

Macmillan Computer Science Series
Consulting Editor: Professor F.R. Sumner, University of Manchester

A. Abdellatif, J. Le Bihan and M. Limame, Oracle - A user's guide
S.:r. Allworth and R.N. Zobel, Introduction to Real-time Software Design, second edition
Ian O. Angell, High-resolution Computer Graphics Using C
Ian O. Angell and Gareth Griffith, High-resolution Computer Graphics Using FORTRAN 77
Ian O. Angell and Gareth Griffith, High-resolution Computer Graphics Using Pascal
M. Azmoodeh, Abstract Data Types and Algorithms, second edition
C. Bamford and P. Curran, Data Structures, Files and Databases
Philip Barker, Author Languages for CAL
A.N. Barrett and A.L. Mackay, Spatial Structure and the Microcomputer
R.E. Berry, B.A.E. Meekings and M.D. Soren, A Book on C, second edition
P. Beynon-Davies,lnformation Systems Development
G.M. Binwlstle, Discrete Event Modelling on Simula
B.G. Blundell, C.N. Daskalakis, N.A.E. Heyes and T.P. Hopkins, An Introductory Guide to
Silvar Lisco and HILO Simulators
B.G. Blundell and C.N. Daskalakis, Using and Administering an Apollo Network
T.B. Boffey, Graph Theory in Operations Research
Richard Bomat, Understanding and Writing Compilers
Linda E.M. Brackenbury, Design of VLSI Systems - A Practical Introduction
Alan Bradley, Peripherals for Computer Systems
G.R.Brookes and A.J. Stewan, Introduction to occam 2 on the Transputer
J.K. Buckle, Software Configuration Management
W.D. Burnham and A.R. Hall, Prolog Programming and Applications
P.C. Capon and P.J. Jinks, Compiler Engineering Using Pascal
J.C. Cluley,lnteifacing to Microprocessors
J.C. Cluley, Introduction to Low Level Programming for Microprocessors
Roben Cole, Computer Communications, second edition
Derek Coleman, A Structured Programming Approach to Data
S.M. Deen, Fundamentals of Data Base Systems
S.M. Deen, Principles and Practice of Database Systems
C. Delannoy, Turbo Pascal Programming
Tim Denvir, Introduction to Discrete Mathematics for Software Engineering
D. England et aI., A Sun User's Guide
A.B. Fontaine and F.Barrand, 80286 and 80386 Microprocessors
J.B. Gosling, Design of Arithmetic Units for Digital Computers
M.G. Hanley, M. Healey and P.G. Depledge, Mini and Microcomputer Systems
J.A. Hewitt and R.J. Frank, Software Engineering in Modula-2 -An Object-oriented Approach
Roger Hutty, ZSO Assembly Language Programming for Students
Roger Hutty, COBOL 85 Programming
Roland N. Ibbett and Nigel P. Topham, Architecture of High Performance Computers,
Volume I
Roland N. Ibbett and Nigel P. Topham, Architecture of High Performance Computers,
Volume II
Patrick Jaulent, The 68000 - Hardware and Software
P. Jaulent, L. Baticle and P. Pillot, 68020-30 Microprocessors and their Coprocessors

continued overleaf

M.J. King and J.P. Pardoe, Program Design Using JSP - A Practical Introduction
E. V. Krishnamurthy, Introductory Theory of Computer Science
V.P. Lane, Security of Computer Based Information Systems
A.M. Lister and R.D. Eager, Fundamentals of Operating Systems,fourth edition
Elizabeth Lynch, Understanding SQL
Tom Manns and Michael Coleman, Software Quality Assurance
A. M6vel and T. Gu6guen, Smalltalk-80
R.J. Mitchell, Microcomputer Systems Using the STE Bus
Y. Nishinuma and R. Espesser, UNIX - First contact
Pim Oets, MS-DOS and PC-DOS -A Practical Guide, second edition
A.J. Pilavakis, UNIX Workshop
Christian Queinnec, USP
E.J. Redfern, Introduction to Pascal for Computational Mathematics
Gordon Reece, Microcomputer Modelling by Finite Differences
W.P. Salman, O. Tisserand and B. Toulout, FORTH
L.E. Scales, Introduction to Non-Linear Optimization
Peter S. Sell, Expert Systems - A Practical Introduction
A.G. Sutcliffe, Human-Computer Interface Design
Colin J. Theaker and Graham R. Brookes, A Practical Course on Operating Systems
M.R. Tolhurst et aI., Open Systems Interconnection
J-M. Trio, 8086~088 Architecture and Programming
A.J. Tyrrell, COBOL from Pascal
M.J. Usher, Information Theory for Information Technologists
B.S. Walker, Understanding Microprocessors
Colin Walls, Programming Dedicated Microprocessors
I.R. Wilson and A.M. Addyman, A Practical Introduction to Pascal- with BS6192,
second edition

Non-series
Roy Anderson, Management, Information Systems and Computers
1.0. Angell, Advanced Graphics with the IBM Personal Computer
J.E. Bingham and G.W.P. Davies, Planning for Data Communications
B.V. Cordingley and D. Chamund, Advanced BASIC Scientific Subroutines
N. Frude, A Guide to SPSSIPC+
Percy Mett, Introduction to Computing
Barry Thomas, A PostScript Cookbook

Understanding
SQL

Elizabeth Lynch

M
MACMILLAN

@ Elizabeth Lynch 1990

All rights reserved. No reproduction, copy or transmission of this publication may
be made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted save
with written permission or in accordance with the provisions of the Copyright,
Designs and Patents Act 1988, or under the terms of any licence permitting limited
copying issued by the Copyright Licensing Agency, 33-4 Alfred Place, London
WCIE7DP.

Any person who does any unauthorised act in relation to this publication may be
liable to criminal prosecution and civil claims for damages.

First published 1990

Published by
MACMILLAN EDUCATION LTD
Houndmills, Basingstoke, Hampshire RG21 2XS
and London
Companies and representatives
throughout the world

Typeset by
Ponting-Green Publishing Services, London

British Library Cataloguing in Publication Data
Lynch, E. (Elizabeth)
Understanding SQL. - (Macmillan computer science series).
I. Relational databases. Searching. Programming languages:
SQL
I. Title
005.756'
ISBN 978-0-333-52433-6 ISBN 978-1-349-11552-5 (eBook)
DOI 10.1007/978-1-349-11552-5

Contents

Preface xiii
Notefor dBASE (and other PC database system) users xv
Acknowledgements xvii

1 Introduction to SQL 1
1.1 A one-sentence definition of SQL 1
1.2 A brief history of SQL 1
1.3 What SQL is and what it is not 2

1.3.1 What is a database management system DBMS? 2
1.3.2 Programming languages, procedural

languages, and 4GLs 3
1.3.3 What is the relational model? 4
1.3.4 The relational model- a brief description 4
1.3.5 Implementations of the relational model 5

1.4 The 1986 ANSI standard 6
1.5 The benefits of using SQL 7

2 SQL basic terms 9
2.1 Introduction 9
2.2 Databases 9
2.3 The example database used in this book 10
2.4 Tables, rows and columns 10
2.5 Indexes 11
2.6 Primary and foreign keys 12
2.7 SQL commands 12
2.8 Entering an SQL statement 12

2.8.1 Upper or lower case? 14
2.8.2 Punctuation 14

3 An example of setting up an SQL system 16
3.1 Introduction 16
3.2 Designing a database 17
3.3 Using SQL to create a database 18

v

vi Understanding SQL

3.3.1 The example system 18
3.3.2 The 'first stab' table 18
3.3.3 Reorganising the table - 1 Removing duplicate columns 21
3.3.4 Reorganising the database - 2 Creating separate tables 22
3.3.5 Reorganising the database - 3 Creating a VIEW 23
3.3.6 Security - Views and privileges 24
3.3.7 Security - COMMIT and ROLLBACK 24
3.3.8 Integrity constraints 25

4 Creating databases and tables 26
Inputting data
4.1 Starting and finishing an SQL session 26

4.1.1 Starting an SQL session 26
4.1.2 Ending an SQL session 27
4.1.3 Suspending an SQL session 27

4.2 Databases 27
4.2.1 What is a database? 27
4.2.2 Creating and using a database 28

4.3 The System Catalog 29
4.4 Tables 30

4.4.1 Restrictions on table names 30
4.4.2 Restrictions on column names 30
4.4.3 Restrictions on numbers of columns 31
4.4.4 Data types 31
4.4.5 Creating a table - CREATE TABLE 33

4.4.5.1 NOT NULL columns 34
4.4.5.2 UNIQUE columns 34
4.4.5.3 UNIQUEness in different SQLs -

INDEX vs TABLE 35
4.4.6 Changing the structure of a table - ALTER TABLE 35

4.4.6.1 Adding NOT NULL columns 36
4.4.6.2 Modifying a column specification 36

4.5 Inputting data - INSERT:.VALUES 36
4.5.1 Inserting a whole row 37
4.5.2 Inserting values into specific columns 37
4.5.3 Problems with INSERT 38

4.6 Deleting a table - DROP TABLE 38

5 Querying the database 39
5.1 Introduction 39
5.2 The SELECT command - an introductory look 40

5.2.1 Brief explanation of the function of each clause 40
5.2.2 Essential points about SELECT 44

6

Contents vii

5.3 Using SELECT
5.3.1 Manipulating numbers
5.3.2 Manipulating characters and<dates (functions)
5.3.3 Restrictions on column lists
5.3.4 Aggregate functions
5.3.5 Using DISTINCT
5.3.6 Aliases and multiple tables

5.4 WHERE conditions
5.4.1 What is a WHERE condition?
5.4.2 The WHERE operators
5.4.3 BETWEEN .. AND ..
5.4.4 LIKE mask
5.4.5 IN (list)
5.4.6 IS NULL
5.4.7 NOT (expression)
5.4.8 AND and OR
5.4.9 Simple subqueries

5.5 ORDER BY column list (DESC)
5.5.1 Ordering by a single column
5.5.2 Ordering by calculated or 'function'columns
5.5.3 Ordering by mUltiple columns

More about SELECT
6.1 Introduction
6.2 GROUP BY columnlist

6.2.1 Restrictions on SELECT columnlist with GROUP BY
6.2.2 Rule for including columns in SELECT columnlist
6.2.3 Aggregate functions with GROUP BY
6.2.4 Columns in GROUP BY that do not appear in

SELECT columnlist
6.2.5 Multiple columns in GROUP BY
6.2.6 Using GROUP BY with WHERE and ORDER BY

6.3 HAVING condition
6.4 UNION .. SELECT statement

6.4.1 How UNION works
6.4.2 UNION of different tables
6.4.3 Restrictions on use of UNION
6.4.4 UNION versus WHERE .. OR ..

