt > 1000;

2. SELECT sname, city

FROM Salespeople

WHERE city = 'London'

ANDcomm > .10;

3 SELECT*
FROM Customers
WHERE rating > 100

OR city = 'Rome';

or

SELECT *

FROM Customers
WHERE NOT rating < = 100

OR city = 'Rome';

or

SELECT *

FROM Customers
WHERE NOT (rating < = 100

AND city <> Rome');

There may be other solutions as well.

onum amt odate cnum snum

3001 18.69 10/03/1990 2008 1007

3003 767.19 10/03/1990 2001 1001

3005 5160.45 10/03/1990 2003 1002

3009 1713.23 10/04/1990 2002 1003

3007 75.75 10/04/1990 2004 1002

3008 4723.00 10/05/1990 2006 1001

3010 1309.95 10/06/1990 2004 1002

3011 9891.88 10/06/1990 2006 1001

onum amt odate cnum snum

3001 18.69 10/03/1990 2008 1007

3003 767.19 10/03/1990 2001 1001

362 UNDERSTANDING SQL

APP. A

onum amt odate cnum snum

3006 1098.16 10/03/1990 2008 1007

3009 1713.23 10/04/1990 2002 1003

3007 75.75 10/04/1990 2004 1002

3008 4723.00 10/05/1990 2006 1001

3010 1309.95 10/06/1990 2004 1002

3011 9891.88 10/06/1990 2006 1001

6 SELECT *

FROM Salespeople;

CHAPTER 5

1 SELECT*
FROM Orders

WHERE odate IN (10/03/1990, 10/04/1990);

and
SELECT *

FROM Orders

WHERE odate BETWEEN 10/03/1990 AND 10/04,1990;

2 SELECT *

FROM Customers
WHERE snum IN (1 001 , 1 004);

3 SELECT *

FROM Customers
WHERE cname BETWEEN 'A' AND 'H';

Note: In an ASCII based system, this will not produce

Hoffman because of the trailing blanks after the H. For

the same reason the second boundary cannot be G, as

this would not produce the names of Giovanni and

Grass. G could be used if followed with a Z, so as to fol-

low other letters in alphabetical order, rather than pre-

ceding them as blanks do.

4 SELECT*
FROM Customers
WHERE cname LIKE 'C°/o';

ANSWERS TO EXERCISES 363

5. SELECT*
FROM Orders

WHERE amtOO
AND (amt IS NOT NULL);

or

SELECT *

FROM Orders

WHERE NOT (amt =
OR amt IS NULL);

CHAPTER 6

1. SELECT COUNTS)
FROM Orders

WHERE odate = 10/03/1990;

2 SELECT COUNT (DISTINCT city)

FROM Customers;

3 SELECT cnum, MIN (amt)

FROM Orders

GROUP BY cnum;

4 SELECT MIN (cname)

FROM Customers
WHERE cname LIKE 'G°/o';

5 SELECT city,

MAX (rating)

FROM Customers
GROUP BY city;

6 SELECT odate, count (DISTINCT snum)
FROM Orders

GROUP BY odate;

CHAPTER 7

l. SELECT onum, snum, amt * .12

FROM Orders;

364 UNDERSTANDING SQL

APP. A

2 SELECT 'For the city ', city, ', the highest rating is ',

MAX (rating)

FROM Customers
GROUP BY city;

3. SELECT rating, cname, cnum
FROM Customers
ORDER BY rating DESC;

4. SELECT odate, SUM (amt)

FROM Orders

GROUP BY odate

ORDER BY 2 DESC;

CHAPTER 8

l SELECT onum, cname
FROM Orders, Customers
WHERE Customers.cnum = Orders.cnum;

2. SELECT onum, cname, sname
FROM Orders, Customers, Salespeople

WHERE Customers.cnum = Orders.cnum
AND Salespeople.snum = Orders.snum;

3. SELECT cname, sname, comm
FROM Salespeople, Customers
WHERE Salespeople.snum = Customers.snum

AND comm > .12;

4. SELECT onum, comm * amt
FROM Salespeople, Orders, Customers
WHERE rating > 100

AND Orders.cnum = Customers.cnum
AND Orders.snum = Salespeople.snum;

CHAPTER 9

1. SELECT first.sname, second.sname
FROM Salespeople first, Salespeople second
WHERE first.city = second.city

AND first.sname < second.sname;

The aliases need not have these particular names.

ANSWERS TO EXERCISES 365

2. SELECT cname, first.onum, second.onum
FROM Orders first, Orders second, Customers
WHERE first.cnum = second.cnum

AND first.cnum = Customers.cnum
AND first.onum < second.onum;

There are a few variations of this that are possible, but

your answer should have all the same logical components.

3 SELECT a.cname, a. city

FROM Customers a, Customers b

WHERE a. rating = b. rating

AND b.cnum = 2001;

CHAPTER 10

1 SELECT*
FROM Orders

WHERE cnum =

(SELECT cnum
FROM Customers
WHERE cname = 'Cisneros');

or

SELECT *

FROM Orders

WHERE cnum IN

(SELECT cnum
FROM Customers
WHERE cname = 'Cisneros');

2. SELECT DISTINCT cname, rating

FROM Customers, Orders

WHERE amt >
(SELECT AVG (amt)

FROM Orders)

AND Orders.cnum = Customers.cnum;

3 SELECT snum, SUM (amt)

FROM Orders

GROUP BY snum
HAVING SUM (amt) >

(SELECT MAX (amt)

FROM Orders);

366 UNDERSTANDING SQL

APP. A

CHAPTER 11

1. SELECT cnum, cname
FROM Customers outer

WHERE rating =

(SELECT MAX (rating)

FROM Customers inner

WHERE inner.city = outer.city);

2. Correlated Subquery Solution:

SELECT snum, sname
FROM Salespeople main
WHERE city IN

(SELECT city

FROM Customers inner

WHERE inner.snum <> main.snum);

Join Solution:

SELECT DISTINCT first.snum, sname
FROM Salespeople first, Customers second
WHERE first. city = second. city

AND first.snum < > second.snum;

The correlated subquery finds all customers not serviced

by a given salesperson and checks to see if any of them

are located in his or her city. The join solution is simpler

and more intuitive. It finds cases where the city fields

match and the snums do not. Therefore a join is a more
elegant solution to this problem, given what we have

studied up till now. There is a more elegant subquery

solution that we will encounter later.

CHAPTER 12

1. SELECT*
FROM Salespeople first

WHERE EXISTS
(SELECT *

FROM Customers second
WHERE first.snum = second.snum

AND rating = 300);

ANSWERS TO EXERCISES 367

2. SELECT a.snum, sname, a. city, comm
FROM Salespeople a, Customers b

WHERE a.snum = b.snum
AND b.rating = 300;

3 SELECT *

FROM Salespeople a

WHERE EXISTS
(SELECT *

FROM Customers b

WHERE b.city = a.city

AND a.snum < > b.snum);

4 SELECT*
FROM Customers a

WHERE EXISTS
(SELECT *

FROM Orders b

WHERE a.snum = b.snum
AND a.cnum < > b.cnum)

CHAPTER 13

1. SELECT*
FROM Customers
WHERE rating >=ANY

(SELECT rating

FROM Customers
WHERE snum = 1002);

cnum cname city rating snum

2002 Giovanni Rome 200 1003

2003 Liu San Jose 200 1002

2004 Grass Berlin 300 1002

2008 Cisneros San Jose 300 1007

3. SELECT *

FROM Salespeople

WHERE city < > ALL
(SELECT city

FROM Customers);

368 UNDERSTANDING SQL

APP. A

or

SELECT *

FROM Salespeople

WHERE NOT city = ANY
(SELECT city

FROM Customers);

SELECT *

FROM Orders

WHERE amt > ALL
(SELECT amt

FROM Orders a, Customers b

WHERE a.cnum = b.cnum
AND b. city = 'London');

SELECT *

FROM Orders

WHERE amt >
(SELECT MAX (amt)

FROM Orders a, Customers b

WHERE a.cnum = b.cnum
AND b.city = 'London');

CHAPTER 14

l SELECT cname, city, rating, 'High Rating'

FROM Customers
WHERE rating > = 200

UNION

SELECT cname, city, rating, ' Low Rating'

FROM Customers
WHERE rating < 200;

or

SELECT cname, city, rating, 'High Rating'

FROM Customers
WHERE rating > = 200

UNION

SELECT cname, city, rating, ' Low Rating'

FROM Customers
WHERE NOT rating > = 200;

ANSWERS TO EXERCISES 369

The difference between these two statements is in the

form of the second predicate. Notice that, in both cases,

the string 'Low Rating' has an extra blank at the begin-

ning, so that it will match 'High Rating' for length.

2. SELECT cnum, cname
FROM Customers a

WHERE 1 <
(SELECT COUNT (*)

FROM Orders b

WHERE a.cnum = b.cnum)

UNION

SELECT snum, sname
FROM Salespeople a

WHERE 1 <
(SELECT COUNT (*)

FROM Orders b

WHERE a.snum = b.snum)

ORDER BY 2;

3 SELECT snum
FROM Salespeople

WHERE city = 'San Jose'

UNION

(SELECT cnum
FROM Customers
WHERE city = 'San Jose'

UNION ALL

SELECT onum
FROM Orders

WHERE odate = 10/03/1990);

CHAPTER 15

1

.

INSERT INTO Salespeople (city, cname, comm, cnum)
VALUES (San Jose', 'Blanco', NULL, 1100);

2. DELETE FROM Orders WHERE cnum = 2006;

370 UNDERSTANDING SQL

APP. A

3. UPDATE Customers
SET rating = rating + 100

WHERE city = 'Rome';

4. UPDATE Customers
SETsnum = 1004

WHERE snum = 1002;

CHAPTER 16

1. INSERT INTO Multicust

SELECT *

FROM Salespeople

WHERE 1 <
(SELECT COUNT (*)

FROM Customers
WHERE Customers.snum =

Salespeople.snum);

2. DELETE FROM Customers
WHERE NOT EXISTS

(SELECT *

FROM Orders

WHERE cnum = Customers.cnum);

3. UPDATE Salespeople

SET comm = comm + (comm * .2)

WHERE 3000 <
(SELECT SUM (amt)

FROM Orders

WHERE snum = Salespeople.snum);

A more sophisticated version of this command might

make sure the commission did not exceed 1.0 (100%):

UPDATE Salespeople

SET comm = comm + (comm * .2)

WHERE 3000 <
(SELECT SUM (amt)

FROM Orders

WHERE snum = Salespeople.snum)
AND comm + (comm * .2) < 1.0;

These problems may have other solutions as well.

ANSWERS TO EXERCISES 371

CHAPTER 17

1 CREATE TABLE Customers
(cnum integer,

cname char(10),

city char(10),

rating integer,

snum integer);

2 CREATE INDEX Datesearch ON Orders(odate);

(All index names used in these answers are arbitrary.)

3 CREATE UNIQUE INDEX Onumkey ON Orders(onum);

4 CREATE INDEX Mydate ON Orders(snum, odate);

5. CREATE UNIQUE INDEX Combination ON
Customers(snum, rating);

CHAPTER 18

1. CREATE TABLE Orders

(onum integer NOT NULL PRIMARY KEY,

amt decimal,

odate date NOT NULL,
cnum integer NOT NULL,
snum integer NOT NULL,
UNIQUE (snum, cnum));

or

CREATE TABLE Orders

(onum integer NOT NULL UNIQUE,
amt decimal,

odate date NOT NULL,
cnum integer NOT NULL,
snum integer NOT NULL,
UNIQUE (snum, cnum));

The first solution is preferable.

2 CREATE TABLE Salespeople

(snum integer NOT NULL PRIMARY KEY,

sname char(1 5) CHECK (sname BETWEEN ' A A"

AND'MZ'),

372 UNDERSTANDING SQL

APP. A

city char(15),

comm decimal NOT NULI

CREATE TABLE Orders

(onum integer NOT NULL,
amt decimal,

odate date,

cnum integer NOT NULL,
snum integer NOT NULL,
CHECK ((cnum > snum) AND (onum > cnum)));

CHAPTER 19

1 CREATE TABLE Cityorders

(onum integer NOT NULL PRIMARY KEY,

amt decimal,

cnum integer,

snum integer,

city char (15),

FOREIGN KEY (onum, amt, snum)
REFERENCES Orders (onum, amt, snum),

FOREIGN KEY (cnum, city)

REFERENCES Customers (cnum, city));

2 CREATE TABLE Orders

(onum integer NOT NULL,
amt decimal,

odate date,

cnum integer NOT NULL,
snum integer,

prev integer,

UNIQUE (cnum, onum),
FOREIGN KEY (cnum, prev) REFERENCES Orders (cnum,

onum)); 9

CHAPTER 20

1 CREATE VIEW Highratings

AS SELECT *

FROM Customers

ANSWERS TO EXERCISES 373

WHERE rating =

(SELECT MAX (rating)

FROM Customers);

2 CREATE VIEW Citynumber

AS SELECT city, COUNT (DISTINCT snum)
FROM Salespeople

GROUP BY city;

3 CREATE VIEW Nameorders
AS SELECT sname, AVG (amt), SUM (amt)

FROM Salespeople, Orders

WHERE Salespeople.snum = Orders.snum

GROUP BY sname;

4 CREATE VIEW Multcustomers

AS SELECT *

FROM Salespeople a

WHERE 1 <
(SELECT COUNT (*)

FROM Customers b

WHERE a.snum = b.snum);

CHAPTER 21

1. #1 is not updatable because it uses DISTINCT.
#2 is not updatable because it uses a join, an aggregate

function, and GROUP BY.

#3 is not updatable because it is based on #1 , which is not

updatable.

#4 is updatable.