6.4.4.1 How UNION can be different from WHERE .. OR ..
6.5 Multiple tables in SELECTs

6.5.1 Introduction
6.5.2 SELECTing columns from several tables
6.5.3 Setting up an alias for a table

45
45
46
46
46
47
48
48
48
49
53
53
54
55
55
56
59
61
61
62
62

65
65
65
66
66
66

67
68
68
69
70
70
70
71
71
71
72
72
72
75

viii Understanding SQL

7

6.5.4 Different types of joins
6.5.4.1 General join
6.5.4.2 Natural join
6.5.4.3 Equi-join
6.5.4.4 Non-equi-join
6.5.4.5 Inner and outer joins
6.5.4.6 Subqueries instead of outer joins

6.6 More on subqueries
6.6.1 Introduction
6.6.2 Subqueries on mUltiple tables
6.6.3 Subqueries returning a set of values

6.6.3.1 IN and NOT IN
6.6.3.2 ANY
6.6.3.3 ALL
6.6.3.4 EXISTS and NOT EXISTS

Updating the database
7.1 Introduction
7.2 Interactively adding new rows - INSERT (and Input)

7.2.1 Syntax ofINSERT
7.2.2 Adding a new row - data into all columns
7.2.3 Adding a new row - data into selected columns
7.2.4 Restrictions on INSERT VALUES

7.3 Changing existing data - UPDATE
7.3.1 Rules for using UPDATE
7.3.2 Examples of UPDATE
7.3.3 Restrictions on UPDATE

7.3.3.1 Only one table at a time
7.3.3.2 No 'self-referencing .. '
7.3.3.3 Problems with UNIQUE columns

7.4 Deleting rows - DELETE
7.4.1 How to use DELETE
7.4.2 Deleting all rows
7.4.3 Restrictions on DELETE

7.5 Copying rows from one table to another
7.5.1 How to use INSERT .. SELECT
7.5.2 Valid INSERTs INTO 'newemp'
7.5.3 Invalid INSERTs INTO 'newemp'

7.6 Using INSERT .. SELECT to delete and alter columns
7.7 Undoing your mistakes - (COMMIT and ROLLBACK)
7.8 Importing and exporting data

75
76
76
76
76
76
78
78
78
79
79
79
80
81
81

83
83
84
84
85
86
86
86
86
87
88
88
89
89
90
90
90
90
91
91
92
92
93
94
95

Contents ix

8 Creating and using views 97
8.1 An overview of views 97

8.1.1 Why do you need views? 97
8.1.2 What is a view? 98

8.2 Creating a view - CREATE VIEW 99
8.2.1 The CREATE VIEW commmand 99
8.2.2 Rowand column subsets 101
8.2.3 Changing column names 102

8.2.3.1 The default column names 102
8.2.3.2 How to change column names 102
8.2.3.3 When you have to specify different column names 103

8.2.4 The WITH CHECK OPTION 103
8.2.4.1 What does WITH CHECK OPTION do? 103
8.2.4.2 Restriction on WITH CHECK OPTION 104
8.2.4.3 Using WITH CHECK OPTION to validate data entry 104

8.3 Deleting a view - DROP VIEW 105
8.4 Using views 105
8.5 Restrictions on views 106

8.5.1 Restrictions on SELECT when CREAT(E)ing a VIEW 107
8.5.2 Restrictions on using existing views 108

8.5.2.1 Rules for creating updatable views 109
8.5.2.2 Examples of updatable views 109
8.5.2.3 Examples of non-updatable views 109
8.5.2.4 Rules for querying views 110
8.5.2.5 Examples of non-queryable views 111
8.5.2.6 Why restrictions on views are a problem 111

8.6 Using views to preserve perceived data structures 112

9 Optimising performance 114
9.1 Introduction 114
9.2 Indexing a table - CREATE INDEX 115

9.2.1 What is an index? 115
9.2.2 Using CREATE INDEX 115

9.2.2.1 The basic command 115
9.2.2.2 Concatenated indexes 116
9.2.2.3 The UNIQUE option 116

9.2.3 What does an index look like? 117
9.2.4 How does it speed up data access? 118
9.2.5 Index overheads 118
9.2.6 When does SQL use indexes? 119

9.2.6.1 The 'general' rule 119
9.2.6.2 Examples of using/not using an index 119

x Understanding SQL

9.3 Rephrasing commands to force index use 120
9.3.1 Why should you rephrase commands? 120
9.3.2 Examples of conditions that will not use indexes 121

9.3.2.1 Using NOT with LIKE, BETWEEN, IN, EXISTS 121
9.3.2.2 Comparing a column with a column or literal

of a different length 121
9.3.2.3 Using a concatenated index in the 'wrong' order 122
9.3.2.4 Calculations on index key columns 122
9.3.2.5 Character strings beginning with a wild card (%) 123

9.4 Deleting an index - DROP INDEX 123
9.5 Add-on products to help you design efficient queries 124
9.6 Other ways of improving performance 124

10 Database security and integrity 125
10.1 Introduction 125
10.2 Database Security 125

10.2.1 Who controls database security? 125
10.2.2 Overview of SQL's security levels 126
10.2.3 Differences between SQL implementations 127
10.2.4 Ownership of tables and views 127
10.2.5 GRANT and REVOKE 128
10.2.6 GRANT for authorisations 128

10.2.6.1 The syntax of GRANT 128
10.2.6.2 What does CONNECT authorisation entitle you
to do? 129

10.2.6.3 What does RESOURCE authorisation enable you
w~ lW

10.2.6.4 What does DBA authorisation enable you to do? 129
10.2.6.5 Changing passwords 129
10.2.6.6 Changing authorisations adding and REVOK(E)ing 129

10.2.7 GRANT for privileges 130
10.2.7.1 The syntax of GRANT 130
10.2.7.2 Privilege levels available 130
10.2.7.3 Who is allowed to assign privileges? 131

10.2.8 Removing privileges - REVOKE 132
10.2.9 Cascading REVOKES 133
10.2.10 Privileges and views 133

10.3 Database integrity 133

11 Embedded SQL 135
11.1 What is embedded SQL? 135
11.2 The SQL !embedded' commands 136

11.2.1 Host Language requirements 136

Contents xi

11.2.1.1 Variable names 136
11.2.1.2 EXEC SQL .. 136

11.2.2 Standard SQL commands embedded in the host program 137
11.2.3 SELECT . .INTO .. (variable list) 137
11.2.4 Using CURSORs 138

11.2.4.1 DECLARE 138
11.2.4.2 OPEN 139
11.2.4.3 FETCH 139
11.2.4.4 CLOSE 140
11.2.4.5 The program listing 140

11.2.5 UPDATE and DELETE with cursors 141

12 Non-standard SQL 143
12.1 The user interface - introduction to Oracle 143
12.2 Forms generation - SQL*Forms 144

12.2.1 What is a forms generator? 144
12.2.2 Creating a simple form 145
12.2.3 Customising the form - Screen Painter and menus 146
12.2.4 Customising the form - including SQL statements 147
12.2.5 Using the form 148

12.3 Creating reports - SQL*ReportWriter 148
12.3.1 What is a reportwriter? 148
12.3.2 Creating a simple report 148
12.3.3 Customising the report 149

12.4 Creating a menu interface - SQL*Menu 150
12.4.1 What is a menu interface? 150

12.5 Oracle Database Add-in for Lotus 1-2-3 150
12.6 Differences from ANSI SQL in DB2, dBASE IV SQL,

Informix and Oracle 151
12.6.1 Formatting column displays 151
12.6.2 Improving the display of a result table 152
12.6.3 Improving ease of access to system catalog data 152
12.6.4 Using functions to manipulate part of a column 152

12.7 Chart comparing main features in the four
SQL implementations 153

13 The relational model - the theory made practical 155
13.1 Introduction 155
13.2 Background to relational theory 155
13.3 The '12' Fidelity Rules 156

13.3.1 Foundation rule 157
13.3.2 Information rule 157
13.3.3 Guaranteed access rule 158

xii Understanding SQL

13.3.4 Missing information rule
13.3.5 System catalog rule
13.3.6 Comprehensive language rule
13.3.7 View updatability rule
13.3.8 Set level update rule
13.3.9 Physical data independence rule
13.3.10 Logical data independence rule
13.3.11 Integrity independence rule
13.3.12 Distributed independence rule
13.3.13 Non-subversion rule

Bibliography

Appendixes
A. SQL commands grouped by category
B. Overview o/jour SQL implementations
Index

159
160
160
161
162
162
163
163
164
164

166

167
167
169
171

Preface

This book is intended to be an introduction to the SQL database manipulation
language. The coverage is not meant to be exhaustive; however, after
reading the book you will have a good overall view of the concepts behind
SQL and a working knowledge of its commands.

Although the book is based around the 1986 ANSI standard SQL, you
will soon find out that no current SQL product implements the standard
faithfully. We have tried to show you the ANSI commands, and in addition
point out areas where some of the major SQL implementations differ (often
for very good reasons) from the standard, and indeed, from each other.

We chose to use DB2, dBASE IV SQL, Informix and Professional Oracle
as representatives of the wide range (over 50) of SQL implementations.
DB2 is available on mainframes only; Informix and Oracle on mainframes,
minis and Personal Computers (PCs), and dBASE IV SQL only on PCs.
Throughout the text you will find ANSI SQL and these four SQLs used and
contrasted in examples. Appendix B gives an overview of each product.

Chapter 12 gives a chart comparing their main features together with a
brief guide to their divergences from the standard, any extra facilities they
provide, and a general feel for what they are like to use.

However, this book is not intended to be a comprehensive guide to
Oracle, dBASE, Informix and DB2! If you want to know more details about
any particular SQL implementation, refer to its manuals, or to a book
specifically about that SQL.

xiii

Note for dBASE (and other PC database system) users

Because SQL now comes 'packaged' with dBASE IV, many dBASE IV
users will find themselves with a full-featured SQL system 'thrown in' with
dBASE. In most cases, those users will have bought dBASE for the dBASE
facilities, and not for the SQL features. If you are one of these people, you
may well be wondering what SQL can do that dBASE cannot. Your
situation is rather different from that of most other users of SQL databases,
who have presumably chosen an SQL system for themselves on its own
merits. We hope that this book will provide you with a introduction to SQL,
and help you see how you might integrate SQL with dBASE IV.

If you have already been exposed to a non-SQL-based system, (for
example, if you have previously used PC database systems such as dBASE
or Paradox), you will naturally find yourself constantly comparing SQL to
these, quite possibly initially to SQL's detriment. But you must realise that
such comparisons are like comparing oranges to apples; both have their
individual flavours and advantages, but are completely different. SQL and
dBASE are alike only in that they both deal with data in a database system;
as you will see, SQL is not a competitor to 'traditional' PC-based database
systems, but will be used to complement them.

xv

Acknowledgements

Many thanks are due to Oracle Corporation for providing the Oracle system
on which the examples in this book were created and tested.

Thanks also to Paul, David, Andrew and Michael for encouraging me to
write this book.

xvii

1 Introduction to SQL

Overview

In this chapter we will introduce you to SQL's history, to the relational
concepts which gave birth to SQL, and to some of the reasons why SQL
systems are to be preferred over 'traditional' database systems. Armed with
this background information, you will be better equipped to begin looking
at SQL commands in chapter 2.

1.1 A one-sentence definition of SQL

If we wanted to encapsulate all the important points about SQL in one
sentence, the following statement would do the job quite well:

'SQL (pronounced 'Sequel' or 'Ess Cue Ell', and standing for 'Structured
Query Language'), is a database language based on relational principles
containing commands for manipulating data. '

The rest of this chapter is devoted to explaining what this really means!

1.2 A brief history of SQL

SQL was originally developed in the mid 1970s as an in-house research
project by IBM, based on E.F. Codd's radically new way of describing data
relationships - the relational model. (See section 1.3.4 and chapter 13 for
more detail on what 'relational' means.) During this time, IBM published
enough details of its work to allow other suppliers to develop SQL systems
very similar to IBM's. The first commercial SQL systems were released in
the late 1970s for use on IBM VM mainframes and Unix systems (Oracle,
Ingres), shortly followed by IBM's SQL/DS for VM' and VSE mainframe
systems. In 1983 IBM released the SQL-based DB2 for the MVS operating
system, and set the standard for mainframe database systems. Throughout
the 1980s, database systems on mainframe and mini computers have been
converging on relational, SQL-based systems.

1

2 Understanding SQL

Until recently, personal computers (pes) have not been able to offer the
computing power and fast disk access times necessary to run an SbL
system efficiently. However, there are now many SQL systems available for
pes, including those which have 'migrated down' from Unix systems
(Professional Oracle, Informix etc), and those which have been incorporated
into existing pe database systems (dBASE IV SQL, R:base etc).

1.3 What SQL is and what it is not

Many people are confused about the role of SQL in the database world. If
we look at what it is not, then it will be easier to clarify what SQL is.

It is not:

It is:

a database management system (DBMS)
a procedural programming language
a fourth generation language (4GL)

- a powerful data manipulation language (DML) based on relational
ideas

- a potential way to create portable database systems over hardware and
software environments
designed to be used both interactively, and embedded within procedural
languages.

All this is explained in more detail below.

1.3.1 What is a database management system (DBMS)?

In a computer database system, all data is held in some physical form
known as the' database'. Access to the data is controlled by software known
as the DBMS; it is the DBMS that 'knows' where and in what physical
format the data is stored. The DBMS itself is accessed - for adding,
updating, deleting and querying data - by a database language. SQL is an
example of a database language; it is not itself a DBMS. The distinction
between the 'database engine' provided by the DBMS, and the language
used to 'drive' it, is an important .one. In theory at least, the same DBMS
could be accessed by different database languages, giving users flexibility
in their choice of interface to data. However, in practice, you will find that
for most purposes we can think of the DML and the DBMS as being
synonymous.

SO SQL is not a DBMS, but it is a database manipulation language.

Introduction to SQL 3

1.3.2 Programming languages, procedural languages, and 4GLs

We said above that SQL is a database manipulation language (DML). Is it
different from 'normal' computer languages such as BASIC and COBOL?
The answer is a resounding 'Yes'. However, neither is it a Fourth Generation
language. SQL's place in the scale of computer languages is explained
below.

The main difference between a 'traditional' programming language such
as COBOL, BASIC or C (also known as 'third generation languages'), and
a 4GL, is that traditional languages are 'procedural'. In other words, a 4GL
user simply tells the computer what result is required and the language
itself works out how to achieve it; whereas a 3GL user has to specify to the
computer exactly how to obtain that result. In an ideal world, all access to
computer data would be undertaken through a 4GL; in practice, 3GLs still
play a large part in most applications development.

Although SQL should certainly be grouped with the non-procedural
languages (as you will see when looking at SQL commands in chapter 2),
SQL is not itself a 4GL. One of the trademarks of a 4GL is that it provides
a set of high-level tools in the form of screen and report designers, menu­
creation utilities and so forth, relieving the user of the task of setting up
such things himself. SQL itself has no such facilities. It provides neither
3GL programming constructs (loops, branches etc) nor 4GL user-friendly
interfaces.

However, SQL is designed to be used, or 'embedded', within procedural
programming languages (allowing users to use SQL's powerful data retrieval
facilities in conjunction with any programmming tools required). Most
buyers will also find that their implementation of SQL comes with 4GL-like
facilities to make the use of SQL easier.

This does not mean that you can only use SQL from a 'high level'
language. SQL commands can also be used interactively, with the user
having direct access to the database. Indeed, this book concentrates almost
exclusively on the 'interactive' use of SQL - after all, if you do not
understand the basic SQL commands at their 'simplest' level, you will not
get very far when trying to embed them in a host language! However, many
potential users of SQL systems will find the SQL commands relatively
difficult to learn, and will prefer to use 4GL form/report interfaces or to
hire someone to write their SQL-based application for them in a 3GL/4GL.

It is this facility which allows existing PC database systems, such as
dBASE IV, to accommodate SQL within their current command structures.
The dBASE user can use SQL's data retrieval facilities to access data, and
use dBASE itself as a .programming language to do things with the data -
such as display it in forms and reports.

The significance of SQL's position between the high-level 3GL and

4 Understanding SQL

4GLs, and the DBMS, is discussed in section 1.5 - 'The benefits of using
SQL'.

1.3.3 What is the relational model?

We have mentioned that SQL is based on the principles of the relational
database model first expounded by E.F. Codd (Codd 1970). But what does
'relational' mean?

Whole books have been devoted to just such a question. It is almost
impossible to define relational meaningfully in a short paragraph, and we are
not going to try! At this point, we will just describe some of the attributes of
a relational system at an extremely superficial level, just so that you can have
a 'feel' for what it is. In chapter 13 we discuss Codd's 'Fidelity Rules' for
determining whether or not a system is relational in some detail, trying to
translate them into layman's English rather than mathematical terms, and
pointing out where SQL does or does not obey the rules.

You can certainly learn to use SQL efficiently even if you have no idea of
its theoretical basis, just as you can drive a car well without knowing
anything about mechanics. However, having a knowledge of relational
theory, however slight, will help you see SQL in context, and give you a
feel for probable developments in SQL. -

So read chapter 13, either now or after you have learnt some SQL
commands. If the only thing you learn from it is that SQL is not a fully
relational DML, then you will have learned something extremely important!

1.3.4 The relational model- a brief description

As we said above, this section is not an attempt to summarise Codd's 12
rules (all of which any database system must implement to be called truly
relational). Here we are merely giving a brief description of some of a
relational system's trademarks.

The'most obvious trademark of a relational database is that it holds data
in tables consisting of columns and rows.

If you have used Paradox, dBASE IV in BROWSE mode, or even the
Lotus 1-2-3 database (none of which is at all relational by Codd's rules)
you have a good idea of the format of 'tabular' databases.

Here is a diagram of a typical table.

SURNAME

Smith
Robinson
Adams

FIRSTNAME

Susan
John
Evelyn

ADDRESS

16, Fisher Close
3, Devon Gardens
103, Mile End Rd.

Q1TARGET

15000
70000
50000

Introduction to SQL 5

Rows are unordered when they are input. The data manipulation language
(in our case, SQL) must provide a method for extracting subsets of columns
and rows, and sequencing the rows in any desired order.

One of the features which, more than any other, marks a system as
relational, is its ability to use a single command to extract information from
several tables simultaneously. In SQL, this command is called SELECT. To
take an example from the sales/order database which this book uses through­
out for examples (see 2.4 for a full description), you could say:

SELECT surname, amount FROM salesmen,contracts
WHERE salesmen. surname = contracts.surname;

to show all the value of each contract (from the contracts table) together
with the name of the salesman responsible (from the salesmen table).

Columns can hold data of different types (e.g. Character, Number, Date).
They can also hold a NULL value - meaning 'value unknown', (as distinct
from 'blank' or 'zero'). Using NULLs is one example of the checks (or
'integrity constraints') that the DML has to provide to ensure that only
correct data (relationally speaking) is allowed to be entered. For example,
the relational model does nqt allow you to enter duplicate rows.

As you see from the above example, the user of a relational system does
not need to know anything about file locations or physical data structures.
Nor does he need to actively create links between tables (unlike dBASE
IV's SET RELATION command). The DBMS is responsible for all the
dirty work of keeping track of 'joining' tables to satisfy your queries. One
of the tools that it uses to enable it to do this is the System Catalog - a
record of all details about all tables in the database, which the DBMS is
responsible for keeping updated. As a result, it should be possible to do
things like move the database froIllcone disk to another, and even redistribute
it over different computers (e.g. on a network) without the user noticing
that anything has changed.

1.3.5 Implementations of the relational model

There is no reason why there could not be several radically different DMLs
from different suppliers implementing the relational model. But, in practice,
the standard language that has emerged over the last 20 years is SQL.
'Standard' , however, is a misnomer. There are more than 50 implementations
of SQL currently available, none of which is identical with another or with
anyone standard!

Nor are any of the current SQLs fully relational. Codd bemoans the fact
that even IBM's DB2 only 'scores' 7 out of 12 on the 12 Fidelity Rules.

6 Understanding SQL

So although relational theory has been accepted as being a sensible basis
for data storage and access, we do not yet have a real relational system in
the marketplace.

1.4 The 1986 ANSI Standard

A practical measurement of an SQL implementation is its conformity with
the 1986 ANSI SQL standard. The ANSI standard is similar to IBM SQL,
(which until then was the de facto standard), although it does contain
several fairly important differences. You will find that most current SQL
implementations will advertise themselves as conforming to either the IBM
or the ANSI standard. Codd' s associate Chris Date has published an
interesting (and readable) book discussing the ANSI standard, its differences
from DB2, and areas where he feels that better decisions could have been
made as to what to include/exclude (Date 1988).

Since many current SQL implementations were in use well before the
ANSI standard was published, there are several areas where, although the
standard lays down sensible rules, virtually none of the major SQLs available
today adheres to them! (A good example of this is the UNIQUEness
concept discussed in 4.4.5.)