2 CREATE VIEW Commissions
AS SELECT snum, comm

FROM Salespeople

WHERE comm BETWEEN .10 AND .20

WITH CHECK OPTION;

3 CREATE TABLE Orders

(onum integer NOT NULL PRIMARY KEY,

amt decimal,

odate date DEFAULT VALUE = CURDATE,
snum integer,

cnum integer);

374 UNDERSTANDING SQL

APP. A

CREATE VIEW Entryorders

AS SELECT onum, amt, snum, cnum
FROM Orders;

CHAPTER 22

1 GRANT UPDATE (rating) ON Customers TO Janet;

2 GRANT SELECT ON Orders TO Stephen WITH GRANT
OPTION;

3 REVOKE INSERT ON Salespeople FROM Claire;

4. Step 1 : CREATE VIEW Jerrysview

AS SELECT *

FROM Customers
WHERE rating BETWEEN 100 AND 500

WITH CHECK OPTION;

Step 2: GRANT INSERT, UPDATE ON Jerrysview TO Jerry;

5. Step 1 : CREATE VIEW Janetsview

AS SELECT *

FROM Customers
WHERE rating =

(SELECT MIN (rating)

FROM Customers);

Step 2: GRANT SELECT ON Janetsview TO Janet;

CHAPTER 23

1 CREATE DBSPACE Myspace
(pctindex 15,

pctfree 40);

2 CREATE SYNONYM Orders FOR Diane.Orders;

3. They should be rolled back.

4. An Exclusive Lock.

5. ReadOnly.

ANSWERS TO EXERCISES 375

CHAPTER 24

1. SELECT a.tname, a.owner, b.cname, b.datatype

FROM SYSTEMCATOLOG a, SYSTEMCOLUMNS b

WHERE a.tname = b.tname
AND a.owner = b.owner

AND a.numcolumns > 4;

Note: because most of the column names of the joined

tables are different, not all of the uses of aliases a and b in

the above command are strictly neccessary. They are pro-

vided for clarity.

2. SELECT tname, synowner, COUNT (ALL synonym)
FROM SYTEMSYNONS
GROUP BY tname, synowner;

3 SELECT COUNT (*)

FROM SYSTEMCATALOG a

WHERE numcolumns/2 <
(SELECT COUNT (DISTINCT cnumber)

FROM SYSTEMINDEXES b

WHERE a.owner = b.tabowner

AND a.tname = b.tname);

CHAPTER 25

1 EXEC SQL BEGIN DECLARE SECTION;
SQLCODE:integer;

{always required}

cnum integer;

snum integer;

custnum: integer;

salesnum: integer;

EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE Wrong_Orders AS CURSOR FOR

>
SELECT cnum, snum

FROM Orders a

WHERE snum <>
(SELECT snum^FROM Customers b

WHERE a.cnum = b.cnum);

376 UNDERSTANDING SQL

APP. A

{We are still using SQL to do the main work here. The
query above locates the rows of the Orders table that are

not in agreement with the Customers table.}

EXEC SQL DECLARE Cust.assigns AS CURSOR FOR
SELECT cnum, snum

FROM Customers;

{This cursor is used to provide the correct snum values.

}

begin {main program}
EXEC SQL OPEN CURSOR Wrong_Orders;
while SQLCODE = do

{Loop until Wrong_Orders is empty}
begin

EXEC SQL FETCH Wrong_Orders INTO
(:cnum, :snum);

if SQLCODE = then

begin

{If Wrong _ Orders is empty, we don't want this loop to do
anything.}

EXEC SQL OPEN CURSOR Cust.Assigns;

repeat

EXEC SQL FETCH Cust_Assigns
INTO (:custnum, :salesnum);

until xustnum = :cnum;

{The repeat FETCH until . . . command will go through the

Cust_ Assigns cursor until the row that matches the

current cnum of Wrong_Orders is found.

}

EXEC SQL CLOSE CURSOR Cust.assigns;

{So that we will start out fresh next time through the

loop. The value we need from this cursor is stored in the

salesnum variable.

}

EXEC SQL UPDATE Orders

SET snum = :salesnum

WHERE CURRENT OF Wrong_Orders;
end; {If SQLCODE = 0}

end; {While SQLCODE. . .do}

EXEC SQL CLOSE CURSOR Wrong_Orders;
end; {main program}

ANSWERS TO EXERCISES 377

2. Given the program I used, the solution would be to sim-

ply include onum, the primary key of the Orders table,

in the Wrong_Orders cursor. In the UPDATE com-
mand, you would then use a WHERE onum = :orde-

rnum predicate (assuming a declared integer variable

odernum), instead of a WHERE CURRENT OF
Wrong_Orders. The resulting program would look like

this (most comments from previous version omitted):

EXEC SQL BEGIN DECLARE SECTION;
SQLCODE: integer;

odernum integer;

cnum integer;

snum integer;

custnum: integer;

salesnum: integer;

EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE Wrong.Orders AS CURSOR FOR

SELECT onum, cnum, snum
FROM Orders a

WHERE snum <>
(SELECT snum

FROM Customers b

WHERE a.cnum = b.cnum);

EXEC SQL DECLARE Cust.assigns AS CURSOR FOR
SELECT cnum, snum

FROM Customers;
begin {main program}
EXEC SQL OPEN CURSOR Wrong_Orders;
while SQLCODE = do {Loop until Wrong_Orders is

empty}
begin

EXEC SQL FETCH Wrong_Orders
INTO (:odernum, :cnum, :snum);

if SQLCODE = then

begin

EXEC SQL OPEN CURSOR Cust_ Assigns:

repeat

EXEC SQL FETCH Cust_Assigns
INTO (:custnum, :salesnum);

until :custnum = :cnum;

378 UNDERSTANDING SQL

APP. A

EXEC SQL CLOSE CURSOR Cust_assigns;

EXEC SQL UPDATE Orders

SET snum = :salesnum

WHERE CURRENT OF Wrong_Orders;
end; {IfSQLCODE = 0}

end; {While SQLCODE. . .do}

EXEC SQL CLOSE CURSOR Wrong_Orders;
end; {main program}

3 EXEC SQL BEGIN DECLARE SECTION;
SQLCODE integer;

newcity packed array [1 . . 12] of char;

commnull boolean;

citynull boolean;

response char;

EXEC SQL END DECLARE SECTION;
EXEC SQL DECLARE CURSOR Salesperson AS

SELECT * FROM SALESPEOPLE;
begin {main program}
EXEC SQL OPEN CURSOR Salesperson;

EXEC SQL FETCH Salesperson

INTO (:snum, :sname, :city:i_cit, :comm:i_com);

{Fetch first row.}

while SQLCODE = do

{While there are rows in Salesperson.}

begin

if i_com < then commnull : = true;

if i cit < then citynull : = true;

{Set boolean flags that will indicate NULLS.

}

if citynull then

begin

write ('No current city value for salesperson ',

snum, ' Would you like to provide one? (Y/N)');

{Prompt indicates city is NULL.}

read (response);

{The response will be used later.}

end {if citynull}

ANSWERS TO EXERCISES 379

else [not city null!

begin

if not commnull then

{To perform comparison and operations only on nonNULL
comm values.}

begin

if city = 'London' then comm : = comm - .02

else comm : = comm + .02;

end;

{ If not commnull, begin and end are for clarity.

}

write ('Current city for salesperson ',

snum, ' is ', city,

Do you want to change it? (Y/N)');

Note: Salespeople not currently assigned a city will not have

their commissions changed on the basis of whether they

reside in London.

read (response);

{Response now has a value regardless of whether

citynull is true or false.

}

end; {else not citynull}

if response = 'Y' then

begin

write ('Enter new city value: ');

read (newcity);

if not commnull then

{This operation can be performed only on nonNULL
values.}

case newcity of:

begin

'Barcelona': comm := comm + .01,

'San Jose': comm : = comm - .01

end; {case and if not commnull}
EXEC SQL UPDATE Salespeople

SET city = :newcity. comm = :comm:i_com
WHERE CURRENT OF Salesperson;

{Indicator variable will put a NULL in comm if

appropriate.}

380 UNDERSTANDING SQL

APP. A

end; {If response = 'Y', if response <> 'Y', no
change is made.}
EXEC SQL FETCH Salesperson

INTO (:snum, :sname. :city:i_cit,

:comm:i_com);

{fetch next row}

end; {while SQLCODE = 0}

EXEC SQL CLOSE CURSOR Salesperson;

end; {main program}

IE

>, B
SQL Data Types

382 UNDERSTANDING SQL

APR B

THE DATA TYPES RECOGNIZED BY ANSI CONSIST OF
CHAR and several types of number values, which can be cata-

gorized as exact numeric and approximate numeric. The exact

numeric types are numbers, with or without decimal points, in

conventional notation. The approximate numeric types are

numbers in exponential (base 10) notation. Other than this, the

distinctions between these types are sometimes subtle.

Sometimes data types use an argument, which I have called

the size argument, whose exact format and meaning varies from

type to type. Defaults are provided for all types if the size argu-

ment is omitted.

ANSI TYPES
These are the ANSI data types (names in parentheses are

synonyms):

TEXT

Data Type

CHAR (or CHARACTER)

Description

A string of text in an

implementor-defined

format. Here the size

argument is a single

nonnegative integer that

refers to the maximum
length of the string. Values

of this type must be

enclosed in single quotes,

such as 'text'. Two adjacent

single quotes (") inside the

string will represent one

single quote (').

SQL DATATYPES 383

EXACTNUMERIC

Data Type

DEC (or DECIMAL)

NUMERIC

INT (or INTEGER)

SMALLINT

Description

A decimal number; that is, a

number that can have a decimal

point in it. Here the size argu-

ment has two parts: precision and

scale. The scale cannot exceed the

precision. Precision comes first,

and a comma must separate it

from the scale argument. The
precision indicates how many
(significant) digits the number is

to have. The maximum number
of digits for the number is an

implementation-determined value

equal to or greater than this num-
ber. The scale indicates the maxi-

mum number of digits to the right

of the decimal point. A scale of

zero makes the field the equiva-

lent of an integer.

Same as DECIMAL except that

the maximum number of digits

may not exceed the precision

argument.

A number without a (shown)

decimal point. Equivalent to a

DECIMAL with no digits to the

right of the decimal point, that is,

with a scale of 0. The size argu-

ment is not used (it is automati-

cally set to an implementation-

dependent value).

Same as INTEGER except that,

depending on implementation,

the default size may (or may not)

be smaller than INTEGER.

384 UNDERSTANDING SQL

APP B

APPROXIMATE NUMERIC

Data Type Description

FLOAT A floating point number in

base 10 exponential notation.

The size argument consists of a

single number specifying the

minimum precision.

REAL Same as FLOAT, except that

no size argument is used.

The precision is set to an

implementation-dependent

default.

DOUBLE PRECISION
(or DOUBLE)

Same as REAL, except that

the implementation-defined

precision for DOUBLE
PRECISION must exceed

the implementation-defined

precision of REAL.

EQUIVALENTDATA
TYPES IN OTHER LANGUAGES
When embedding SQL in other languages, the values used in

and produced by SQL commands are normally stored in host-

language variables (see Chapter 25). These variables must be of

compatible data types with the SQL values they will hold. In its

annexes, which are not part of the offical SQL standard, ANSI
provides support for use of embedded SQL with four languages:

Pascal, PL/I, COBOL, and FORTRAN. Among other things,

this involved defining SQL equivalents for data types of variables

SQL DATATYPES 385

used in these languages. Here are the equivalents in the four

ANSI-defined languages:

PL/I

SQL Type

CHAR
DECIMAL

INTEGER

FLOAT

PL/I EQUIVALENT

CHAR
FIXED DECIMAL

FIXED BINARY

FLOAT BINARY

COBOL

SQL TYPE

CHAR (<integer>)

INTEGER

NUMERIC

COBOL EQUIVALENT

PIC X(<integer>)

PIC S(<nines>) USAGE
COMPUTATIONAL
PIC S(<.nines with embedded

V>) DISPLAY SIGN
LEADING SEPARATE

PASCAL

SQL Type

INTEGER

REAL

CHAR (<length>)

Pascal Equivalent

INTEGER

REAL

PACKED ARRAY
[1. .</™^>]OFCHAR

386 UNDERSTANDING SQL

APP. B

FORTRAN

SQL Type

CHARACTER
INTEGER

REAL

DOUBLE PRECISION

FORTRAN EQUIVALENT

CHARACTER
INTEGER

REAL

DOUBLE PRECISION

d^, c
Some Common Nonstandard

SQL Features

388 UNDERSTANDING SQL

APR C

THERE ARE A NUMBER OF FEATURES OF THE SQL
language that, while not defined as part of the ANSI or ISO
standard, are common to numerous implementations because

they have been found to be useful in practice. This appendix

outlines a number of these features. Naturally, these features

vary from product to product, and this discussion is intended

only to introduce some common approaches.

DATA TYPES
The data types supported by the SQL standard are outlined in

Appendix B. They amount to CHARACTER and a variety of

numeric types. Implementations can, in fact, be greatly more
sophisticated than this in terms of the types that they actually

can use. We will discuss a variety of these nonstandard data

types here.

DATE AND TIME TYPES

As mentioned in Chapter 2, the DATE data type is widely sup-

ported, even though it is not part of the standard. We have used

this type in our Orders table, assuming a format of mm/dd/yyyy.

This is the IBM standard format for the U.S. Other formats are,

of course, possible, and implementations often support a variety of

formats, allowing you to choose the one that best suits your needs.

An implementation that offers this feature should be able to convert

dates from one format to another automatically. Here are some

other major date formats you may encounter:

Standard Format Example

International Standards yyyy-mm-dd 1990-10-31

Organization (ISO)

Japanese Industrial yyyy-mm-dd 1990-10-31

Standard (JIS)

IBM European Standard dd.mm.yyyy 10.31.1990

(EUR)

SOME COMMONNONSTANDARD SQL FEATURES 389

Having a special type defined for dates enables you to perform

date arithmetic. For example, you can add a number of days to

a date and produce another date, with the program itself keeping

track of the number of days in months, leap years, and so on.

Dates can also be compared; for example, date A < date B
means that date A precedes date B chronologically.

In addition to dates, many programs define a special type for

times, which can also be presented in a variety of formats includ-

ing the following:

STANDARD FORMAT EXAMPLE

International Standards hh-mm-ss 21.04.37

Organization (ISO)

Japanese Industrial hh-mm-ss 21.04.37

Standard (JIS)

IBM European Standard hh-mm-ss 21.04.37

(EUR)

IBM USA Standard hh.mm AM/PM 9.04 PM
(USA)

Times can be added or compared accurately just as dates can,

with the correct number of seconds in a minute or hours in a day

automatically accounted for. In addition, special built-in constants

indicating the current date or time (CURDATE or CURTIME)
are common. These are like the constant USER in that their

value will continually change with the context.