Similarly, there are areas where the ANSI standard seems to have
deliberately ignored useful commands found in most SQLs anyway - for
example, why does ANSI not provide a command to DROP (delete) a
TABLE? And there are other areas where the ANSI SQL standard seems to
deviate sharply from relational theory (for example in allowing duplicate
rows).

So although the ANSI standard is a useful reference point by which to
judge a particular SQL implementation, ANSI standard SQL is not necessarily
the 'best' - that is, the most relational - SQL to adopt. To quote Codd
himself (Codd, 1988)

' .. DBMS vendors are rushing to support Structured Query Language
(either IBM's version or its weaker ANSI cousin). This is like watching a
flock of lemmings congregate on a beach in preparation for marching into
the sea.'

Throughout this book we point out areas where the ANSI standard seems to
be deficient, or diverges sharply from most actual implementations.

Introduction to SQL 7

1.S The benefits of using SQL

You may find it difficult to see just why SQL is so popular. Here are a few
of the reasons which have contributed to its success.

a) A sound theoretical foundation

The relational model is generally accepted by experts as being a 'better'
way of representing data structures. It is subject to stringent logical analysis,
and every operation can be justified by the underlying mathematical theory.

b) IBM uses it

In the computer industry today, IBM's endorsement of any product is
(usually) enough to guarantee its success. Once SQLIDS and DB2 became
the IBM standard database systems, SQL's future was assured.

c) An SQL-based DBMS is flexible in terms of the languages, etc
supported

In terms of controlling the database, SQL occupies a midway position
between the 'high level' 4GL or 3GL language and the 'low level' DBMS
software.

4GL and/or 3GL

SQL's ability to act as a 'buffer' between the high-level programming
languages and low-level DBMS software provides a clue to one of the
reasons for its increasing popularity. For this 'midway' position offers the
potential for different high-level and low-level components to be 'plugged
in' around a standard SQL interface. In theory at least, future database users
may be able to select both their preferred database engine and their interface
to SQL. Suppliers of database systems are well aware of the possibilities
offered by adopting the SQL standard.

8 Understanding SQL

d) SQL-based systems are portable

One of the big attractions of SQL is that it presents a !i.tandard interface for
data access across many different environments. Someone who learns SQL
on his dBASE IV PC could move to querying an IBM mainframe DB2
system with a minimum of retraining. In today's atmosphere of extending
distributed processing, this gives SQL a major advantage. Of course, this
argument only holds true so long as the user is happy to use 'core' SQL
commands. As mentioned above, once the SQL system is made 'user­
friendly' by the addition of 4GL tools such as menus, form designers and
report generators, the user becomes 'locked in' to that particular imple­
mentation. The interface to another implementation will be so different that
he might as well be learning a completely new package.

However, some SQL implementations are now available over different
hardware and software environments. Oracle, for example, is available for
PC-DOS systems, Unix and MVS. In addition, SQL servers for the PC are
now being released. An SQL server is a 'database' in the pure sense - that
is, an entity which holds data and which contains a set of commands to
query that data. It is not a programming language like dBASE. The database
may be accessed by any 4GL which knows the 'hooks' into the SQL server.

SQL systems will certainly continue to proliferate throughout the PC
world. As Unix becomes a more common choice for PC-based multi-user
systems, the databases of choice will all be SQL based (Informix, Oracle,
etc). IBM has included SQL as/part of its Systems Applications Architecture
(SAA), which means that it has some commitment to continuing to offer
and develop SQL implementations; OS/2 Extended Edition contains an
implementation of SQL; and there are various third-party SQL servers
announced for OS/2 (for example, the Ashton-TatelMicrosoft collabora­
tion).

Summary

This chapter introduced you to SQL by explaining briefly its role in the
database world. You learnt what inspired its development (Codd's relational
model); how it proliferated through the computing community (minis,
mainframes, and then PCs), and why users might prefer SQL systems to
other databases (SQL is an IBM-endorsed standard which provides a powerful
DML that can be used as a front or back end to DBMSs and/or 4GLs).

In chapter 2 we will start to look at some of the 'jargon' terms that you
need to know in order to get on with learning the SQL commands.

2 SQL basic terms

Overview

This chapter explains some of the terminology used in an SQL system, the
basic structure of SQL commands, and the syntax formats used by the
commands.

2.1 Introduction

The aim of this chapter is to introduce you to the SQL terms that you need
in order to be able to 'get going' with SQL. Other concepts and terms will
be introduced as necessary in later chapters.

In this chapter we also introduce the sample database which will be used
throughout the book for examples.

2.2 Databases

The term 'database' refers to the total collection of data concerning one
particular topic. One computer system may hold many databases. Thus a
typical business may have separate databases for:

- customers and invoices
- personnel details

office equipment maintenance schedules
- individuals' personal telephone directories

company car details

and so on.
Of course, deciding what items of data should logically be placed in the

same database is a job for whoever designs the computerised database
system. Some applications will require only one database; others will be
more logically split into several. This book does not attempt to deal with
the problems of database design (although chapter 3 does show SQL .ooing
used in the 'real life' development of a system); however, just using SQL

9

10 Understanding SQL

databases will give you a feel for the correct structuring of data. There is no
absolute 'right' or 'wrong' in database design; everything depends on the
particular application's requirements. In the above example, separate data­
bases may indeed be the best way to structure the data; however, you might
also argue that office equipment and company cars should be 'linked' to the
person who uses them; and that individual telephone lists will overlap, not
only with each other but also with the main customer file. In this case,
maybe a single database (although with separate tables "'7 see below) will
reflect-the company's needs better.

Most SQL implementations have a command for creating an 'empty'
database which can then be 'filled' with the tables which contain the actual
data.

2.3 The example database used in this book

This book uses a salesmen/contracts database to illustrate all the SQL
commands discussed in later chapters._ It holds three tables; 'salesmen',
'contracts' and 'customers'. In chapter 3 you will see the rationale behind
the building of this database and the separation of the data into different
tables. Here we simply introduce the database to you so that you can make
sep.se of the examples given later in this chapter.

The purpose of the database is to enable managers to track the performance
of salesmen by seeing how the value of the contracts that they have won
measures up against the quarterly targets set for them. Managers should
also be able to see the value of orders placed by customers.

The 'Salesmen' table contains details of each salesman's 'personal'
details, such as his employee number, first name, surname, address, phone
number, and the quarterly target figures.

The 'Contracts' table holds details of every contract, including the name
of the salesman who took the contract, the customer name, the value of the
contract and the contract date.

The 'Customer' table holds the customer's 'personal' details, such as
customer number, name, address, phone number etc.

2.4 Tables, rows and columns

In a relational database system, all the data is held in tables. A table is
made up of rows and columns. These correspond to the records and fields
in a traditional database system. The number of columns and rows allowed
in a single table varies in different implementations of SQL.

You will also come across the terms 'base table' (one containing 'real'

SQL basic terms 11

data where the data has physically been typed in) and 'result table' (the
'temporary' table created when a SELECT query is performed). Result
tables are not available for further querying, although some SQLs provide a
command to allow them to be 'converted' into base tables.

Sometimes you will find tables referred to as relations. This is common
practice in discussions of the subject by relational database experts; most
user guides and introductory level books stick to 'table'.

Example Table

SURNAME

Smith
Robinson
Adams

FIRSTNAME

Susan
John
Evelyn

ADDRESS Q1TARGET

16, Fisher Close 15000
3, Devon Gardens 70000
103, Mile End Rd. 50000

The SQL SELECT command allows tables to be joined together so that
information may be extracted from more than one table simultaneously.

2.S Indexes

SQL allows you to set up indexes on tables to speed up data retrieval. An
SQL index works in !he same way as an index in a hook, allowing you to
'look up' an entry immediately rather than having to scan the entire volume
(table) to find what you are interested in. You can think of an index as a
separate file containing a list of 'pointers' to the real data in the table.

Table

Smith
Robinson
Adams

Index

1. Adams
2. Robinson
3.Smith

Once indexes have been created on a table, SQL will automatically determine
which, if any, of the possible indexes should be used for any particular
query on the database.

Although you do not have to create any indexes at all, in most cases your
system will perform more efficiently if each table is indexed on at least the
primary key (see 2.6).

Indexes are discussed fully in chapter 9.

12 Understanding SQL

2.6 Primary and foreign keys

Each row should have a column or combination of columns, the contents of
which distinguishes that row from all others. In other words, each row
should be unique. The columns which make the row unique are together
called the primary key of a table. (In practice, most SQL implementations,
including the ANSI standard, do not actually enforce the use of primary
keys, making it possible to have duplicate rows in a table.)

If a column which is a primary key in one table is reproduced in another
table (not as the primary key of that table), then it is known as a foreign
key on the second table.

2.7 SQL commands

SQL has about 30 commands which are used to manipulate the database
system. To make it easier to remember them, they can be divided into three
groups:

Data Definition commands (e.g. CREATE TABLE)
Data Manipulation commands (e.g. SELECT, UPDATE)
Data Control commands (e.g. COMMIT, ROLLBACK)

The precise number of commands will vary between SQL implementations.
The area with the greatest variation in number and format of commands is
that of Data Definition.

Appendix A gives a list of the ANSI SQL commands by category,
together with a brief description of their function.

2.8 Entering an SQL statement

An SQL statement consists of the SQL command followed by any other
mandatory or optional clauses necessary to complete a valid SQL operation.
For example, the SQL command SELECT (used to extract rows and columns
from one or more tables) becomes a statement like:

SELECT surname FROM salesmen;

Words like SELECT and FROM are known as reserved words. This means
that you cannot give their name to data structures such as tables or columns.
Most SQL implementations have about 150 reserved words.

All reserved words must be separated from the following word or data
item name by at least one space. Thus

~F.T.F.r.T * FROM !':rllp!':mpn!

SQL basic terms 13

is legal, whereas

SELECT* FROM salesmen;

is not.
However, in some parts of statements, spaces are unimportant. For

example, SQL would be equally happy to accept:

SELECT surname FROM salesmen WHERE surname='Smith';

and

SELECT surname FROM salesmen WHERE surname , Smith' ;

or

SELECT surname,empno,qltarget FROM salesmen;

and

SELECT surname, empno , target FROM, salesmen;

SQL commands usually have several parameters or optional clauses attached
to them. This means that a single statement can end up being quite long. For
example, the SELECT command has six different options (and even more in
some implementations), a combination of some or all of which can be used
to refine the exact data retrieved from the tables.