Can you include time and date in a single field? Some imple-

mentations define the DATE type finely enough to include times.

Alternatively, a third type, such as TIMESTAMP, can be

defined as a combination of the two.

TEXT STRING TYPES
ANSI supports one type to represent text. This is the CHAR

type. Any field of this type is defined to have a specific length. If

the string inserted into the field is less than that length, it is pad-

ded with blanks; the string cannot be longer than the field

390 UNDERSTANDING SQL

APP. C

length. Although convenient from the implementor's point of

view, this definition has some limitations for the user. For

instance, the character fields have to be of the same length in

order to undergo a UNION.
Many implementors support strings of varying length through

the data types VARCHAR and LONG VARCHAR (usually just

called LONG). Whereas a field of the CHAR type always allo-

cates memory storage for the maximum number of characters

that can be stored in the field, a VARCHAR field of either vari-

ety will allocate only enough memory to store the actual contents

of the field, although SQL will have to set aside some associated

memory space to keep track of the field's current length. VAR-
CHAR fields can be any length up to an implementor-defmed

maximum. This maximum can vary from 254 to 2048 characters

for VARCHAR, and up to 16K characters for LONG. LONG is

generally used for text of an explanatory nature or for data that

cannot be easily compressed into simple field values; VAR-
CHAR can be used for any text string whose length will vary.

It is not always a good idea to use VARCHAR instead of

CHAR, by the way. Retrieving and updating VARCHAR fields

is more complex, and therefore slower, than retrieving and

updating CHAR fields. In addition, some of the memory VAR-
CHAR saves is used to store the length of the string anyway. You

should appraise how much the values of a field are likely to vary

in length as well as whether they may need to undergo unions

with other fields before deciding whether to use CHAR or VAR-
CHAR. Frequently, the LONG type can also be used to store

binary data. Of course, the LONG field's unwieldy size limits

the SQL operations you can perform on it. Consult your manual

for details.

THE FORMAT COMMAND
As we pointed out in Chapter 7, the processing of output pro-

vided in standard SQL is rather limited. Although many imple-

mentations include SQL in packages that have other features to

SOME COMMONNONSTANDARD SQL FEATURES 391

handle this function, some also use a command such as FOR-
MAT within SQL to impose certain forms, structures, or limita-

tions on query output. Among the possible functions of the

FORMAT command are

• To specify the width of columns (as printed).

• To specify how NULLs will be represented.

• To provide (new) headings for columns.

• To provide top- or bottom-of-page titles for printed output.

• To impose appropriate, or modify given, formats for

fields containing date, time, or money values.

• To calculate totals and subtotals without excluding the

field being totaled, as SUM does. (An alternative

approach to this problem in some products is the COM-
PUTE clause.)

The FORMAT command can be entered immediately before or

after the query to which it will apply, depending on the implemen-

tation. One FORMAT command usually will apply to only one

query, although any number of FORMAT commands can apply to

the same query. Here are some typical FORMAT commands:

FORMAT NULL '
';

FORMAT BTITLE 'Orders Grouped by Salesperson';

FORMAT EXCLUDE (2, 3);

The first of these will have NULL values printed as

' ' in the output; the second will insert the title

'Orders Grouped by Salesperson' at the bottom of each page;

the third will exclude the second and third columns of the pre-

vious query's output. You might possibly use the last of these if

you only selected certain columns to use them in an ORDER BY
clause, sequencing your output. Which specific functions FOR-
MAT can perform varies, so a complete illustration of its differ-

ent applications is beyond our scope here.

392 UNDERSTANDING SQL

APP. C

There are other commands that may be used to fufill these

fucntions. The SET command is similar to FORMAT; it can

either be an alternative or a supplemental command that will

apply to all queries in the current user session, rather than a sin-

gle query. Another implementation begins its commands with

the keyword COLUMN rather than FORMAT, as follows:

COLUMN odate FORMAT dd-mon-yy;

This imposes a 10-Oct-90 format on the date field for the pur-

pose of the query's output.

The COMPUTE clause, mentioned previously, is inserted

into a query, as follows:

SELECT odate, amt
FROM Orders

WHERE snum = 1001

COMPUTE SUM (amt);

This will produce all of Peel's orders, with the date and amount,

and then total the amounts. Another implementation produces sub-

totals using COMPUTE as a command. First, it defines a break:

BREAK ON odate;

This divides the output of the above query on the page into

groups, so that all odate values in a group are the same. Now
you could enter the following statement:

COMPUTE SUM OF amt ON odate;

The column in the ON clause must previously have been used in

a BREAK command.

FUNCTIONS
In ANSI standard SQL, you can apply aggregate functions to

columns or use their values in scalar expressions, such as comm
* 100. There are many other useful functions that you are likely

SOME COMMONNONSTANDARD SQL FEATURES 393

to encounter in practice. Here is a list of some common SQL
functions other than the standard aggregates. They can be used

in the SELECT clause of queries, just like aggregate functions,

but these functions operate on single values instead of groups. In

the following list they are categorized according to the types of

data they operate on. Unless otherwise indicated, variables in

this list stand for any value expression of the proper type that

could be used in a SELECT clause:

MATHEMATICAL FUNCTIONS
These functions are applied to numbers.

FUNCTION

ABS(X)

CEIL(X)

FLOOR(X)

GREATEST(X,Y)

LEAST(X,Y)

MOD(X,Y)

POWER(X,Y)

ROUND(X,Y)

SIGN(X)

SQRT(X)

MEANING

Absolute value ofX (converts

negative or positive to positive).

X is a decimal value that will be

rounded upwards.

X is a decimal value that will be

rounded downwards.

Returns the larger of the two

values.

Returns the lesser of the two

values.

Returns the remainder of

X / Y.

Returns X to the power of Y.

Rounds X to Y decimal places.

If Y is omitted, rounds to

integer.

Returns a minus if X < 0, a

plus otherwise.

Returns the square root of X.

394 UNDERSTANDING SQL

APP. C

CHARACTER FUNCTIONS
These functions can be applied to strings of text, either from

columns of a text data type, literal text strings, or a combination

of the two.

FUNCTION

LEFT(<stnng>,X)

RIGHT(< stnng>,X)

ASCII(< stnng>)

CHR(<ASCII code>)

VALUE(<strmg>)

\JPPER(<stnng>)

EOWER(<string>)

lNlTCAP(<stnng>)

LENGTH(<5%>)

<string>\\ K stringy

MEANING

Returns the leftmost X
characters of the string.

Returns the rightmost X
characters of the string.

Returns the ASCII code that

represents the string in the

computer's memory.

Returns the printable

characters the ASCII code

represents.

Returns a mathematical value

for the string. Assumes that the

string is of the CHAR or

VARCHAR type but consists

of numbers. VALUE('3') will

produce a 3 of the integer type.

Converts the string to all

uppercase letters.

Converts the string to all

lowercase letters.

Converts the string to initial

caps. Called PROPER in some

implementations

.

Returns the number of

characters in the string.

Combines the two strings in the

output, so that the first will be

followed immediately by the

SOME COMMONNONSTANDARD SQL FEATURES 395

LPAD(<string> tX;*')

RPAB(<str^ng>,X;* ,

)

SUBSTR(<rfn/i£>,X,Y)

second. (II is called the

concatenate operator.)

Pads the string on the left with

the '
*

'
, or whatever character is

indicated, to make it X
characters long.

Same as LPAD, except that the

padding is done on the right.

Extracts Y letters from the

string beginning at position X.

DATE AND TIME FUNCTIONS
These functions operate on valid date or time values.

FUNCTION

DAY\<date>)

WEEKDAY(<<fcfc>)

MEANING

Extracts the day of the month
from the date. Similar

functions exist for MONTH,
YEAR, HOUR, SECOND,
and so on.

Derives the day of the week

from the date.

OTHER
This function can apply to any data type.

FUNCTION

NV L(< column> , < value>

)

MEANING

NVL (NULL Value) will

substitute <value> for any

NULL found in <.column> . If

the current value of <column>

is not NULL, NVL has no

effect.

396 UNDERSTANDING SQL

APP. C

INTERSECTAND MINUS
The UNION command, as you have seen in Chapter 14,

unites two queries by merging their output into one. Two other

commonly found ways of combining seperate queries are

INTERSECT and MINUS. INTERSECT outputs only rows

produced by both of the queries intersected, whereas MINUS
outputs rows that are produced by one but not the other. There-

fore, the following two queries

SELECT *

FROM Salespeople

WHERE city = London'

INTERSECT

SELECT *

FROM Salespeople

WHERE 'London' IN

(SELECT city

FROM Customers
WHERE Customers.snum =

Salespeople,snum);

would output the rows produced by both of the queries, produc-

ing all salespeople in London who had at least one customer

located there as well. On the other hand

SELECT *

FROM Salespeople

WHERE city = 'London'

MINUS

SELECT *

FROM Salespeople

WHERE 'London' IN

(SELECT city

FROM Customers
WHERE Customers.snum =

Salespeople.snum);

would remove rows selected by the second query from the output

of the first, and thereby produce all salespeople in London who

SOME COMMONNONSTANDARD SQL FEATURES 397

did not have customers there. MINUS is sometimes called

DIFFERENCE.

AUTOMATIC OUTERJOINS
In Chapter 14, we discussed the outer join and showed you

how to implement it using the UNION command. Some data-

base programs have more direct ways of implementing outer

joins. In some implementations, a parenthesized plus sign (+)
after the predicate will produce rows that satisfy the condition as

well as rows that do not. The predicate condition will contain a

field that is being matched in both tables, and NULLS will be

inserted where no match was found. For example, suppose you

wanted to see your salespeople matched to their customers, with-

out excluding those salespeople who were not currently assigned

any customers (although there are none in the sample tables as

given, this is still a possibility):

SELECT a.snum, sname, cname
FROM Salespeople a, Customers b

WHERE a.snum = b.snum(+);

This is the equivalent of the following UNION:

SELECT a.snum, sname, cname
FROM Salespeople a, Customers b

WHERE a.snum = b.snum

UNION

SELECT snum, sname, '
'

FROM Salespeople

WHERE snum NOT IN

(SELECT snum
FROM Customers);

We are assuming underscores to be the current representation of

NULL (see the FORMAT command earlier in this appendix on

representation of NULL).

398 UNDERSTANDING SQL

APR C

KEEPING TRACK OFACTIONS
Your SQL implementation is likely, if it accessed by multiple

users, to provide some way of keeping track of actions performed

on the database. There are two major forms of this: Journaling

and Auditing. These forms differ in purpose.

Journaling, as we use the term here, is done for the purpose of

protecting your data if the system crashes. You first use an imple-

mentation-dependent procedure to backup the current contents of

your database, so that an extra copy of these contents is stored

somewhere. You then journal the changes to the database. This

stores in some memory area other than the main database memory,

preferably a different device, each command that made a change in

the structure or content of the database. If you have a problem and

lose the current contents of your database, you can reexecute all

changes logged in the journal on the backed up copy, and recreate

the database in the state it was as of the last journal entry. A typical

command to begin journaling changes would be the following:

SET JOURNAL ON;

Auditing is done for security purposes. It keeps track of who
performs which actions on the database, and stores this informa-

tion in a table accessible only to one or a few highly privileged

users. Naturally, you seldom want to audit every action, because

this would soon take up a lot of memory. You can set auditing for

particular users, particular actions or particular data objects.

Here is one form of an AUDIT command:

AUDIT INSERT ON Salespeople BY Diane;

Either the ON or BY clauses could have been omitted, resulting

in an audit of all objects or users, respectively. AUDIT ALL, in

place of AUDIT INSERT, would have tracked all Diane's

actions involving Salespeople.

D
I

Syntax and Command
Reference

400 UNDERSTANDING SQL

APP. D

THIS APPENDIX CONTAINS A MORE CONCISE DEFI-
nition of the various SQL commands. Its purpose is to give you

a quick and precise SQL reference and definition. The first sec-

tion of this appendix defines the elements used to construct SQL
commands; the second details the syntax and offers a concise

explanation of the commands themselves.

The following standard conventions are observed (these are

called BNF conventions):

• Keywords are in all uppercase letters.

• SQL and other special terms are in angle brackets and

italicized (< and >).

• Optional portions of a command are in square brackets

([and]).

• Elipses (...) indicate that the preceding portion of the

command may be repeated any number of times.

• A vertical bar (
I

) indicates that whatever precedes it may
optionally be replaced by whatever follows it.

• Braces ({ and }) indicate that everything within them is

to be regarded as a whole for the purpose of evaluating

other symbols (for example, vertical bars or ellipses).

• Double colon equals (:: =) means that what follows is the

definition of what precedes it.

In addition, we will use the following sequence (.,..) to indicate

that the preceding may be repeated any number of times with

the individual occurances separated by commas. Attributes that

are not part of the official standard will be marked (* nonstan-

dard*) in the explanation.

NOTE: the terminology we use here is not the official ANSI
terminology. The official terminology can get quite labyrinthian,

so we have simplified things somewhat. For this reason, we

sometimes use different terms than ANSI, or even use the same

terms somewhat differently. For example, our definition of

<predicate> combines what the standard calls a <predicate> with

what is there called a < search condition> . We have eliminated the

need for the latter.

SYNTAXAND COMMAND REFERENCE 401

SQL ELEMENTS
This section defines the elements of SQL commands. These

are divided for our purposes into two categories: the basic lan-

guage elements, and the functional language elements. The basic

elements are the building blocks of the language; when SQL
examines a command, it first evaluates each character in the text

of the command in terms of these elements. The <. separator's

divide one part of a command from another; whatever is

between <.separator's is treated as a unit. On the basis of this

division, SQL interprets the command.
The functional elements are the various things (other than key-

words) that these units will be interpreted as. They are portions of

a command, delineated by K separator's, that have special mean-

ing to SQL. Some are specific to particular commands and are

discussed with those commands later in this appendix. The ones

listed here are common elements to multiple commands. Func-

tional elements can be defined in terms of each other or even in

terms of themselves. For example, the <predicated , our final and

most complex case, contains <predicated in its own definition.

This is because a <.predicate~> using AND or OR can contain any

number of <predicate>'s that could stand alone.

We have given the Kpredicate^ a separate section in this

appendix because of the variety and complexity of this functional

language element. It will follow the discussion of the other func-

tional parts of commands.

BASIC LANGUAGE ELEMENTS

Element Definition

< separator <. comments I <space> I Knewline^

<.comment> --<string'Xnewline'>

<space> space character

<newline> implementor-defined end of line character

< identifier < letter
[{ < letter or digiO I < underscore} . . .]

NOTE: In strict ANSI standard, letters

must be uppercase, and < identifiers'-'s must

be no longer than 18 characters.

402 UNDERSTANDING SQL

APR D

Element

< underscored

Kpercent sign~>

<delimiter>

< string^

<SQL term>

(*embedded
only*)

Definition

^c

any of the following: ,()<>.: = + *

-/<>>=< = or a <string>

[any printable text in single quotes]

NOTE: In Kstring^'s, two consecutive

single quotes (") will be interpreted as one.

host-language dependent statement

terminator.

FUNCTIONAL ELEMENTS
The following table shows the functional elements of SQL

commands and their definitions:

Element

< query ~>

<subquery~>

< value expression>

Koperator~>

<primary>

< literal>

Definition

SELECT statement

Parenthesized SELECT statement

within another statement, which is, in

effect, evaluated separately for each

candidate row of the other statement

<primary>

I <primaryX.operator'X.primary'>

I KprimaryXoperatorXvalue

expression>

any of the following: + - /
*

<column name>
I <literal>

I < aggregatejunction>

I < built-in constant^

I < nonstandardfunction^

< string> I < mathematical expression>

SYNTAXAND COMMAND REFERENCE 403

Element

Kbuilt-in constant's*

< table name~>

< column specs*

^grouping columns*

< ordering column>

Kcolconstraints*

Ktabconstraints*

< dej^values*

<data types*

<. sizes*

< cursor names*

< index names*

< synonyms*

<owner~>

< column lists*

< value list>

< table referenced

DEFINITION

USER I < implementation-defined

constants*

< identifiers*

[< table name> I < alias> .] < column

names*

<column spec > I < integers*

< column specs* I < integers*

NOT NULL I UNIQUE
I CHECK (<predicate>)

I PRIMARY KEY
I REFERENCES <taW*

name s*[(< column names*)]

UNIQUE (Kcolumn ftrf>)

I CHECK (<predicate>)

I PRIMARY KEY (Kcolumn list>)

I FOREIGN KEY (Kcolumn list>)

REFERENCES
< table name>[(< column lists*)]

DEFAULT VALUE = <value

expression>

Legal data type (See Appendix B for

those supported by ANSI or Appen-

dix C for other common ones.)

Meaning depends on <data types*

(See Appendix B.)

< identifiers*

< identifiers*

< identifier >(* nonstandard*)

<Authorization IDs*

< column specs* .
, . .

< value expression> . , . .

{ < table names* [Kaliass*] } .,. .

404 UNDERSTANDING SQL

APP D

PREDICATES
The following definition of < predicate> lists the various types

that will be explained in the following pages:

< predicate> :: = [NOT]
{ < comparison predicate>
<in predicate>
<null predicate>
< between predicate>
<like predicate>
< quantified predicate

>

< exists predicate> }

[AND I OR < predicate >]

A <predicate> is an expression that can be true, false, or

unknown, with the exceptions of the < exists predicated and the

Knull predicated , which can be only true or false. Unknown
occurs if NULL values prevent a definitive answer from being

produced. This will be the case whenever a NULL is compared

to any value. The standard Boolean operators—AND, OR, and

NOT—may be used with a <predicated . NOT true is false, NOT
false is true, and NOT unknown is unknown. AND and OR
have the effects on a combination of predicates illustrated in the

following tables:

AND true false unknown

true true false unknown

false false false false

unknown unknown false unknown

OR
OR true false unknown

true true true true

false true false unknown

unknown true unknown unknown

SYNTAXAND COMMAND REFERENCE 405

These tables are read in a manner similar to multiplication

tables: you combine the true, false, or unknown values from the

rows with those of the columns to get the result indicated where

that column intersects that row. In the AND table for example,

the third column (unknown) and the first row (true) intersect at

the upper left showing unknown—the value of true AND
unknown.

The order of precedence is determined by parentheses. When-
ever these are not present, NOT will be evaluated first, followed

by AND and OR. The various types of <.predicate>'s are consid-

ered separately in the following sections.

< comparison predicate>

Syntax

< value expression> < relational op> < value expression> I

<subquery>

< relational op> :: =

<
>
<
> =

<>

If either < value expression^ is NULL, the < comparison predicated

is unknown; otherwise, it is true if the comparison is true and false

if it is not. The -^relational o/?>'s have the standard mathematical

meanings for numeric values; for other types of values, its mean-

ing is implementation defined. The two < value expression^ s must

be of comparable data types. If a <subquery> is used, it must con-

tain a single < value expression^ in the SELECT clause, whose

value will replace the second < value expression^ in the ^comparison

predicated, each time the <subquery> is effectively executed.

< between predicated

Syntax

< value expression> [NOT] BETWEEN <value expression

AND value expression

406 UNDERSTANDING SQL

APP D

The Kbetween predicate> A BETWEEN B AND C has the

same value as the <predicate> (A > = B AND A < = C). The
<between predicate> A NOT BETWEEN B AND C has the same
value as NOT (A BETWEEN B AND C). < value expression^ s

may be produced by Ksubquery^-'s (*non-standard*).

< in predicate>

Syntax

<value expression> [NOT] IN < value list> I <subquery>

The Kvalue list> will consist of one or more enumerated val-

ues, parenthesized and separated by commas, that are of a com-

parable data type with the < value expression^ . If a <subquery> is

used, it must contain only one < value expression^- in its SELECT
clause (more may be possible, but this is not standard). The
<subquery> will, in effect, be executed separately for each candi-

date row of the main query, and the values that it outputs will

constitute the < value list> for that row. In either case, the Kin

predicated will be true if the < value expression^- is present in the

< value list>, unless NOT is specified. A NOT IN (B, C) is

equivalent to NOT (A IN (B, C)).

< like predicate>

Syntax

<charvalue> [NOT] LIKE < pattern > [ESCAPE
<escapechar>]

<charvalue> is any < value expression^ of an alphanumeric type

(nonstandard*). (<charvalue> can be only Kcolumn spec> in stan-

dard.) <pattem> consists of a <string> that will be tested to see if it

matches <charvalue> . <escapechar> is a single alphanumeric character.

A match will exist if the following conditions are true:

• For every <underscore> in <pattern> that is not immedi-

ately preceded by <escapechar~> , there is one correspond-

ing character in <charvalue>

.

SYNTAXAND COMMAND REFERENCE 407

• For every Kpercent sign> in Kpattern> that is not immedi-

ately preceded by <escapechar> , there are zero or more
corresponding characters in <charvalue>

.

• For every <escapechar> in <pattern's that is not immedi-

ately preceded by another <escapechar> , there is no cor-

responding character in KcharvalueS

.

• For every other character in <paltern> , the same charac-

ter is present at the corresponding point in KcharvalueS

.

If a match exists, the Klike predicated is true, unless NOT was

specified. A NOT LIKE 'text' is equivalent to NOT (A LIKE
'text'.)

< null predicate>

Syntax

Kcolumn spec> IS [NOT] NULL

Kcolumn specS IS NULL if the NULL value is present in that

column. This will make the Knull predicated true unless NOT
was specified. Kcolumn spec's IS NOT NULL has the same result

as NOT (<column spec> IS NULL).

< quantified predicate>

Syntax

< value expression > < relational op >
<quantifier> <subquery>

<quantifier> ::= ANY I ALL I SOME

The SELECT clause of the KsubqueryS must include one and

only one < value expression's . All of the values produced by the

KsubqueryS constitute the Kresult setS . The Kvalue expressions is

compared, using the ^relational operators , to every member of

the Kresult setS . This comparison is evaluated as follows:

• If KquantifierS = ALL, and every member of the Kresult

setS makes the comparison true, the ^quantified predi-

cated is true.

408 UNDERSTANDING SQL

APP. D

• If <quantifier~> = ANY, and there is at least one member
of the < result set> that makes the comparison true, the

< quantified predicates* is true.

• If the Kresult set> is empty, the < quantified predicated is

true if the <.quantifier~> is ALL and false otherwise.

• If the <quantifier> is SOME, the effect is the same as

ANY.

• If the < quantified predicated is neither true nor false, it is

unknown.

< exists predicate>

Syntax

EXISTS (<subquery>)

If the <.subquery> produces one or more rows of output, the

< exists predicated is true; otherwise it is false.

SQL COMMANDS
This section details the syntax of the various SQL commands.

It enables you to quickly look up a command, find its syntax and

a brief description of how it works.

NOTE: Commands that begin with EXEC SQL, as well as

commands or clauses that end with KSQL term> can be used

only in embedded SQL.

BEGINDECLARE SECTION

Syntax

EXEC SQL BEGIN DECLARE SECTION

<

SQL term>

<host-language variable declarations>

EXEC SQL END DECLARE SECTION

<

SQL term>

SYNTAXAND COMMAND REFERENCE 409

This command creates a section of the host-language program

for the declaration of host variables that will be used in embed-

ded SQL statements. The variable SQLCODE must be included

as one of the host-language variable declarations.

CLOSE CURSOR
Syntax

EXEC SQL CLOSE CURSOR Kcursor nameXSQL term>;

This command defines the CURSOR as closed, so that no val-

ues may be FETCHED from it until it is opened once more.

COMMIT (WORK)
Syntax

COMMIT WORK;

This command makes permanent all changes to the values in

the database since the beginning of the transaction, ending the

current, and beginning a new, transaction.

CREATE INDEX (*NONSTANDARD *)

Syntax

CREATE [UNIQUE] INDEX <index name>
ON <table name> (Kcolumn list>);

This command creates a fast-access path to make retrievals of

rows containing the indicated columns more efficient. If

UNIQUE is specified, the table may not contain duplicate val-

ues in those columns.

410 UNDERSTANDING SQL

APP. D

CREATE SYNONYM (*NONSTANDARD *)

Syntax

CREATE [PUBLIC] SYNONYM <synonym> FOR
<owner>.<table name>;

This command creates an alternate name for a table. The syn-

onym is owned by its creator, and the table itself is normally one

that is owned by another user. By using the synonym, its owner
does not have to refer to the table by its full (including owner)

name. If PUBLIC is specified, synonym is owned by SYSTEM
and accessible to all users.

CREATE TABLE

Syntax

CREATE TABLE <table name>
({ < column name > <data type > [< size >

]

[<colconstraint>. .
.]

[<defvalue>]} .,. . <tabconstraint> . , . .);

CREATE TABLE creates a table in the database. This table

will be owned by its creator. The columns are considered to be in

the order named. The <data type~> defines the kind of data the

column will hold. The standard <data type>'s are described in

Appendix B; other commonly used <data type^'s are discussed

in Appendix C. The meaning of <Lsize> depends on the <.data

type~> . Kcolconstrainty?, and Ktabconstraint^'s impose limitations

on the values that can be entered into the columns. <defvalue~>

defines a value that will automatically be inserted if no other

value is indicated for that row. (See Chapter 17 for details on the

CREATE TABLE command itself and Chapters 18 and 19 for

details on the constraints and on <.defvalued).

SYNTAXAND COMMAND REFERENCE 41

1

CREATE VIEW
Syntax

CREATE VIEW <table name>
AS <query>
[WITH CHECK OPTION];

The view is treated as any other table in SQL commands.
When a command references the < table name> , the <query> is

performed, and its output constitutes the content of the table for

the duration of that command. Some views can be updated,

which means update commands can be performed on them and

transferred to the table referenced in the < query >. If WITH
CHECK OPTION is specified, these updates must also satisfy

that Kquery^'s <predicated .

DECLARE CURSOR
Syntax

EXEC SQL DECLARE Kcursor name> CURSOR FOR
<query><SQL term>

This command associates the <cursor name> with the <.query> .

When the cursor is opened (See OPEN CURSOR), the <query> is

performed, and its output can be FETCHED. If the cursor is

updatable, the table referenced in the <query> can have its content

changed by update operations on the cursor (See Chapter 25 on

updatability of cursors).

DELETE
Syntax

DELETE FROM <table name>
{ [WHERE <predicate>] ;}

I WHERE CURRENT OF <cursor nameXSQL term>

412 UNDERSTANDING SQL

APP D

If the WHERE clause is absent, all rows of the table are

removed. If the WHERE clause uses a <predicated , rows that

satisfy the <predicate~> are removed. If the WHERE clause has a

CURRENT OF <cursor name~> argument, the row of <table

name> currently referenced by Kcursor name~> is removed. The
WHERE CURRENT OF form may be used only in embedded
SQL, and only with updatable cursors.

EXEC SQL

Syntax

EXEC SQL <embedded SQL command> <SQL term>

EXEC SQL is used to begin all SQL commands embedded in

another language.

FETCH
Syntax

EXEC SQL FETCH <cursor name>
INTO < host-variable listXSQL term>

FETCH takes the output of the current row of the <query>,

inserts it into the < host-variable list> , and moves the cursor to the

next row. The < host-variable list"> may optionally include indica-

tor as well as target variables (See Chapter 25.)

GRANT
Syntax (standard)

GRANT ALL [PRIVILEGES]

I {SELECT
I INSERT
I DELETE
I UPDATE [(<column list>)]

I REFERENCES [(Kcolumn list>)] } .,..

SYNTAXAND COMMAND REFERENCE 413

ON < table name> .,.

.

TO PUBLIC I <Authorization ID>
[WITH GRANT OPTION];

ALL, with or without PRIVILEGES, includes every privilege

in the above list. PUBLIC includes all users present and future.

This command enables the grantee(s) to perform the said actions

on the table(s) named. REFERENCES allows the grantee(s) to

use the columns in Kcolumn list~> as a parent to a foreign key. The
other privileges consist of the right to perform the commands for

which the privileges are named on the table. UPDATE, like REF-
ERENCES, can be restricted to certain columns. GRANT
OPTION confers the ability to give these privileges to other users

in turn.

Syntax (common nonstandard)

GRANT DBA
I RESOURCE
I CONNECT .,..

TO <Authorization ID> . , .

.