To make such statements clearer to understand, you can divide them over
several lines when you type them in. For example:

SELECT
salesmen. surname,
salesmen.empno,

contracts.amount,
contracts.cdate

FROM salesmen, contracts
WHERE salesmen.empno = contracts.empno
A~D contracts.amount > 300000

ORDER BY salesmen. surname;

You can divide up the statement into separate lines at whatever points you
like, although it is conventional - and clear - simply to put separate clauses
on different lines as in the above example. You can indent lines to make the
structure of the statement easier to follow - SQL will just ignore superfluous
spaces.

Some parameters to the command are mandatory; others are genuinely
optional. In the SELECT example above, the only mandatory requirement is
that one or more column names, and the tables to be queried, should be
specified; the WHERE and ORDER BY clauses are options.

14 Understanding SQL

2.8.1 Upper or lower case?

In most implementations of SQL, you can type commands and field names
in either upper case, lower case, or a mixture of both. Thus Oracle, for
example, will be equally happy to accept (and produce the same result for):

SELECT amount FROM contracts;

and

Select AMOUNT from CONTRACTS;

However, Informix requires that all command words be in lower case, and
would reject both the above examples in favour of:

select AMOUNT from CONTRACTS;

or

select amount from contracts;

In this book we show SQL commands in upper case characters to set them
off from the rest of the text. Column and table names are shown in lower
case.

The only time when upper!lower case can make a difference to the result
of a query is when you specify the data you want to retrieve. Thus:

SELECT firstname,surname FROM salesmen
WHERE surname = , Smith';

will produce a different result table from

SELECT firstname,surname FROM salesmen
WHERE surname "= , SMITH' ;

2.8.2 Punctuation

As you can see, the commands are English-like words. You will also come
across the full-stop. , the comma " the semi-colon ;, and the quote mark'.

The semi-colon is used in many SQL implementations to indicate the end
of an SQL statement:

SELECT surname FROM salesmen;

Not all implementations require a semi-colon at the end of a command line;
however, nearly all will accept one if you enter it. This book always uses
the semi-colon to indicate the end of a statement.

The comma separates lists of column names. For example:

SELECT surname,address,qltarget FROM salesmen;

SQL basic terms 15

The full stop separates table and column names. In a situation where you
are extracting data from two tables at once and where a column with the
same name appears in both tables, you will have to specify which table you
want to pick up the column details from. For example:

SELECT salesmen. surname, contracts. amount, contracts. surname
FROM salesmen, contracts;

The quote mark encloses all information of data type character. (See
chapter 4 for a discussion of SQL data types.) Thus

SELECT firstname,surname FROM salesmen
WHERE surname = 'Smith';

Leaving out the quotes will produce an error message.

Summary

In this chapter you learned the basic terminology and rules about SQL
usage that you will need for understanding the SQL commands.

In the next chapter we will look at a 'real life' example of how an SQL
system might be created, used, and changed to reflect the users' changing
needs.

3 An example of setting up an SQL
system

Overview

This chapter shows SQL being used for 'real-life' development of a database
system.

We introduce some of the common SQL commands, and see how they
can flexibly change the database as the user's ideas develop.

Major commands mentioned in this chapter

CREATE TABLE
SELECT
GRANT
CREATE INDEX

3.1 Introduction

INSERT VALUES
CREATE VIEW
REVOKE

Before we start to examine the SQL commands in detail over the next few
chapters, it will be useful for you to have a feel for how SQL is actually
used in database design.

This chapter shows how SQL might be used in a real-life development of
a system. We will see how SQL can cope easily with supporting the users
'mistakes' in data design - mistakes which nevertheless reflect the way that
the user actually perceives and works with his data, as opposed to the
'false' way in which the data has to be organised on the computer system.
SQL will eventually persuade the user to adopt efficient data structures,
while continuing to allow him to access and view the data in the ways
which to him seem most sensible.

This chapter will also introduce you to some of the basic SQL commands
so that you can get an 'instant appreciation' of what is involved in setting
up an SQL database.

In the examples given below, no attempt is made to explain fully the
workings of the SQL commands used. We have given a general explanation
of the function of the command where necessary, and have indicated where

16

An example of setting up an SQL system 17

the command can be found covered in greater depth elsewhere in the book.
The aim of this chapter is to give you a feeling for the power and scope of
SQL, not an in-depth syntax guide.

You will also see that we make no attempt to cover all the commands
that would inevitably be involved in setting up a real system.

In fact, as you will see, most of the example revolves around the
SELECT command - the one that allows users to retrieve specified rows
and columns from existing tables.

3.2 Designing a database

The goal of anyone setting up a database system must be to design a system
which reflects the real-world use of data as closely as possible. Different
users will have different uses for the same data; some users do not need to
see some parts of the database, and so on. S'o the system needs to provide
various views of the data. Associated with this is the need to provide
database security, both in the sense of only permitting authorised users to
access particular data, and in dealing correctly with transactions which are
abandoned in mid-stream. Who wants a half-updated database? Yet another
vital consideration is that no data should be duplicated around the database.
Consider the disastrous confusion that would .arise if the price of your
company's major product appeared as £200 in the stock table, but as £100
in the invoice file.

Of course, in an ideal world, the database system would be perfectly
planned before the developer ever touched a keyboard. But in the real
world, such perfection rarely occurs. This is especially true now that SQL
has migrated to the PC world, where the traditional approach of users
accustomed to relatively easy-to-use, menu-driven, help-filled applications,
tends to be to jump in and write the system first, and iron out the kinks
later.

SQL has no magic formulas for enforcing 'good' design. But it does have
flexibility which allows users to develop systems 'on the fly', and then to
tune them afterwards; it does provide satisfactory methods of controlling
security; and it does provide integrity constraints which can help to ensure
that problems such as unnecessary duplication of data will not occur.

If we follow through an example of a 'typical' user's progress in developing
a system to reflect accurately his real-life data and needs, we will see that
SQL provides a very adaptable tool for doing it.

18 Understanding SQL

3.3 Using SQL to create a database

3.3.1 The example system

Let us take a system that tracks a salesman's performance against a target.
The user has to keep data on each salesman as follows:

- 'personal' details (name, employee number, address etc)
- quarterly targets
- contracts won (customer name, address, amount, date etc)

He will need to extract information both by salesman and by customer to
see reports on, among other things,

- all salesmen's target figures
salesman's performance against target
total orders placed by anyone customer

3.3.2 The 'first stab' table

Most users do not automatically consider the data from which they run their
business as lending itself easily to being split up into different units - or
tables. They view the data which is important to tham as a logical whole.
Most first-time users of relational database systems will attempt to. put all
data into one large table. For example, the initial reaction of the user of the
sales system might be to use CREATE TABLE to set up a table with the
following columns (holding each salesman's • personal ' details, their quarterly
targets, and the customer details for every contract that the salesman
makes):

Creating a table

CREATE TABLE salesmen
(surname char(20);
firstname char(lS) ,
empno chartS) NOT NULL,
address char(30) ,
telephone char (12) ,
q1target number (6) ,
q2target number (6) ,
q3target number (6) ,
q4target number (6) ,
c1custname char (30) ,
c1custadd char(30) ,
c1amount number (6) ,

An example of setting up an SQL system 19

c1date date,
c2custname char(30) ,
c2custadd char(30) ,
c2amount number (6) ,
c2date date,
c3custname. ..)
etc ..

(specifying that the employee number be NOT NULL means that a value
must be entered for this column).

The structure looks, and is, long and unwieldy - and, as you will soon
see, it is certainly not the most efficient way to hold the contract data.

However, the user can certainly perform other essential operations on the
table, such as entering new rows, selecting a set of rows for display, and
deleting and updating rows. Here are examples of all these operations.

Inputting a row of data -INSERT VALUES

INSERT INTO salesmen VALUES
(' Smith' ,
'John' ,
'10001' ,
'16, Mayfly Close, London',
'01-987-6543' ,
50000,
50000,
75000,
100000,
'Jones Bros.',
'99, The High Rd., Salisbury',
15000,
TO_DATE('7-AUG-90'),
'Brown & Co.',
'Unit 1, Trading Estate',
7000,
TO_DATE('25-SEP-90')i

(to add a row for John Smith and the two contracts that he has won so far
this year).

20 Understanding SQL

A simple SELECT query to retrieve data

SELECT surname,q1target
FROM salesmen

WHERE q1target > 100000
ORDER BY surname;

(to view the names and targets of salesmen whose target figure is greater
than 100000, sequenced in alphabetical order by salesman's surname).

Deleting a row - DELETE

DELETE FROM salesmen
WHERE empno = '10001';

(to delete the row for employee number 10001).

Updating rows - UPDATE

UPDATE salesmen
SET q1target = q1target*2;

(to double everyone's Quarter 1 target).

Problems with this structure
H:owever, the user will realise very quickly that cramming all fields into one
table is going to force him to duplicate data items which should only be in
the system once (for example, customer names etc), and will completely
preclude him from making some of the queries that he needs to be able to
perform. He will have to impose artificial restrictions on the data; for
example, he will have to decide on the maximum number of contracts that a
salesman will take. Using the table structure given above, he cannot store
contract details efficiently; for each new contract he will have to create new
columns in the database. If an exceptionally successful salesman makes 100
sales in the year, then the table will not only be unwieldy and confusing to
view, J>ut will break the 'number of columns' limit in several SQL imple­
mentations! And the table will contain large numbers of columns that will,
for many rows, be left empty. On any SQL implementation using fixed
length fields this will waste disk space; in any case, the table will be
incredibly unwieldy to use.

To see the salesman's performance for Quarter I, the user would have to
give the command

An example of setting up an SQL system 21

SELECT clamount + c2amount + c3amount + c4amount
(up t? the maximum number of contract columns he
had to set up in the table) ..

FROM salesmen
WHERE surname = 'Smith'

AND contdate < TO_DATE('Ol-APR-90');

As you can see, in practice this table structure would be unusable.

3.3.3 Reorganising the table - 1. Removing duplicate columns

Perhaps his first thought might be to add extra contracts by row rather than
by column. He might redesign the database (by CREATING a new table
with the columns he requires, doing multiple SELECTs to extract each set
of contract data to a TEMPorary table, and using INSERT INTO .. SELECT ..
to transfer the TEMP tables to the new table) to have the following
columns:

CREATE TABLE salesmen
(surname char(20) ,
firstname char(l5),
empno
address
telephone
qltarget
q2target
q3target
q4target
custname
custadd
amount
contdate

char (5) NOT NULL,
char (30) ,
char(l2),
number (6) ,
number (6) ,
number (6) ,
number (6) ,
char (25) ,
char(30) ,
number (6) ,
date) ;

and enter one row for each contract. This now lets him show all contracts
for one salesman with:

SELECT custname,amount,contdate
FROM salesmen

WHERE surname = 'Smith';

He can even get a 'Quarter 1 performance against target' summarised report
from the table showing one line for every salesman with his name and the
total value of all his contracts for the first three months of the year:

22 Understanding SQL

SELECT surname,qltarget,sum(amount) FROM salesmen
WHERE contdate < TO_DATE('1-Apr-90')
GROUP BY surname;

And since only one customer is shown in anyone row, he could get a list of
all current customers with:

SELECT DISTINCT custname FROM salesmen;

However, the problem of data duplication is still there, since the salesman's
name, targets, etc have to be repeated in every row. Obviously, this
structure is not the correct solution.