[IDENTIFIED BY> password>

CONNECT gives the grantee the right to log on and a few

other limited rights. RESOURCE gives the user the right to cre-

ate tables. DBA gives the grantee almost unlimited rights.

IDENTIFIED BY is used with CONNECT to define or change

user's password.

INSERT
Syntax

INSERT INTO < table name> [(< column list>)]

VALUES (<value list>) I <query>;

INSERT creates one or more new rows in <table name> . If the

VALUES clause is used, those values are inserted into <table

name> . If a <query> is specified, each row of its output will be

inserted into <table name> . If the <column list> is omitted, all

columns of < table name^ , in order, are assumed.

414 UNDERSTANDING SQL

APP. D

OPEN CURSOR
Syntax

EXEC SQL OPEN CURSOR <cursor nameXSQL term>

OPEN CURSOR executes the query associated with Kcursor

name> . The output can now be retrieved one row at a time with

the FETCH command.

REVOKE (*NONSTANDARD*)
Syntax

REVOKE { ALL [PRIVILEGES]

I <privilege> . , .
. } [ON < table name>]

FROM { PUBLIC
I < Authorization ID> .,..};

The <privilege~> can be any of those outlined in the GRANT
command. The user issuing the REVOKE must be the same as

the user who issued the GRANT. The ON clause will be used if

the privilege is of a type specific to a particular object.

ROLLBACK (WORK)
Syntax

ROLLBACK WORK;

The comand cancels all changes to the database made during

the current transaction. It also ends the current, and begin a

new, transaction.

SELECT
Syntax

SELECT {[DISTINCT I ALL] <value expression> .,..}!
*

[INTO <host variable list> ('embedded only*)]

SYNTAXAND COMMAND REFERENCE 415

FROM <table reference > .

,

.

.

[WHERE <predicate>]

[GROUP BY <grouping column> . , . .]

[HAVING <predicate>]

[ORDER BY <ordering column> [ASC I DESC] .,..];

This statement constitutes a query and outputs values from

the database (see Chapters 3-14). The following rules and defini-

tions apply:

• If neither ALL nor DISTINCT is specified, ALL is

assumed.

• A < value expression^ consists of a < column spec> , an

< aggregatefuncO , a < nonstandardfunction^ , a < constant^
,

or any combination of these along with operators into a

valid expression.

• A <table referenced consists of the name of a table, includ-

ing the owner prefix if current user is not owner, or a syn-

onym (* nonstandard*) for a table. The table can either be

a base table or a view. Optionally, an alias can be speci-

fied, which is a synonym for the table usable only for the

duration of the current command. A table name or syno-

nym must be separated from an alias by one or more
<. separator's.

• If GROUP BY is used, all <column speed's used in the

SELECT clause must be used as ^grouping column^'s,

unless they are contained in ^aggregate funct>'s. All

^grouping column>'s must be present among the <value

expressions^?, in the SELECT clause. For each distinct

combination of <grouping column> values, there shall be

one and only one row of output.

• If HAVING is used, the <predicate> is applied to every

row of output produced by the GROUP BY clause, and

those rows that make it true are output.

• If ORDER BY is used, the output has a definite

sequence. Each Kcolumn identifier^ refers to a specific

< value expression^ in the SELECT clause. If that < value

416 UNDERSTANDING SQL

APP D

expression^ is a Kcolumn spec~> , the Kcolumn identifier^- can

be that same < column spec> . Otherwise the < column iden-

tifier~> will be a positive integer indicating the place of the

< value expression^- in the SELECT clause sequence. The
output will be arranged so as to place the values con-

tained in the < column identifier^- in ascending order,

unless DESC is specified. The Kcolumn identifier> '

s

named first in the ORDER BY clause take precedence

over those named later in determining output sequence.

A SELECT statement evaluates each candidate row of the

table(s) on which it is drawn independently. A candidate row is

defined as follows:

• If only one < table referenced is included, each row of that

table in turn is the candidate row.

• If more than one <table referenced is included, each row of

every table shall be combined in turn with every combi-

nation of rows from all the other tables. Every such com-

bination shall in turn be the candidate row.

Each candidate row produces values that make the <predicated

in the WHERE clause true, false, or unknown. Unless GROUP
BY is used, each < value expression^- is applied in turn to each

candidate row whose values make the predicate true, and the

results of this operation are the output. If GROUP BY is used,

the candidate rows are combined using aggregate functions. If

no <predicated is included, each < value expression^ is applied to

every candidate row or to every group. If DISTINCT is speci-

fied, duplicate rows are eliminated from the output.

UNION
Syntax

<query> {UNION [ALL] <query> } . . .;

The output of the two or more Kquery^-'s is merged. Each

<query> must contain the same number of < value expression's in

SYNTAXAND COMMAND REFERENCE 41

7

its SELECT clause and in such an order that the l..nth of each

is compatible in <data type~> and <size*> with the l..nth of all

others.

UPDATE
Syntax

UPDATE <table name>
SET { <column name> = <value expression> } .,..

{[WHERE <predicate>]
; }

I {[WHERE CURRENT OF <cursor name>]
<SQLterm>]}

UPDATE changes the values in each Kcolumn name> to the

corresponding < value expression > . If the WHERE clause uses a

<predicated , only rows of the tables whose current values make
that <predicated true will be changed. If WHERE uses

a CURRENT OF clause, the values in the row of <table name^
currently in the < cursor name^- are changed. The WHERE
CURRENT OF form is usable only in embedded SQL, and

only with updatable cursors. In the absense of a WHERE clause,

all rows are changed.

WHENEVER
Syntax

EXEC SQL WHENEVER <SQLcond> <action> <SQL
term>

<SQLcond> ::= SQLERROR I NOT FOUND I SQLWARNING
(the latter is not standard)

<action> ::= CONTINUE I GOTO <target> I GOTO
<target>

<target> :: = host language dependent.

E
Tables Used in Example.s

420 UNDERSTANDING SQL

APP. E

TABLE 1: SALESPEOPLE

snum sname city comm

1001 Peel London .12

1002 Serres San Jose .13

1004 Motika London .11

1007 Rifkin Barcelona .15

1003 Axelrod New York .10

cnum cname city rating snum

2001 Hoffman London 100 1001

2002 Giovanni Rome 200 1003

2003 Liu San Jose 200 1002

2004 Grass Berlin 300 1002

2006 Clemens London 100 1001

2008 Cisneros San Jose 300 1007

2007 Pereira Rome 100 1004

TABLES USED INEXAMPLES 421

onum

y7 • v/xi xy Aj

amt odate cnum snum

3001 18.69 10/03/1990 2008 1007

3003 767.19 10/03/1990 2001 1001

3002 1900.10 10/03/1990 2007 1004

3005 5160.45 10/03/1990 2003 1002

3006 1098.16 10/03/1990 2008 1007

3009 1713.23 10/04/1990 2002 1003

3007 75.75 10/04/1990 2004 1002

3008 4723.00 10/05/1990 2006 1001

3010 1309.95 10/06/1990 2004 1002

3011 9891.88 10/06/1990 2006 1001

422

INDEX
< > (angle brackets), 18, 400. See also less than

(<); greater than (>); not equal to

(<>)
' (apostrophe). See ' (quotation mark, single)

* (asterisk)

with COUNT, 55-56

with EXISTS, 139

with SELECT, 25

\ (backslash), 24

{ }
(braces, or curly brackets), 400

: (colon), 337, 343, 349-350

.,.. (commalist), 400

|

(concatenate operator), 394-395

{ } (curly brackets, or braces), 400

:: = (double colon equals), 400

(double underscore), 401

... (ellipses), 18,400

= (equal to), 36

> (greater than), 36

> = (greater than or equal to), 36

< (less than), 36

< = (less than or equal to), 36

< > (not equal to), 36

()
(parentheses)

with aggregate functions, 63

with Boolean operators, 41-43

with CHAR declarations, 210

with CHECK constraint, 224

with CREATE DBSPACE command, 301

with CREATE INDEX command, 211

with CREATE TABLE command, 208-210

with CREATE VIEW command, 255-256

with data type declarations, 208-210

with FOREIGN KEY constraint, 238-239

with IN operator, 48

with INSERT command, 186

with INTO clause, 187

in mathematical expressions, 41-43

with nonstandard functions, 393-395

and order of precedence of operations,

41-43,405

with plus sign (+), in automatic outer joins,

397

with PRIMARY KEY constraint, 223-224

with REFERENCES constraint, 239

with REFERENCES privilege, 284

with subqueries, 110

with UNIONs (applies as well to

INTERSECT, MINUS, and

DIFFERENCE), 181

with UNIQUE constraint, 221

with UPDATE privilege, 284

with VALUES clause of INSERT command,

186

in WHERE clause, 110

% (percent sign), as wildcard, 53-54, 407

. (period)

separating aliases and column names,

99-100

separating table names and column names,

88-89

separating user names and table names 209,

286, 298-299
' (quotation mark, single), 16, 54-55, 77-79, 382

[]
(square brackets), 18, 400

(underscore)

in identifiers (names of objects), 209, 401

preceding comments in SQL (double

underscore), 401

in table names, 209

as wildcard (in LIKE), 53-54, 406

|

(vertical bar), 400

ABS (absolute value), 393

access control to database, See privileges;

CONNECT
access module, 336

ACQUIRE DBSPACE, 301

adding

columns to tables, 213

constraints to columns, 218

numbers, 37,62,67,392

rows to tables, 186-187. See also INSERT
size to columns, 212-213

text strings to output, 77-79

totals, 392

users to database, 293

aggregate functions, 62-73

as an alternative to ANY, 157-158

with DISTINCT vs. with ALL, 64-67

as an alternative to EXISTS (COUNT),
164-165

with expressions, 67

forbidden with EXISTS, 142-143

forbidden in UNIONs, 172

with GROUP BY, 67-72

with HAVING, 69-72

vs. nonstandard functions, 392-393

prevent views from being updatable, 268

produce output columns, 76-77

and security, 289-290

vs. SOME. See vs. ANY
in subqueries, 114-116, 156-157, 164-165

in views, 257-258, 260-261, 268

Aliases, 98-100, 102-105

with correlated subqueries, 126

with joins, 98-100

omitting, 129

ALL
in aggregate functions, 66-67

ALL PRIVILEGES, 285-286

INDEX 423

vs. ANY, 160-163

with AUDIT, 398

vs. DISTINCT, 29, 66-67

with equalities, 159-160

vs. EXISTS, 159, 163-164

with inequalities, 158-160

with nonequalities, 159-162

in predicates, 158-162, 407-408

with SELECT, 29

vs. SOME. See vs. ANY
as a special operator, 158-162

with UNION, 173, 181

ALL PRIVILEGES, 285-286

ALTER TABLE. 212-213, 282

American National Standards Institute. See

ANSI
AND

as Boolean operator, 37

with three valued logic (true, false,

unknown), 404-405

angle brackets (< >), 18,400

ANSI (American National Standards Institute)

and embedded SQL, 336

and ISO (International Standards

Organization), xxi

SQL data types and equivalents in other

languages, 382-386

and SQL standard, xxi, 13, 17

ANY, 150-166, 407-408

vs. ALL, 160, 162-163

with equalities, 150

vs. EXISTS, 151-154, 163-164

vs. IN, 151-153

with inequalities, 151-158

in predicates, 150-151, 407-408

same as SOME, 150

as a special operator, 1 50- 1 5

1

vs. subqueries using aggregate functions,

157-158

apostrophe ('). See quotation mark, single

APPROXIMATE NUMERIC (class of data

types) 382, 384

arguments, 18. See also syntax, of SQL
commands

arrays (Pascal), 339, 385

AS SELECT, 252-253

ASC (ascending order), 80

ASCII, 16, 36-37, 394

asterisk (•)

with COUNT, 65-66

with EXISTS, 139

with SELECT, 25

AUDIT, 398

auditing user actions, 398

authority levels. See privileges, system

authority, revoking. See REVOKE
authorization ID's

with embedded SQL programs, 336

and privileges, 280-281

as user names, 17

AUTOCOMMIT, 303. See also transaction

processing

average, of field values, 62

AVG, 62. See also aggregate functions

B

backslash (\), 24

backups (joumaling), 398

base tables, 252. See also tables, views

BEGIN DECLARE SECTION, 339, 408-409

BETWEEN, 50-52, 58, 405-406

BNF conventions, 400

Boolean expressions, 37-43, 404-405

Boolean operators, 37-43, 404

and unknown predicates, 57, 404-405

with unknown values, 57, 404

Boolean values, 37-43, 404-405

braces ({ }), 400

BREAK, 392

C (language)