3.3.4 Reorganising the database - 2. Creating separate tables

At this stage the SQL user has to be told that the correct way to store this
data is in several separate tables. This system would probably need tables
for:

1. Salesman's main details (Salesman's name, employee number, address,
phone, targets etc)

2. Customer main details (Customer name, address, phone etc)
3. Contract details (Customer name, contract number, contract date,

amount, employee number of salesman responsible)

Since enquiries will need to access data from several tables simultaneously,
the user will have to designate one column in his tables as being a 'link'
between tables. For example, in order for SQL to be able to perform a query
sbowing the salesman's name (from the 'salesmen' table) and a list of all
his contracts (from the 'contract' table), the two tables must have some
column value in common. In our example, the employee number appears in
both tables, providing a cross-reference by which SQL can extract the
correct rows.

Having set up these three tables, the SELECT command to extract the
required data for reports is hardly more complicated than the examples
above. To generate the 'performance against target' report, you would say:

SELECT surname,qltarget,sum(amount)
FROM salesmen, contracts
WHERE salesmen.empno = contracts.empno

AND contdate < TO_DATE('1-APR-90')
GROUP BY surname;

The data integrity ofthe system is easy to preserve, since now the 'personal'
details for each salesman and customer are only held once.

An example of setting up an SQL system 23

Is this more complicated to use?
Although the tilble structure has now been improved - or 'normalised', the
user has now apparently lost the ability to view his data as a whole.
Whatever the shortcomings of his original attempt at setting up a single
table holding all possible data items, he could at least see all relevant
columns at a single glance. Saying

SELECT * FROM salesmen
WHERE surname = 'Smith'
AND firstname = 'John';

then showed him absolutely everything about John Smith's current 'personal'
and 'contract' state. Now that the data is divided over three tables, he
apparently has to issue an SQL statement like

SELECT * FROM salesmen,contracts,customers
WHERE salesmen.surname = 'Smith'
AND salesmen.firstname = 'John'
AND salesmen.empno = contracts.empno
AND customers.custname = contracts.custname;

every time he wants to see these details. But in fact, if such joining
together of data is a common occurrence, the user can create a view of the
data to show exactly the columns he requires.

3.3.5 Reorganising the database - 3. Creating a VIEW

Views are an exceptionally important feature of SQL in that they allow
users to look at - or 'view' - data at a level once removed from the 'real'
underlying tables. Views appear to the user to be 'real' tables; however,
they are in fact 'result' tables created as a result of a 'formula' - or
SELECT statement. A full discussion of views is given in chapter 8, and we
will not go into their setup in detail here. Suffice it to say that, by giving the
command:

CREATE VIEW salesview'AS
SELECT * FROM salesmen,contracts,customers
WHERE salesmen. surname = 'Smith'
AND salesmen.firstname = 'John'
AND salesmen.empno = contracts.empno
AND customers.custname = contracts.custname;

the user will create a permanent view of the database which will allow him
to'-:look at John Smith's details at any time just by saying:

SELECT * FROM salesview;

24 Understanding SQL

So the user has kept the ability to access his data as he wants - as one
logical whole - while being forced by SQL to structure the underlying
tables in a way which preserves the data integrity of the system.

3.3.6 Security - views and privileges

The very fact that different views of the database can be created for
different users provides a simple way of restricting data access. The managing
director can be told to use the view permitting him to see all aspects of
salesmen's performance; the accounts clerk can be told the name of the
view which only shows customers' invoice details.

However, normally you must rely on more than just users' goodwill to
stop them using tables which they are not supposed to see! SQL provides
the GRANT command to allow users to be granted different 'privilege
levels' of access; to the database, to base tables and to views. This is one of
the areas where the various SQL implementations differ in the privileges
allowed and the precise form of the command. Using Oracle, the user could
say

GRANT connect TO liz IDENTIFIED BY mypass;

to allow the user 'liz' to log on to Oracle only when she enters the
password'mypass'.

GRANT update ON salesview TO liz;

will allow 'liz' to make changes to the data shown in the view 'salesview'.
But

GRANT select ON salesview TO liz;

will only let her query the data in 'salesview'.

The REVOKE command is used to remove privileges once GRANTed.

3.3.7 Security - COMMIT and ROLLBACK

SQL gives you the chance to change your mind about whether changes to
the database are correct or not. In an SQL system, no changes to data are
permanent until the user issues the command

COMMIT WORK;

If you add a row to a table, and then query the database, your new row will
appear in the result table. But it is not really in the base table yet. You can
stop it ever having a place in the base table, with the command

An example of setting up an SQL system 25

ROLLBACK;

So, provided that the user has the sense not to COMMIT when not appro­
priate, it is always possible to revert to a previous version of the database.
(Since you probably cannot trust the user always to display such good
sense, a practical SQL application may need to use the SQL commands
'embedded' within a programming language or 4GL which can be relied
upon to COMMIT or ROLLBACK at an appropriate time.)

Many SQL implementations have a command such as Oracle's

SET AUTOCOMMIT ON;

which will automatically commit work after each transaction. This is
especially useful when you are using SQL 'interactively'.

3.3.8 Integrity constraints

SQL has several commands which can be used to stop users from entering
'incorrect' data. For example, to go some way towards avoiding the 'data
duplication' problem mentioned in section 3.1, we could have specified the
NOT NULL UNIQUE option on the employee number column in the
'salesmen'table:

CREATE TABLE salesmen
(empno (char 5) NOT NULL UNIQUE,
surname (char 20),
etc ...

The system would then not allow the entry of two employees with the same
employee number. (Another way of achieving the same result is to CREATE
a UNIQUE INDEX on this column.) And some SQL implementations will
automatically reject duplicate rows.

Summary

This chapter showed you how SQL combines power and flexibility to allow
databases not only to contain efficiently structured data, but also to reflect
the database users' view of their data. To be able to combine the two
viewpoints in one set of similar data structures is quite an achievement!

You also met essential SQL commands allowing you to create a table,
input data, perform simple queries on one or more tables, create and use
views, and grant access privileges to tables. All these commands will be
given greater coverage in the following chapters.

In chapter 4 we will start to examine SQL commands in detail, beginning
with creating tables and inputting data.

4 Creating Databases and Tables
Inputting Data

Overview

In this chapter we show you how to start and finish an SQL session, set up
new tables, alter the columns a table contains, type in rows of data, and get
rid of a table altogether.

A full discussion of the various methods of inputting, updating and
deleting rows is given in chapter 7. This chapter just shows you the
simplest way to enter a row of data.

We will also discuss how various implementations set up, use and delete
databases, and -how Data Dictionary information is kept in the System
Catalog.

Major commands covered in this chapter

CREATE TABLE
ALTER TABLE
DROP TABLE

INSERT VALUES

CREATE DATABASE
START DATABASE
DROP DATABASE

QUIT/EXIT

4.1- Starting and finishing an SQL session

4.1.1 Starting an SQL session

Before you can start creating databases and tables, you have to know how
to start an SQL session - or 'log on' to SQL. The precise format of moving
from your computer's operating system to the SQL product will vary
slightly between implementations; however, most SQLs require you to:

1. Enter your 'user name'
2. Enter your password

26

Creating databases and tables 27

These will have been assigned to you by the Database Administrator using
SQL's GRANT command (see chapter 11 for details).

For example, to enter Oracle you would type:

SQLPLUS liz/lizpass

to tell Oracle that the user called 'liz' wants to log in with the password
'lizpass'.

Once SQL has checked your entries as being valid, the SQL session will
begin.

Note that dBASE IV SQL is unusual in that you first start a dBASE
session (usually with no log-in procedures) and then start SQL from within
dBASE with the command SET SQL ON.

4.1.2 Ending an SQL session

Most SQLs accept either:

QUIT

or

EXIT

to end the SQL session and return to the operating system.
Any tables still open will automatically be closed. Any work not yet

COMMITted to the permanent database (see chapter 8) will be saved.

4.1.3 Suspending an SQL session

Some SQLs have a command which temporarily 'suspends' the SQL session
and returns you to the operating system. Oracle uses '$' for this; dBASE IV
SQL achieves nearly the same thing with the RUN command. This allows
you to carry out short tasks at operating system level, and then return (using
a command like Oracle's EXIT) to the SQL session, 'picking up' the
session in exactly the same state as you left it.

4.2 Databases

4.2.1 What is a database?

As we gave the definition in the chapter 3, a database is a collection of data
which can, and should, logically be grouped together. In practice, a database
contains one or more SQL tables. There may be more than one database
available on the same computer environment.

28 Understanding SQL

4.2.2 Creating and using a database

Note that the specification of databases is not defined by the ANSI standard,
so you will find different commands and ways of implementing the concept
over various different SQL implementations.

Most SQL implementations do provide a method of creating databases;
unfortunately, the commands vary considerably both in syntax and scope
over different implementations. Here we will just introduce some of the
common forms under which this facility is found; you will have to check
the documentation of any particular implementation to find out the exact
form of its 'database' facility.

Sometimes the command is included within the SQL command set (as in
dBASE IV SQL), in other cases there is a separate utility 'create' program
which runs at the operating system level to create a 'databasespace' (as in
DB2).

The most common forms under which this command is found are

CREATE DATABASE dbnamei (e.g. dBASE IV SQL, Infermix)

and

CREATE SCHEMA dbnamei (ANSI standard)

Other implementations contain commands to group existing tables together
for optimal performance - for example, Oracle's

CREATE CLUSTER clusternamei

As a result of issuing such a command, disk storage space is allocated to
this particular database in a way peculiar to the computer environment on
which the implementation is running. dBASE IV SQL, for example, creates
a new MS-DOS subdirectory for each database, and puts a separate copy of
the system catalog tables into it to hold the data dictionary information for
this database. (The System Catalog in discussed in section 4.3.)