contrasted with SQL, 12

can use embedded SQL, 335

candidate keys, 221

candidate rows, 127-128, 140, 200, 416

carriage returns. See Return key; newline

CASCADES (effect of parent key change on

foreign key), 244-247

cascades (effect of REVOKE), 287

catalog. See system catalog

CHAR, 16, 382, 385-386, 389-392

as ANSI data type, 16, 382

changing length in output, 391 , 394-395

converting to/from ASCII code, 394

converting to number, 394

converting to upper case, lower case or

initial caps, 394

equivalent data types in other languages,

382-386

functions using, 62-63, 394-395

length of field, 209, 394

representing single quotes in, 382

vs. VARCHAR, 16, 390

CHARACTER. 5«CHAR
CHECK constraint, 224-227

vs. CHECK OPTION, 227, 290-291

multicolumn, but not multirow, 227

CHECK OPTION, 271-275

as an alternative to CHECK constraint, 227,

290-291

does not cascade, 274-275

checking indicator variables in the host language,

350

circularity, 246-248. See also foreign keys

clauses, 18. See also syntax, of SQL commands
CLOSE CURSOR, 342-343, 409

COBOL (and embedded SQL), 335, 385

424 UNDERSTANDING SQL

colon (:), 337, 343, 349-350, 400

COLUMN (nonstandard command), 392

column constraints, 218-219. See also constraints

columns

adding to table, 213

in ALTER TABLE, 213

commenting on in catalog, 319-321

constraints on, 218-227, 234-249, 403

in CREATE INDEX, 211

in CREATE TABLE, 208-210, 218-219,

236-239

in CREATE VIEW, 254-255

data types, 208-210, 382-384, 388-390

default values, 187-188, 227-229, 403

denned, vs. rows, 2

denning in table, 208-210

dropping from table, 213

same as fields, 4

in FORMAT command, 390-392

with GROUP BY, 67-72, 403, 415

identifying by number, output 81-83, 403,

415-416

in INDEXES, 210-212

in INSERT command, 187-188

limiting access to specified, 284-285,

288-289

modifying, 213

names, 24, 208-210, 255, 318

omitting from INSERT, 187-188

omitting from views, 254

with ORDER BY, 79-84, 403, 415-416

order of, in output, 26-27

order of, in table, 208

ordering values in, 79-84

output columns, 76-77

references privilege for, specified, 284-285

renaming in views, 255

and rows, 2

selecting data from, 23-24, 414-416

update privilege for, specified, 284-285

viewing in system catalog, 317-319

commalist (.,..), 400

command terminators

embedded SQL, 337-338

interactive SQL, 24

commands. See also individual commands
ACQUIRE DBSPACE, 301

ALTER TABLE, 212-213

BEGIN DECLARE SECTION, 339

BREAK, 392

CLOSE CURSOR, 342-343

COLUMN, 392

COMMENT ON, 319-321

COMMIT WORK, 302-306, 409

COMPUTE, 392

CONTINUE, 345-346

CREATE DBSPACE, 300-302

CREATE INDEX, 210-212

CREATE SYNONYM, 298-299

CREATE TABLE, 208-210, 218-219,

236-239

CREATE TABLESPACE, 300-302

CREATE VIEW 252-254, 272

DECLARE CURSOR, 341-343

DECLARE SECTION, 339, 408-409

DELETE 189-190, 199-202, 346-349

DIFFERENCE, 396-397

DROP INDEX, 212

DROP SYNONYM, 300

DROP TABLE, 214

DROP VIEW, 262

END DECLARE SECTION, 339

EXEC SQL, 335, 337

FETCH, 342-343, 347-348

FORMAT, 390-392

GO TO, 345-346

GOTO, 345-346

GRANT, 282-294

INSERT, 186-189, 196-199, 269, 271,

346-349

INTERSECT, 396-397

MINUS, 396-397

OPEN CURSOR, 342-343

REVOKE, 287

ROLLBACK WORK, 302-304

SELECT, 22-182

SET, 392

SET AUTOCOMMIT, 303

syntax and summary of main commands,

409-417

UNION, 170-182

UPDATE, 190-192, 202-203, 254-255,

346-349

WHENEVER, 345-346

COMMENT ON, 319-321

comments in SQL commands, 401

comments on database objects in system catalog,

319-321

COMMIT WORK, 302-306, 409. See also

transaction processing; rollbacks

comparison predicates, 29-32, 36-37, 102-116,

389, 405

compiler, 335-336

compound predicates, 37-43, 404-405

COMPUTE, 392

concatenation operator
(| |

), 394-395

concurrency control, 304-309

conditions. See predicates

CONNECT, 291-293. See also logging on

connecting as a user, 336

creating and destroying users with, 293

denning or changing password with, 293

in system catalog, 323

as system privilege, 292

constants

internal, or built-in, 280-281, 389

(same as) literals, 402

in query output, 76-79

INDEX 425

and updatability of views, 269

constraints

and ALTER TABLE, 213

the CHECK constraint, 224-227

column constraints, 218-227

and CREATE TABLE, 218-219

DEFAULTS and constraints, 187-188,

227-228

FOREIGN KEY constraint, 236-249

list of, with syntax, 403

multicolumn constraints. See table constraints

NOT NULL constraint, 219-220

PRIMARY KEY constraint, 222-224

REFERENCES constraint, 239

REFERENCES privilege, 282, 284-285

table constraints, 218-227

UNIQUE constraint, 220-222

CONTINUE, 345-346

copying data and changes for recovery

(journaling), 398

correlated subqueries, 126-134, 200-203

using aliases for, 126-129

denned, 126-127

in DML update commands, 200-203

with EXISTS, 139-141

in HAVING clause, 132-133

vs. joins, 128, 133-134

with joins, 141-142

correlation names. See aliases

correlation variables. See aliases

COUNT. See also aggregate functions

with ALL vs. with DISTINCT, 64-67

as an alternative to EXISTS, 164-165

with asterisk (•), 65-66

defined, 62

CREATE DBSPACE, 300-302

CREATE INDEX, 210-212, 409

CREATE SYNONYM, 298-299, 410

CREATE TABLE, 208-210, 218-219, 236-239,

410-411

CREATE TABLESPACE, 300-302

CREATE VIEW, 252-254, 272, 41

1

creating

cursors, 341-342

dbspaces, 300-302

indexes, 210-212, 409

passwords for users, 293

records (rows) in tables, 186-189. See also

INSERT
rows in tables, 186-189. See also INSERT
synonyms for tables, 298-299, 410. See also

liaaea

tables, 208-210, 218-219, 236-239, 301,

410. See also constraints; defaults;

dbspaces; views; RESOURCE
tablespaces, 300-302

users, 293

views, 252-254, 272,411

cross referencing, 246-248. See also foreign keys

CURDATE, 277-278, 389

curly brackets ({ }), 400

cursor stability (isolation level), 308

cursors

closing, 342-343, 409

contain queries, 341

creating, 341-342, 411

declaring, 341-342,411

defined, 341-342

fetching values into, 342-343, 412

opening, 342-343, 414

updatability, 347-348

with update commands, 346-349

CURTIME, 389

Customers table, 6-7, 420

D
data

access to. See privileges; GRANT;
REVOKE; views

changing, 190-192. See also UPDATE
duplicate, 27-29, 172-173, 198-199,

211-212,220-224

inserting, 186-189, 352. See also INSERT
integrity, 4, 6-7, 234-249

removing, 189-190. See also DELETE
storage in tables of, 3. See also rows; columns;

tables

Data Control Language. See DCL
Data Definition Language. SeeDDh
data dictionary, 314. See also system catalog

Data Manipulation Language. See DML
data types

ANSI standard, 382-384

APPROXIMATE NUMERIC (FLOAT,

REAL, DOUBLE PRECISION), 384

CHARACTER (CHAR, VARCHAR,
LONG), 382, 390. See also CHAR;
strings

converting, 394

DATE, 388-389. See also DATE
declaring for columns, 208-210

defined, 15-16

equivalents in other languages, 384-386

EXACT NUMERIC (INTEGER,
DECIMAL, NUMERIC,
SMALLINT), 344, 349, 383

LONG, 390

nonstandard, 15-16, 388-390

parameters, 208-210, 382-384

and indicator variables, 349-350

TIME, 388-389

VARCHAR, 390. See oho VARCHAR
database

definition, 2-3

internal organization, 314-330

relational, 2-3

sample, 5-8,420-421

426 UNDERSTANDING SQL

Database Administrator. See DBA
database authorities. See system privileges

databasespaces. .SWdbspaces

DATE
as built-in constant (for current date), 389

as data type, 15, 226, 388-389

date arithmetic, 389, 395

formatting, 388-389, 392

functions involving, 395

imposing a DATE format on a CHAR field,

226

standard formats, 388

DBA (Database Administrator), 291-294, 315,

323-324

dbspaces

creating, 300-302

locking, 309

DB2, 307

DCL (Data Control Language), 14, 280-294

DDL (Data Definition Language), 14, 208

deadlocks, 306-307

DEC (data type), 16, 383, 385

DECIMAL, 16, 383, 385

DECLARE CURSOR, 341-342, 41

1

DECLARE SECTION, 339, 408-409

declaring host-language variables, 339, 344, 349

default values, 227-229, 403, 410

automatic insertion, 187-188

declaring, 227-229

defined, 227-228

vs. NULL values, 228-229, 269

DELETE
with cursors, 346-349

defined, 189-190

with subqueries, 199-202

summarized, 411

delete effects (on foreign key of parent key

changes), 243-246

deleting

columns from table, 212-213

indexes from database, 212

records from table. See DELETE
rows from table. See DELETE
synonyms from database, 300

tables from database, 214

users from database, 293

views from database, 262

delimiters, 402

denormalization, 243

DESC (descending order), 80

DIFFERENCE, 397. See also UNION
DISTINCT, 27-29, 64-67

with COUNT, 64-67

with IN vs. equals using subqueries,

118-119, 128

with SELECT, 27-29, 414, 416

in subqueries, 112-114

and UNIONs, 172-173

and updatability of views, 268

when advisable in queries, 28

DML (Data Manipulation Language), 14, 186,

266-269

DML update commands, 186, 266-269. See also

INSERT; UPDATE; DELETE
does not equal operator (< >). See not equal to

domains (restricting field values to a specified set

or range), 225

DOUBLE (data type), 384

double colon equals (:: =), 400

DOUBLE PRECISION (data type), 384

double underscore
(), 401

DROP INDEX, 212

DROP SYNONYM, 300

DROP TABLE, 214

DROP VIEW, 262

Dropping

changes. See rollbacks

columns, 212-213

indexes, 212

records. See DELETE
rows. See DELETE
synonyms, 300

tables, 214

users, 293

views, 262

duplicate data. See also DISTINCT; UNIQUE
in aggregate functions, 64-67

preventing insertion, 198-199

prohibiting with constraints, 220-224

prohibiting with indexes, 211-212

in query output, 27-29

in UNIONs, 172-173

EBCDIC, 16, 36-37

eliminating, from output

columns, 25-26, 391

output groups, 69-72. See also GROUP BY
rows, 29-32. See also predicates

eliminating redundancy. See also duplicate data;

DISTINCT; UNIQUE; primary keys

in column values, 211-212, 220-224

in output, 27-29

ellipses (...), 18,400

embedded SQL, 334-355

vs. interactive SQL, 13-14

summarized, 353-355

testing indicator variables outside of, 350

END DECLARE SECTION, 339, 408-409

END-EXEC (COBOL), 338

end-of-command markers. See command
terminators

end-of-line marker, 25. See also newline

Enter key, 25. See also newline

equalities, 36, 110-119. See also comparison

predicates; equals sign

equals sign (=

)

with ALL, 159-160

with ANY, 150-151, 161-162

INDEX 427

preceded by colon (Pascal), 343

preceded by double colon (BNF), 400

as relational operator, 36, 405

with single-valued subqueries, 110-119

with SOME. See with ANY
equijoins, 91-92

errors (runtime) in embedded SQL, 343-346,

349-350

ESCAPE, 55-56

escape characters, 55-56, 406-407

EXACT NUMERIC (class of data types)

list and definition ofEXACT NUMERIC
types, 383

host-language equivalents to SQL EXACT
NUMERIC types (DECIMAL,
INTEGER, NUMERIC), 385-386

indicator variables as, 349

SQLCODE as, 344

Exclusive Locks (X-locks), 307-308

EXEC SQL, 335, 337, 412

EXISTS, 138-146, 408

vs. ALL, 159, 163-164

vs. ANY, 153-154, 163-164

cannot be unknown, 138, 163-164, 404

uses correlated subqueries, 139-141

vs. COUNT, 164-165

defined, 138-141,408

problems with NULLs, 163-164

vs. SOME. Set vs. ANY
exponentiation, 382, 384, 393

expressions

in aggregate functions, 67

Boolean, 37-38, 404-405

scalar, 36-37, 76

in subqueries, 120-121

and updatability of views, 269

FETCH, 341-343

defined, 342,412

when NULLs are retrieved, 349-350

fields (same as columns), 4. See also columns

FLOAT, 384, 385

FOR SELECT. See DECLARE CURSOR
FOREIGN KEY (constraint), 238-240

foreign keys. See also referential integrity

enforced with column constraints, 239

defined, 234-236

effects of parent key changes on, 243-248

maintaining integrity, 234-249

privilege needed to create, 282, 284-285

requirements for parent key, 238-241

enforced with table constraint, 238-240

FORMAT command, 390-392

formatting query output, 76-85, 390-392

FORTRAN (and embedded SQL), 336, 338,

344, 386
FROM

in DELETE, 189

in SELECT, 24, 88, 98-99, 126

functions

aggregate functions, 62-73

nonstandard functions, 392-395

full column names, 88-89

full table names, 209, 298-299

GO TO, 345-346

GOTO, 345-346

GRANT. See also privileges; REVOKE
explained, 282-294

summarized, 412-413

GRANT OPTION, 286-287

greater than (>)
with ALL. See inequalities, with ALL
with ANY. See inequalities, with ANY
as relational operator, 36

with SOME. See inequalities, with ANY
greater than or equal to (> =

)

with ALL. See inequalities, with ALL
with ANY, See inequalities, with ANY
as relational operator, 36

with SOME. See inequalities, with ANY
GROUP BY, 67-72, 268, 415

grouped views, 257-258, 268

grouping output, 67-69, 392. See also

GROUP BY

H
HAVING, 69-72, 268, 415

headings on output, 76-77, 391

host languages, 334-353

defined, 334

emulating SQL NULLs in, 351-352. See also

three valued logic; NULLs; unknown

predicates

equivalents to SQL data types in, 384-386

using host variables with embedded SQL
commands, 336-346, 349-353

use of indicator variables, 344-352

lack of SQL NULLs, 349

need for precompiler (preprocessor) with,

335-336

preventing insertion of SQL NULLs into,

349-350

SQL command terminators in each, 338

SQLCODE variable, 343-346

supported by ANSI, 335

testing indicator variables in, 350, 352-353

IBM, 13,307, 388-389

IBM American Standard formats, 388-389

IBM European Standard formats, 388-389

ID. See authorization ID

IDENTIFIED BY, 293

428 UNDERSTANDING SQL

identifiers

authorization. See authorization ID

as names of objects, 401, 403

IN
vs. ALL, 161

vs. ANY, 151-153

used in CHECK constraint, 225

defined, 48-50, 406

vs. equals (with subqueries), 118-119, 128

vs. SOME. See vs. ANY
with subqueries, 116-119

indexes

composite (multicolumn), 21

1

creating, 210-211

defined, 210

dropping, 212

effect on performance, 211

multicolumn, 211

privilege to create, 282

unique indexes, 211-212

unique indexes vs. UNIQUE constraints,

210,212,220

unique names of, 211

viewing in system catalog, 322-323

indicator variables, 349-353. See also EXACT
NUMERIC

inequalities (<, >, <=, >=). See also

comparison predicates

with ALL, 158-160

with ANY, 151-158

as relational operators, 36-37

inner query. See subquery

INSERT
and default values, 187-188, 227, 269

defined, 186-187

summarized, 413

inserting NULLs, 187, 352

using queries to produce values for, 188-189

used with subqueries, 196-199

inserting

data into tables. See INSERT; UPDATE
rows (records) into tables, 186-187. See also

INSERT
rows (records) into views, 254-255, 268-269,

271-272. See also INSERT; WITH
CHECK OPTION

text into output, 77-79, 174, 177-180

totals and subtotals into output, 392. See also

SUM
INT (data type), 16, 383, 385-386

INTEGER, 16, 383, 385-386

interactive SQL, 13-14

International Standards Organization. See ISO
INTERSECT, 396. See also UNION
INTO clause

with FETCH, 342-343

with INSERT, 186-189

with SELECT, 339-341

IS NOT NULL 57-58, 407

IS NULL, 57-58, 407

ISO (International Standards Organization)

and ANSI (American National Standards

Institute), xxi

date format, 388

and SQL standard, xxi

time format, 389

isolation levels, 307-308

JIS (Japanese Industrial Standard) formats

date format, 388

time format, 389

joins, 88-105

using aliases in, 99-100

vs. correlated subqueries, 128, 133-134

with correlated subqueries, 141-142

defined, 88-90

equijoins, 91-92

outer joins, 177-181, 397

and referential integrity (foreign keys),

90-91

of a table to itself, 98-106

journaling (backing up changes to database), 398

K
keys

candidate, 221

composite (multicolumn), 223

constraints to enforce, 220-224, 234-249

effects of changes to parent on foreign,

243-248

foreign, 234-249

multicolumn, 223, 235

parent, 234-236, 240-241

primary, 4, 222-224

referential integrity, 5-7, 234-249

in sample tables, 5, 241-243

unique, 220-222

keywords, 18.