Such a facility may exist on your system as being either mandatory or
optional. If your SQL implementation demands this first step in database
setup, then each time you want to access data you will have to tell the
system which database to use, with a command like:

START DATABASE dbnamei (dBASE)
or

INVOKE dbname (Infermix)

There will almost certainly be a command such as

SHOW DATABASESi

to see a list of existing database names.

Creating databases and tables 29

To remove a database from the system, use

DROP DATABASE dbname;

Be very careful when doing this, since DROpping a database will remove
all its tables, views and indexes from the system forever!

4.3 The System Catalog

All information about existing databases (if appropriate), tables, indexes
and views etc is stored in a special set of tables often referred to collectively
as the System Catalog.

These tables store information such as:

- data table names
- table creators
- authorised users of tables
- which columns are in which tables
- column specifications
- view names and definitions
- index names and definitions

Interestingly, although the existence of a System Catalog is one of the
requirements of the relati6nal model (see chapter 13), ANSI SQL does not
attempt to specify a standard System Catalog! So you will find that the
number and names of the tables and columns in the catalog are not
standard, and will be different over different SQL implementations. Usually,
tables begin with the letters 'SYS'. dBASE IV SQL, for example, has ten
tables, called:

SYSAUTH (user privileges on tables and views)
SYS'COLAU (user privileges on columns)
SYSCOLS (describes all columns in the database)
SYSIDXS (describes every index)
SYSKEYS
SYSSYNS
SYSTABLS
SYSTIMES
SYSVDEPS

(describes every column in every index)
(synonym definitions)
(table descriptions)
(multi-user system details)
(describes relationship between tables and views)

SYSVIEWS (contains view definitions)

dBASE also has a 'special' catalog table called SYSDBS, containing a list
of all database names. This table is held only in dBASE's SQL Home
Directory, and is the one accessed by the SHOW DATABASES command.

30 Understanding SQL

Oracle has over 40 tables in the System Catalog!
In every implementation you can view the contents of these tables by

using a standard SELECT command (as you would do on normal data
tables). For example, dBASE's:

SELECT * FROM syscols
WHERE tbname = 'salesmen';

will show you all the column names in the 'salesmen' table.
SQL maintains and updates the system catalog automatically, entering

and deleting entries as users create and delete databases, tables and columns.
You cannot make entries or change data in the system catalog yourself
directly (e.g. by attempting to use a command like INSERT).

4.4 Tables

Before we discuss the CREATE TABLE command in detail, we should
point out some of the 'naming conventions' that apply to both table and
column names.

4.4.1 Restrictions on table names

Since tables are stored as distinct files under your computer's operating
system, they are often subject to the file-naming conventions which the
particular computer environment enforces. For example, dBASE IV SQL
enforces the .PC-DOS file-naming conventions of:

- no more than 8 characters long
- no 'strange' characters (e.g. " ?, 1\)
- no spaces

However, Oracle running on a PC-DOS system holds data in a different
way, and imposes no such length restriction on table names.

In addition, you should never use any SQL 'reserved words' - i.e. any
word which normally appears as part of an SQL command - as a file name.
You may find that your SQL implementation permits you to create tables
with such names, but if yo~ do, there is always the chance of a subsequent
SQL statement being misinterpreted!

4.4.2 Restrictions 0" colum" "ames

As with table names, your particular SQL implementation may impose
restrictions on permitted column names. dBASE IV SQL, for example,

Creating databases and tables 31

limits you to lO-character column names (to preserve compatibility with
dBASE IV non-SQL files). Consult your system documentation for its
particular quirks!

Again, do not use SQL reserved words as column names. It can be very
tempting, and apparently innocuous, to define a column with the name
'Date' - perhaps to hold the date on which an employee joined the
company. dBASE IV SQL would allow you to do this, but then shower you
with (confusing) error messages when you tried to access that column with
a SELECT command.

As a general rule, you should use short, but descriptive, names for both
tables and columns, since you will find yourself typing them in frequently.
If you are worried about the 'unintelligibility' of column names, remember
that most SQL implementations include form-building utility programs
which will let you create user-friendly reports and input screens for non­
technical users.

4.4.3 Restrictions on numbers of columns

This is another implementation-dependent variable. It ranges from 255
(dBASE IV SQL) through to 'unlimited' for Oracle and Informix. However,
even 255 columns is likely to be plenty for most applications; indeed, there
is a strong argument for saying that in many cases if you think you need
more than 255 columns in one table, you have probably got an inefficient
database design anyway.

4.4.4 Data types

When you create a table, you have to define for each column the type of
data that it will be allowed to hold. This comes down to a basic distinction
between character data (for example a salesman's name and address),
numeric data (the salesman's salary), and date information (the date he
joined the company).

In fact, ANSI standard SQL does not support a 'date' type; however, all
SQL implementations offer such a type 'because of its extreme usefulness!
You will find that the various SQL implementations offer some or all of the
ANSI data types, as well as some additional ones (like date, time and
logical).

Here is a list of the ANSI standard data types.

CHARACTER (length)
NUMERIC (precision, scale)
DECIMAL (precision, scale)
INTEGER

32 Understanding SQL

SMALLINT
FLOAT (precision)
REAL
DOUBLE PRECISION

CHARACTER, NUMERIC and INTEGER can be abbreviated to CHAR,
NUM and INT (the only occasion when SQL allows abbreviation of
commands!).

Another common data type is V ARCHAR(length), for Variable Length
fields, coming from the DB2 'standard'. Lots of SQL implementations
allow this type as a synonym for CHAR.

Character fields
The character column type CHAR(length) stores alphabetic characters.

This does not mean that you cannot enter numbers into a CHAR field;
merely that if you do so, those numbers will not be available for calculations.
So an 'address' column defined as CHAR(25) could have the value '99, The
High Rd.' entered into it.

In many implementations, character data is stored in variable length
fields. This means that if you enter only 5 characters in a colump defined
with a length of 25, then only 5 characters (plus some field overhead) are
stored on the disk. Thus, the 'length' parameter is really used to mean 'no
more than' this number of letters. However, this does not mean that you
should lazily define all your character fields as CHAR(1000)! Reasonable
values, indicating that some thought has been given to the database design,
should always be given. .

Numeric fields
As you saw in the list above, there are lots of ways of specifying number
data. In fact, the vast majority of numeric data can be represented by the
NUMERIC data type.

The format of NUMERIC is:

NUMERIC (total length, decimal places)

The count of total length includes the decimal point. Thus, a column
'salary' defined as 'NUMERIC(8,2)' will allow a salary of 12345.78 (total
length 8), but not 12345678.99 (as you might wrongly assume from the
definition).

INTEGER and SMALLINT are useful for holding whole numbers which
are never going to generate decimal places.

In most cases, the difference between the various ways of holding
numeric data is the maximum size of the number that can be held, and hence
the amount of storage consumed on the disk for each entry. For example, in

Creating databases and tables 33

dBASE IV SQL INTEGER values may be up to 11 digits long (including
sign), whereas SMALLINT can hold only 6 digits.

INTEGER
SMALLINT

Range

-9,999,999,999 to 99,999,999,999
-99,999 to 999,999

Maximum allowable column widths vary between SQL implementations.
Check the documentation for any particular system to find out its limitations.

Date fields
Dates are displayed in various implementation-dependent formats. Thus the
date of 'December 25th 1990' could appear in any of the following ways:

25/12/90 dBASE IV SQL (British)
12/25/90 dBASE IV SQL (American)
25-DEC-90
901225
12-25-1990

Oracle
DB2
Informix

In addition, most SQLs provide a 'formatting' option (non-ANSI) to allow
dates to be displayed in various different formats.

Internally, all SQLs hold dates as a number, so that you can perform
comparisons between them.

4.4.5 Creating a table - CREATE TABLE

Once you have entered SQL and, if necessary, STARTed a database, you
can create a table. CREA T(E)ing a table involves giving a name to the table
and defining the column names and data types belonging in that table. The
format of the standard CREATE TABLE command is:

CREATE TABLE tbname (column list [NOT NULL])
[UNIQUE column list];

Some implementations offer other options on CREATE TABLE - for
example, Oracle's ability to define the area on disk that this table will
occupy (SPACE), the cluster it belongs to (CLUSTER), and even to create a
new base table as the result of a SELECT query (AS query). DB2 also
allows you to name the creator of the table as part of the command
(CREATOR), and define DEFAULTs for a column.

Other implementations do not offer the full ANSI standard options -
dBASE IV SQL does not implement NULL columns at all. And in most
implementations (e.g. DB2, SQL/DS, Oracle, dBASE IV SQL, Informix)
the concept of UNIQUEness (see below for full discussion) is carried out in
the CREATE INDEX command rather than CREATE TABLE.

34 Understanding SQL

Here is the CREATE TABLE command to create the 'salesmen' table
that we finally arrived at after our discussion of database design in chapter
3.

CREATE TABLE salesmen
(empno CHAR (5) NOT NULL,
surname CHAR(20),
firstname CHAR(15),
region CHAR(5),
date joined DATE
qltarget NUMBER (8, 2) NOT NULL,
q2target NUMBER (8, 2) NOT NULL,
q3target NUMBER (8, 2) NOT NULL,
q4target NUMBER (8, 2) NOT NULL
UNIQUE empno);

Notice that we spread the statement over several lines to improve readability.
SQL would have been just as happy with the whole lot on one long line.

4.4.5.1 NOT NULL columns
The concept of NULL is discussed in detail in chapter 13 (The Relational
Model). A NULL value differs from a blank or zero entry in a column in
that it is a 'deliberate' entry showing that the information for this field is
unknown.

NULLs are often shown in SQL tables by a question mark '?' or the word
'null', although there is no standard agreed for representing them. Oracle
allows you to define whatever character(s) you like for representation of
nulls.

Defining a column as NOT NULL means that SQL will not allow NULL
values to be entered. In other words, every entry in a NOT NULL column
must have a value - which may of course be blanks or zero.

The aim of this is to try to force users to enter data into 'essential'
columns. In the salesmen table above, the user will have to at least consider
entering data for the salesman's name and his four target figures.

The power of NOT· NULL is considerably enhanced when used in
conjunction with the UNIQUE option (see below).

4.4.5.2 UNIQUE columns
UNIQUE is used to prevent duplicate entries in 'essential' columns. For
example, in the 'salesmen' table each employee number should be unique­
two employees never have the same employee number.

The ANSI standard allows you to specify any column or combination of
columns as UNIQUE. Every such column must also be specified as NOT
NULL.

Creating databases and tables 35

4.4.5.3 UNIQUEness in different SQLs - INDEX vs TABLE
Specifying a column combination as UNIQUE when the table is created is
clearly the best way to ensure that no duplicate rows are ever included.
However, as we mentioned above, most SQLs currently implement UNIQUE­
ness in an index rather than on the table itself. A brief explanation of the
term INDEX is given in chapter 3; indexes are discussed in more detail in
chapter 9.