LENGTH, 394. See also CHAR; VARCHAR;
string; size

less than (<)
with ALL. See inequalities, with ALL
with ANY. See inequalities, with ANY
as relational operator, 36

with SOME. See inequalities, with ANY
less than or equal to (< =

)

with ALL. See inequalities, with ALL
with ANY. ^inequalities, with ANY
as relational operator, 36

with SOME. See inequalities, with ANY
LIKE, 53-56, 406-407

locking, 306-309

INDEX 429

locks, 306-309

Exclusive (X-locks), 307

isolation levels of, 308

Share (S-locks), 307

logging on, 280-281, 291-293, 336

LONG (VARCHAR), 390. See also VARCHAR
LOWER (case conversion), 394

M
main query. See outer query

MAX, 62. See also aggregate functions

maximum of a group of values, finding, 62, 393

MIN, 62. See also aggregate functions

minimum of a group of values, finding, 62, 393

MINUS, 396. See also UNION
MOD, 393

modules (embedded SQL), 336

multiuser systems, 304-307

in EXISTS, 163-164

and indicator variables, 349-353

with INSERT, 187-188, 352

inserting, 187-188, 213, 352

in ordering of column values, 84-85

vs. other defaults, 187-188, 227-229

in output, 391, 395

in predicates, 56-57, 163-164, 404-405

protecting against insertion into host

program of, 349-350

representation of, 391 , 395

testing for, 57, 349-350

and three valued logic (true, false,

unknown), 404-405

and unknown predicates, 57, 404

as update effect, 243-246

NUMERIC, 383, 385

NVL (NULL value—nonstandard function),

395

N
negation. See NOT
nested query. See subquery

newline, 25, 401

nonequalities, 36-37. See also comparison

predicates; not equal to (< >)
nonstandard functions, 392-395

normalization. See denormalization

NOT
with BETWEEN, 58, 405-406

as Boolean operator, 37-43, 404-405

with IN, 58, 406

with IS NULL (operator) 57-58, 407. See also

NOT NULL
with LIKE, 58, 406

NOT NULL (constraint). See NOT NULL
order of precedence, 405

and three valued logic (true, false,

unknown), 404-405

and unknown predicates, 57

not equal to (< >)
with ALL, 160-161

as relational operator, 36-37

NOT FOUND, 345-346

NOT NULL, 219-220

as constraint, 219

and default values, 227

and INSERT, 187-188, 219-220, 227, 269

and parent keys, 240

and PRIMARY KEY constraint, 223

and UNION compatibility, 172

and UNIQUE constraint, 220-221

NULL predicates. See IS NULL
NULLs

constraint against. See NOT NULL
as default values, 187-188, 219-220, 227

defined, 56-57

as delete effect, 243-246

emulating with indicator variables, 351-352

o
objects, SQL

defined, 18

indexes as, 210-212

names, 209, 401, 403

synonyms as, 298-300

tables as, 2, 208-210, 212-214, 234-236,

281-282

views as, 252

OPEN CURSOR, 342-343, 414

operators

Boolean, 37-43, 404-405

relational, 36-37, 405

special SQL, 48-59, 138-)46, 150-166,

405-408. Seealsom; BETWEEN;
LIKE; IS NULL; EXISTS; ANY;
ALL

optimizer 117-118

OR
as Boolean operator, 37-43

with three valued logic (true, false,

unknown), 404-405

vertical bar representing
(|

), 400

Oracle, 13

ordering

columns in output, 26-27

columns in tables, 4-5, 26-27, 210

precedence for operations, 41, 405

rows in cursors, 342

rows in output, 24, 79-85

rows in tables, undefined, 3-4

rows in views, undefined, 261

ORDER BY, 79-84, 415-416

ASC (ascending), 80

use of column numbers in, 82-83

in cursors, 342, 347-348

defined, 79-80

DESC (descending), 80

430 UNDERSTANDING SQL

forbidden in views, 261

and NULLs, 84

in UNIONs, 175-176

and updatability of cursors, 347-348

Orders table, 6-8,421

outer joins 177-181, 397

automatic, 397

full (complete), 179-181

implemented with UNIONs, 177-181

outer queries, 102-103. See also subqueries

outer references, 127

owners, 17, 281-282, 298-300

packed arrays (Pascal), 339, 385

pages, 308-309

parameters

of data type definitions 208-210, 382-384

for procedures in SQL modules, 336

parent keys, 234-239

parentheses. See
()

(parentheses)

partial strings, searching for. See LIKE
Pascal

and embedded SQL, 335, 338

equivalent data types to SQL, 385

examples using, 338-339, 342-343, 345,

347-348, 351-352

passwords, 293

percent sign (%), as wildcard, 53-54, 407

period (.)

separating aliases and column names,

99-100

separating table names and column names,

88-89

separating user names and table names, 209,

286, 298-299

PL/I (and embedded SQL), 335, 338, 385

precedence, 41-43, 405

precision, 383-384

precompilers, 335-336

predicates. See also WHERE; WHERE
CURRENT OF; IN; BETWEEN;
LIKE; IS NULL; ANY; ALL;

EXISTS; comparison predicates

defined, 29-32

list of types, 404

summarized, 404-408

and three valued logic (true, false,

unknown), 404-405

unknown, 57, 163-164, 404-405

prefixes

aliases to column names. See aliases

omitting from subqueries, 120

table names to column names. See full

column names

user names to table names. See full table

names

preprocessors, 335-336

PRIMARY KEY
as a column constraint, 222-223

as default parent key, 239-240

as a table constraint, 223-224

primary keys

defined,

4

enforced with column constraint, 222-223

necessity, 4

use of NOT NULL with, 219, 223

as parent keys to foreign keys, 237, 239-241

in sample tables, 5-6

enforced with table constraint, 223-224

vs. unique keys, 223-224

in updatable views, 268

privileges, 280-294

ANSI standard, 281-282

auditing use of, 398

column specific privileges, 282, 284-285

database authorities, 291-293

defined, 281-282, 292, 413

filtering through views, 288-291

granting, 282-294

granting WITH GRANT OPTION,
286-287

object privileges, 281-287

and programs executing embedded SQL
commands, 336

revoking, 287

on system catalog, 315, 317

system privileges, 291-294

viewing in system catalog, 323-327

programming with SQL, 334-355

embedding SQL commands in host

programs, 335, 337-338

equivalents to SQL datatypes in other

languages, 384-386

languages supported, 335

testing indicator variables in host language,

350

PUBLIC, 285-286, 299

PUBLIC SYNONYMS, 299

quantified predicates (predicates using ANY,

ALL, or SOME), 407-408. See also

ALL; ANY
queries. See SELECT
quotation mark, single (')

with LIKE, 53-56

with SQL CHAR data type, 15, 382

surrounding strings of text, 77-79, 402

within strings of text or CHAR fields, 382

two single quotes within CHAR fields, 382

range, values in. See BETWEEN; domains

range variables. See aliases

INDEX 431

read only (isolation level), 308

read only views, 269-271

read repeatability (isolation level), 308

readln (Pascal), 338

REAL, 384, 385-386

recording actions (auditing and journaling), 398

records (same as rows), 2. See also rows

recovery, 398. See also rollbacks

redundancy. See duplicate data

REFERENCES (constraint), 239. See also foreign

keys

REFERENCES (privilege), 282, 284-285

referential integrity. See also foreign keys

denned, 5-7

enforced with constraints, 234-249

as basis for joins, 90-91

relational database, 2-9. See also tables

relational operators (<, >, <=, >=, =,

<>), 36-37,405

with ALL, 159-164

with ANY, 150-157

with SOME. See with ANY
with subqueries, 110-122, 150-165

relational predicates. See comparison predicates

reserved words. See keywords

RESOURCE, 292-293, 301

RESTRICTED (as effect of parent-key change

on foreign-key value), 243-246.

Return Key, 25. See also newline

REVOKE, 287, 414. See also GRANT; privileges

ROLLBACK WORK, 302-304, 414. See also

rollbacks

rollbacks

automatic, 303, 307, 344

to avoid deadlock, 307

deliberate, 302-304

in embedded SQL, 344

of privileges. See REVOKE
ROUND, 393

rounding numbers, 393

rows

adding. See INSERT
candidate, 127-129, 140, 200, 416

defined,

2

deleting. See DELETE
limiting access to specified, 289

ordered in cursor, 342

retrieving. See SELECT
retrieving one at a time. See FETCH
same as records, 2

unordered in (base) table, 3-4

unordered in view, 261

S-locks (share locks), 307-308

Salespeople table, 5-7, 420

sample tables, 5-8, 420-421

saving changes to database, 302-304, 398

scalar expressions, 36-37, 76. See also value

expressions

scale, 383-384

Schema Definition Language, 14. See also DDL
search conditions, 400. See also predicates

searches

defining conditions for, 29-32

importance of primary keys for, 4

for substrings, 53-56

usefulness of indexes for, 210-211

security. See also GRANT; REVOKE; privileges

auditing user activities, 398

authorization ID's, 17, 280-281

implemented with privileges. See privileges

and operating system, 280-281

passwords, 293

using views to enhance, 288-291

SELECT, 22-182

with aggregate functions. See aggregate

functions

with ALL, 29. See also ALL; DISTINCT
in another SELECT. See subquery

with asterisk (*), 25

combining output of multiple SELECT
commands, 170-182, 396-397

with constants, 76-79

defined, 22-24

with DISTINCT, 27-29

with expressions, 76-77, 174-180

the FROM clause. See FROM
the GROUP BY clause. See GROUP BY
the HAVING clause. See HAVING
in INSERT, 188-189. See also INSERT
the INTO clause. See INTO, with SELECT
with nonstandard functions. See nonstandard

functions

the ORDER BY clause. See ORDER BY
with predicates. See predicates

with strings of text, 76-79, 174-180, 391,

394-395

summarized, 415-416

syntax of, 414-415

with UNION (applies also to INTERSECT,
MINUS, and DIFFERENCE),
170-182

WHERE clause. See WHERE; predicates

semicolon (;)

in embedded SQL, 337-338

in interactive SQL, 24

in Pascal, 338

separators, 401-402

SET (nonstandard command), 392

SET, clause in UPDATE command, 190-192,

202-203, 348, 352

set, of values for comparison. See IN; ALL;

ANY; domains

SET AUTOCOMMIT (nonstandard

command), 303

share locks (S-locks), 307-308

432 UNDERSTANDING SQL

simultaneous actions. See concurrency control

single row queries

produced by aggregate functions, 63,

114-116

produced by DISTINCT, 112-114

with the INTO clause of SELECT, 339-341

with relational operators (as subqueries)

111-112

when assured, 111-116, 340

single valued output groups with GROUP BY,

67-69

size (of columns), 209, 382-384

SMALLINT, 383

SOME See ANY
SQLCOD (name of SQLCODE in

FORTRAN), 344. See also

SQLCODE; EXACT NUMERIC
SQLCODE, 343-346, 349. See also EXACT

NUMERIC
SQLERROR, 345, 349

SQLWARNING, 345

SQSQRT (square root—nonstandard function),

393

square brackets ([]), 18, 400

square roots, 393

star (•). See asterisk

statements, 18. See also commands
strings. See also CHAR; VARCHAR

comparing, 51-56, 406-407

concatenating, 394-395

defined, 402

fixed length (CHAR), 16, 54, 382

functions involving, 62-63, 394-395

insertion into output of, 77-79, 174-180,

391,394-395

and nonstandard functions, 394-395

other language equivalents to SQL, 385-386

padding, 395

searching for, 53-56

truncating, 352, 394-395

in UNIONs of queries (applies also to

MINUS, INTERSECT, and

DIFFERENCE), 174, 177-181

and updatability of views (also applies to

cursors), 269

varying length (VARCHAR, LONG), 16,

390

subqueries

using aggregate functions, 1 14-116,

142-143, 157-158, 164-165, 260-261

with ALL, 158-164, 407-408

with ANY, 150-157, 407-408

correlated 126-134, 139-141, 200-203

denned, 110-111

with DELETE, 199-202

in DML update commands, 196-204

empty, 138-139, 162-163, 408

with EXISTS, 138-146, 153-154, 159,

162-166, 408

with IN, 116-119, 151-152,406

with INSERT, 196-199

withNULLs, 163-164

with relational operators, 110-122, 405

single valued, 1 1 1-1 16 See also single row

queries

with SOME. Set with ANY
with UPDATE, 202-204

and value expressions, 405

subselects. See subqueries

SUM, 62. See also aggregate functions; totals

summary, of SQL commands, 409-417

synonyms, 282, 298-300, 328

syntax, of SQL commands, 409-417

SYS, 292

SYSADM, 292

SYSTEM, 314-315

system catalog, 314-330

table constraints, 218-227. See also constraints

tables. See also constraints; objects; views

allowing access. See privileges, object

altering structure. See ALTER TABLE
auditing actions on, 398

base tables vs. views, 252

as basis of relational database, 2-3

changing values in. See UPDATE
commenting on in catalog, 319-321

creating. See CREATE TABLE; CREATE
VIEW; RESOURCE

defined,

2

dropping. & DROP TABLE; DROP
VIEW

inserting rows into. See INSERT
removing rows from. See DELETE
renaming. See CREATE SYNONYM;

aliases

restricting values in. See constraints;

CHECK OPTION
sample, 5-8, 420-421

system. See system catalog

viewing in system catalog, 315-317

table names

identifiers as, 401,403

may not contain blanks, 209

prefixed by user names, 211

synonyms for, 98-100, 298-300. See also

aliases

unique for user, 211

testing for conditions. See predicates

three valued logic in predicates (true, false,

unknown), 404-405

TIME (nonstandard data type), 389

time (formats of, built in constant), 388-389, 395

timestamp, 389

tides (on output), 391

totals, 62, 392. See also aggregate functions

INDEX 433

transaction processing

AUTOCOMMIT, 303

automatic, 303, 307, 344

and circularity (cross-referencing), 248

effects on concurrency (simultaneous

actions), 304-307

control of, 302-304

rollbacks due to negative SQLCODE value

(embedded SQL only), 344

truncating strings, 352, 394-395

u
underscore

()

beginning SQL comments (double

underscore), 401

in identifiers (names of SQL objects), 209,

401

in table names, 209

as wildcard (with LIKE operator), 53-54,

406-407

undoing changes to database, 302-304. See also

rollbacks

unequal (< >). See not equal to

UNION, 170-182,416-417

with ALL, 173

compatibility of queries for, 171-172

in cursors, 347-348

defined, 170-172,416-417

vs. DIFFERENCE, 396-397

and duplicate elimination, 172-173

vs. INTERSECT, 396

vs. MINUS, 396

and outer joins, 177-181

UNIQUE
as a column constraint, 220-221

and NOT NULL, 220-222

and parent keys, 240-241

vs. PRIMARY KEY, 223-224, 239-241

as a table constraint, 221-222

unique combinations of column values,

27-29, 221

UNIQUE constraints vs. unique indexes,

220

unique indexes, 211-212, 220

unique keys, 221

unknown predicates, 57, 163-165, 404-408

combined with other predicates, 404-405

not possible with EXISTS, 138, 164-165

not possible with IS (NOT) NULL, 404, 407

and three valued logic (true, false,

unknown), 404-405

used with Boolean operators, 57, 404-405

used with NOT, 57, 404

unknown values. See NULLs
updatability

of cursors, 347-348

of views (applies also to cursors), 268-271

updatable cursors, 347-348

undatable views, 268-271

UPDATE, 190-192, 202-203, 346-349, 352,

417

with cursors, 346-349

FOR UPDATE OF, 348-349

with indicator variables, 352

with subqueries, 202-203

summarized, 417

updating multiple columns, 190-191

updating to NULL, 192, 352

with WHERE CURRENT OF, 346-349

update effects (on foreign key of parent key

changes), 243-246

UPPER (case conversion), 394

USER (built-in constant), 17, 280-281, 317

users

authorization ID's as, 17, 280-281

creating and destroying, 293

and embedded SQL programs, 336

logging on as, 17, 280-281, 291-293, 336

as owners of objects, 17, 209, 280-282,

298-300

passwords, 293

privileges, 280-294

recording actions of, 398

special users, 291-292, 315

in system catalog, 323-324

value expressions, 402, 405-408, 414-417. See

also scalar expressions

VALUES, clause in INSERT command,
186-188,337

values

changing. See UPDATE
compared to NULLs, 57, 84, 349, 351-352

data types of. See data types

entering. See INSERT
grouping. See GROUP BY; commands,

BREAK
ordering. See ORDER BY
removing. See DELETE
restricting. See constraints

VARCHAR, 16, 390

compared to CHAR, 54, 390

LONG VARCHAR (same as LONG), 390

and nonstandard functions, 394-395

variables, host language

using colons (:) with, 337

declaring, 339, 408-409

equivalent data types to SQL, 384-386

using indicator variables with, 349-353

declaring SQLCODE as, 344, 354, 408-409

testing indicator variables in host language,

350

vertical bar (|
), 400

434 UNDERSTANDING SQL

viewed tables. See views

views, 252-276

as an alternative to constraints, 227, 290-291

vs. base tables, 252

checking values entered into, 271-275

contain queries, 252, 256-257

vs. cursors, 341-342, 347-348

creating, 252-254, 272

dropping, 262

grouped, 257-258

ORDER BY not allowed in, 261

with predicates based on excluded fields,

272-273

read only views, 269-271

refining privileges with, 288-292

renaming columns in, 255

and security, 288-292

UNION not allowed in (applies also to

DIFFERENCE, MINUS, and

INTERSECT), 261

updatability, 268-271

updatable views, 268-271

WITH CHECK OPTION, 271-275

w
WHENEVER, 345-346. See also SQLCODE
WHERE, 29-32, 346-349. See also predicates

WHERE CURRENT OF, 346-349. See also

WHERE; predicates

wildcards

with escape characters, 55-57, 406-407

percent sign (%) as, 53-54, 406-407

underscore (_) as, 53-54, 406-407

WITH CHECK OPTION, 271-275, 290-292

WITH GRANT OPTION, 286-287, 324-327

WORK. See COMMIT WORK; ROLLBACK
WORK

writeln (Pascal), 343

X-locks (exclusive locks), 307-308

rSYBEX
TO JOIN THE SYBEX MAILING LIST OR ORDER BOOKS

PLEASE COMPLETE THIS FORM

NAME COMPANY

STREET

STATE _

CITY

ZIP

PLEASE MAIL ME MORE INFORMATION ABOUT SYBEX TITLES

ORDER FORM (There is no obligation to order)

PLEASE SEND ME THE FOLLOWING:

TITLE QTY PRICE

TOTAL BOOK ORDER

CUSTOMER SIGNATURE

SHIPPING AND HANDLING PLEASE ADD $2.00

PER BOOK VIA UPS

FOR OVERSEAS SURFACE ADD $5.25 PER
BOOK PLUS $4.40 REGISTRATION FEE

FOR OVERSEAS AIRMAIL ADD $1 8.25 PER
BOOK PLUS $4.40 REGISTRATION FEE

CALIFORNIA RESIDENTS PLEASE ADD
APPLICABLE SALES TAX

TOTAL AMOUNT PAYABLE

CHECK ENCLOSED VISA
MASTERCARD AMERICAN EXPRESS

ACCOUNT NUMBER

EXPIR. DATE DAYTIME PHONE

CHECK AREA OF COMPUTER INTEREST:

D BUSINESS SOFTWARE

TECHNICAL PROGRAMMING

OTHER:

THE FACTOR THAT WAS MOST IMPORTANT IN

YOUR SELECTION:

THE SYBEX NAME

QUALITY

D PRICE

EXTRA FEATURES

COMPREHENSIVENESS

CLEAR WRITING

OTHER

OTHER COMPUTER TITLES YOU WOULD LIKE

TO SEE IN PRINT:

OCCUPATION

PROGRAMMER

SENIOR EXECUTIVE

COMPUTER CONSULTANT

SUPERVISOR

MIDDLE MANAGEMENT

ENGINEER/TECHNICAL

CLERICAL/SERVICE

BUSINESS OWNER/SELF EMPLOYED

TEACHER

HOMEMAKER

RETIRED

STUDENT

OTHER:

CHECK YOUR LEVEL OF COMPUTER USE

NEW TO COMPUTERS

Z INFREQUENT COMPUTER USER

Z FREQUENT USER OF ONE SOFTWARE

PACKAGE:

NAME

Z FREQUENT USER OF MANY SOFTWARE

PACKAGES

Z PROFESSIONAL PROGRAMMER

OTHER COMMENTS:

PLEASE FOLD. SEAL. AND MAIL TO SYBEX

SYBEX, INC.

2021 CHALLENGER DR. #100

ALAMEDA, CALIFORNIA USA
94501

)

rSYBEX

SEAL

SYBEX Computer Books
are different

Here is why . . .

At SYBEX, each book is designed with you in mind. Every manuscript is

carefully selected and supervised by our editors, who are themselves

computer experts. We publish the best authors, whose technical expertise

is matched by an ability to write clearly and to communicate effectively.

Programs are thoroughly tested for accuracy by our technical staff. Our

computerized production department goes to great lengths to make
sure that each book is well-designed.

In the pursuit of timeliness, SYBEX has achieved many publishing firsts.

SYBEX was among the first to integrate personal computers used by

authors and staff into the publishing process. SYBEX was the first to

publish books on the CP/M operating system, microprocessor interfacing

techniques, word processing, and many more topics.

Expertise in computers and dedication to the highest quality product

have made SYBEX a world leader in computer book publishing. Trans-

lated into fourteen languages, SYBEX books have helped millions of

people around the world to get the most from their computers. We hope

we have helped you, too.

For a complete catalog of our publications:

SYBEX, Inc. 2021 Challenger Drive, #100, Alameda, CA 94501

Tel: (415) 523-8233/(800) 227-2346 Telex: 33631

1

Fax:(415)523-2373

The CREATE TABLE Command

CREATE TABLE <table name>
({< column name> <data type> [<size>]

[<colcnstrnt> . . .]} .,..);

[<tabconstrnt>] .,..);

The Elements Used in CREATE TABLE Commands

Element Definition

< table name~>

<Ccolumn name~>

Kdata type~>

<size>

<.colconstrnt>

<tabconstrnt>

The name of the table created by this command.

The name of a column of the table.

The type of data the column will contain. Can be any of the

following: INTEGER. CHARACTER. DECIMAL.
NUMERIC, SMALLINT FLOAT REAL. DOUBLE
PRECISION, LONG*. VARCHAR*, DATE*. TIME*.

(
* indicates nonstandard)

The meaning of this depends on the <data type>

.

Can be any of the following: NOT NULL, UNIQUE,
PRIMARY KEY. CHECK (<predicate>), DEFAULT =

< value expression> , REFERENCES < table name>

[
(Kcolumn name>)].

Can be any of the following: UNIQUE. PRIMARY KEY.

CHECK (<predicate>), FOREIGN KEY (< column

name> . . .
.
) REFERENCES <table name>

[{^column name> . , .
.)].

SOL KevworrJ*;

Note: The following words have special meaning in SQL and cannot be used to name objects.

Keywords that are not part of the official standard are indicated with a *

ADA* ADD* ALL
ALTER* AND ANY
AS ASC AUDIT*
AUTHORIZATION AVG BEGIN
BETWEEN BTITLE* BY
C* CATALOG* CHAR
CHARACTER CHECK CLOSE
COBOL COLUMN* COMMENT*
COMMIT COMPUTE* CONNECT*
CONTINUE COUNT CREATE
CURRENT CURSOR DATABASE*
DATE* DBA* DBSPACE*
DEC DECIMAL DECLARE
DEFAULT DELETE DESC
DISTINCT DOUBLE DROP*
END ESCAPE EXEC
EXISTS FETCH FLOAT
FOR FOREIGN FORMAT*
FORTRAN FOUND FROM
GO GOTO GRANT
GROUP HAVING IDENTIFIED*
IN INDEX* INDICATOR
INSERT INT INTEGER
INTO IS KEY
LANGUAGE LIKE LONG*
MAX MIN MODIFY*
MODULE NOT NULL
NUMERIC OF ON
OPEN OPTION OR
ORDER PASCAL PLI
PRECISION PRIMARY PRIVILEGES
PROCEDURE PUBLIC REAL
REFERENCES RESOURCE* REVOKE*
ROLLBACK SCHEMA SECTION
SELECT SET SMALLINT
SOME SQL SQLCODE
SQLERROR SQLWARNING* SUM
SYNONYM* TABLE TABLESPACE*
TIME* TIMESTAMP* TO
TTITLE* UNION UNIQUE
UPDATE USER VALUES
VARCHAR* VIEW WHENEVER
WHERE WITH WORK

Understanding

sol
Book Level

f" Beginning

v* Intermediate

Understanding SQL is a thorough tutorial introduction to Structured

Query Language, written especially for newcomers who will be using

SQL on the job. Even if this is yourfirst experience with computers or

database management, Understanding SQL will soon have you working

fluently and effectively with SQL, using simple queries as well as

complex database operations.

Get clear on the concepts of computerized database management with

a concise, easy-to-read introduction to relational databases and

database-management basics.

Follow hands-on tutorials to master essential SQL commands step by

step as you learn how to retrieve and work with information stored in

data tables. Find out how to:

• select the information you wish to work with

• add, delete, and update information in a data table

• use and/or, true/false, and other conditions to zero in on

specific information

• use special SQL functions to summarize your data

Work efficiently with multiple data tables, using advanced techniques for

querying more than one table at a time, constructing complex queries

and subqueries, and using views to create and work with databases

derived from multiple tables.

Create new data tables for custom business applications. You'll explore

essential principles of efficient database design, as well as techniques for

ensuring data integrity and security.

Learn how to use SQL with C and other languages in a special chapter

on SQL for programmers.

Understanding SQL is an indispensable introductory text, suitable for

any implementation of Structured Query Language. It includes both

a concise standard SQL reference guide and a guide to common
nonstandard SQL features.

"Offers a fresh, intelligent

introduction for beginners."

—Computer Book Review

About the Author

Martin Gruber is a freelance writer,

teacher, and consultant, based in the San

Francisco Bay Area. In addition to

writing and editing books, user manuals,

and documentation, he pursues a wide

range of computer-related interests

including computer music, the

relationships between computers and

writing, and new forms and uses of

computer databases.

SYBEX. Help Yourself.

9 780895 M886446

90000

SYBEX COMPUTER BOOK SHELF CATEGORY

IBM/PCs: Databases ISBN O-fl^Sflfl-bMH-fl U.S. $26.95