So Oracle, for example, would create the salesmen table as we did above,
but without the 'UNIQUE empno' clause. The Oracle user would then have
to create an index as:

CREATE UNIQUE INDEX salesemp
ON salesmen (empno);

Although this dual operation has the same net effect as specifying 'UNIQUE
empno' on the table itself, it is inherently more clumsy and less indicative
of the real situation - surely UNIQUEness is a property of the table, not of
a subsequent index.

However, the fact remains that, whether or not it is the most desirable
way of guaranteeing non-duplicate rows, most of the most reputable SQLs
do use this method. This is an example of the ANSI standard being very
different - albeit 'better' - from most actual implementations. Check the
documentation carefully for any particular implementation to see how it
implements UNIQUEness. It may be the case that suppliers will eventually
enhance their SQL systems to include the ANSI standard UNIQUE.

4.4.6 Changing the structure of a table - ALTER TABLE

The ANSI standard contains no command for changing the structure of a
table! However, you will find that there is a de facto standard among SQLs,
taken from DB2.

The ALTER TABLE command can be used to add a column to a table,
and (in some implementations) to modify a column specification. It is not
used to delete a column. To delete a column you have to create a new table
without the offending column specification, and then transfer data from the
old table to the new one, probably with the INSERT INTO .. SELECT
.. command. See chapter 8 for a full discussion.

The format of ALTER TABLE is:

ALTER TABLE tbname
ADD (column spec);

To add a column 'Region' to the salesmen table we would say:

36 Understanding SQL

ALTER TABLE salesmen
ADD (region CHAR(4));

You specify the new column in exactly the same way as you specified
columns in CREATE TABLE.

4.4.6.1 Adding NOT NULL columns
If you add a column, SQL automatically fills it with NULL for all existing
rows. It is impossible to specify an ADDed column directly as NOT NULL
- because SQL obviously cannot fill in correct values by itself!

Oracle will allow you to ADD a NOT NULL column only if there are no
rows in the table; other implementations such as DB2 will not permit even
this.

There are various techniques for adding NOT NULL columns, involving
creating a new table with the desired structure and then transferring over
the rows from the old table. This technique is described in detail in chapter
8.

4.4.6.2 Modifying a column specification
Modifying a column specification means renaming the column, changing
the column width, or changing the data type. DB2 and its followers have no
way to do this other than to create a new table with the desired structure,
and use INSERT to transfer rows.

Oracle has the useful MODIFY clause available in the ALTER TABLE
command to allow column widths to be increased. To increase the width of
the salemen's address to 35 characters, the Oracle user could say:

ALTER TABLE salesmen
MODIFY (address CHAR(35))

However, you cannot decrease column widths if there are non-null values in
the column.

4.5 Inputting data - INSERT .• VALUES

Once the table has been created to your satisfaction, you can start inputting
rows of data.

SQL has several commands allowing data rows to be added to a table.
The simplest, and the one dealt with here, lets the user himself type in the
data items for each column, one row at a time. This is the INSERT
command. Other commands such as LOAD DATA, INPUT, and also more
complex usage of INSERT (using subqueries), are dealt with in chapter 8.

Creating databases and tables 37

The format for the basic INSERT command is:

INSERT INTO tbname (columnlist) VALUES (value list);

4.5.1 Inserting a whole row

To insert a row into the salesmen table, we would say:

INSERT INTO salesmen VALUES
('10001' ,
'Smith',
.'John' ,
'East' ,
'01-123-4567',
TO_DATE('01-JAN-89'),
50000, .
50000,
75000,
100000);

Data items are 'fed into' consecutive columns, so you have to make sure
that you enter the column contents in the correct order.

If a column is defined as NOT NULL, you must enter a value for it;
otherwise SQL will give you an error message on the lines of Oracle's
'mandatory (NOT NULL) column is missing or NULL during insert'.

4.5.2 Inserting values into specific columns

If you' do not want to put data in all the columns of a new row, you can
specify exactly which columns are to be updated. Again, the data items are
assigned consecutively to the columns that you specify.

INSERT INTO salesmen
(empno,q1target,q2target,q3target,q4target)

VALUES
('12345' ,
50000,
50000,
75000,
100000);

Most SQL implementations automatically assign a NULL value to columns
not specified in the list.

38 Understanding SQL

4.5.3 Problems with INSERT

In practice, this method of entering data is clumsy and long-winded, and not
recommended for most users. This is definitely one of the areas where the
form-design utilities available with most SQLs come into their own. Alter­
natively, you could embed the INSERT statement within a programming
language, using the language to prompt intelligibly for inputs.

INSERT can also be used with a SELECT subquery to transfer rows from
one table to another. This is discussed fully in chapter 8.

4.6 Deleting a table - DROP TABLE

This is another feature not mentioned in the ANSI standard, but which
exists in most implementations anyway.

The command to delete a table is simply:

DROP TABLE tbname;

So we could delete our 'salesmen' table by saying:

DROP TABLE salesmen;

All references to this table (and any associated views and indexes) are
automatically removed from the system catalogs.

Summary

In this chapter we looked at setting up an SQL system. You learned how
start and finish an SQL session, manipulate databases, create a table, type in
rows of data (using the simplest of the possible SQL commands available),
and delete a table.

In the next chapter we will consider how to query data with the SELECT
command.

5 Querying the database

Overview

This chapter deals with retrieving data once it has been entered into a table
or tables.

You will learn how to perform simple queries on a single table, extracting
information both by column and by row. We will look at sequencing results
in a particular order, and summarising results. We will also start to look at
extracting data from more than one table simultaneously.

Chapter 6 deals in more detail with using multiple tables, and more
complex uses of SELECT, including the GROUP BY, HAVING and UNION
clauses.

Major commands covered in this chapter

SELECT ..
FROM
WHERE
ORDER BY

5.1 Introduction

Retrieving data is one of the key areas in any database system. What good
is a database language which cannot 'get back' the data in a comprehensive
fashion to suit all needs? You will see here that SQL's query facilities are
extremely powerful. The remarkable thing (especially so for those people
coming to SQL from using a more limited data retrieval language such as
dBASE III) is that complex queries involving multiple tables, summaries
and sorting, can all be carried out by one 'interactive' command. In other
words, there should be little need for any SQL user to have to resort to
programming in order to extract the data that he requires. (Remember,
though, that we are talking here about getting the required results into a

39

40 Understanding SQL

result table; fonnatting them for reports may well involve some programming,
or at least the use of a 4GL design utility.)

S.2 The SELECT command - an introductory look

SQL's query command is called SELECT. The syntax of SELECT, and the
various options it offers, are one of the few areas where most implementa­
tions agree with each other and even with the ANSI standard! This is just as
well, since SELECT is so vital to SQL's success as a database language.
However, some SQLs offer 'extra' SELECT options over the standard - for
example dBASE IV SQL's SAVE TO TEMP or Infonnix's INTO TEMP
clause (both of which convert the result table into a 'real' data table).

SELECT is used to 'extract' rows and columns from 'real' tables into a
temporary 'result' table. The result table may just display on the screen; it
may be 'fed into' a predefined report; or it may itself be converted to a
'real' table for further querying.

The syntax of the SELECT command is:

SELECT (DISTINCT I ALL)
[* I column list]
FROM tablename(s) (alias ..)
WHERE condition
GROUP BY column list
HAVING condition
ORDER BY column list (ASCIDESC)
UNION query

Although this looks rather alanning at first sight, the use of all the component
clauses is really very easy to grasp. The first thing to realise is that you do
not have to use all the clauses all the time! The only essential elements of a
SELECT statement are the clauses telling SQL which columns to extract
from which tables(s); in other words, just SELECT .. FROM .. A typical
SELECT statement to show the surnames of all salesmen would simply say:

SELECT surname FROM salesmen;

5.2.1 Brief explanation of the function of each clause

Here is a brief explanation of the functions of each clause in the SELECT
statement. This should give you a feel for what it is possible to achieve
using SELECT. At the end of the explanation for each clause is an example
of its use, building up gradually to a full SELECT statement.

In the next section we will consider each part of the SELECT statement
in more detail.

Querying the database 41

1. SELECT (DISTINCT I ALL) [* I column list]
This part of the command tells SQL which columns to put in the result table
(* I column list), and whether or not to include rows containing repeated
identical column values (DISTINCT I ALL).

The column list for the result table is a simple list of columns separated
by commas. Columns can be specified in any order. You can a~so include
'calculated' columns, columns to which a 'function' (usually non-standard
SQL) has been applied, and aggregate functions (SUM, MIN, MAX etc).

The asterisk * can be used as 'shorthand' to mean all columns in the
order in which they appear in the base table.

Example: SELECT empno,surname,q1target

(Note that by itself this is not a valid SQL statement since it does not
include the FROM clause.)

2. FROM tablename(s) (alias ..)
This clause specifies the tables from which data will be retrieved. If data is
needed from more than one table, you separate table names with a comma.

Example: SELECT empno,surname,q1target,region
FROM salesmen;'

to see the employee number, surname, region and Quarter 1 target for all
rows in the 'salesmen' table. The result table would look like this (assuming
that there are five salesmen in the company!):

Empno Surname Qltarget Region

10001 Smith 50000 East
40004 Jones 25000 West
20002 Brown 40000 East
30003 Adams 50000 South
50005 James 60000 East

When you use multiple tables, you may find it useful to set up aliases for
table names - usually shorter names by which you can refer to your tables
for the duration of the query. We deal with multiple tables and aliases in
chapter 6.

3. WHERE condition
A WHERE condition is used to restrict the rows which appear in the result
table. Only rows for which the condition evaluates as TRUE will be passed
to the result table ..

42 Understanding SQL

Conditions can include arithmetic operators (=, <>, <, > etc), logical
operators (AND, OR, NOT), and other 'special' operators (IN, LIKE,
BETWEEN etc).

WHERE conditions may also include 'nested' subqueries (i.e. another
SELECT statement). This is dealt with fully in section 6.6.

Example: SELECT empno,surname,q1target,region
FROM salesmen
WHERE region = 'East';

to restrict the result table to only the salesmen in East Region:

Empno Surname

10001 Smith
20002 Brown
50005 James

Q1target Region

50000
40000
60000

East
East
East

4. ORDER BY column list (ASCIDESC)
ORDER BY is used to sequence the rows of the result table in the 'order'
that you require. You can order a table based on any column or combination
of columns, in ascending or descending order. Columns are sorted in
ASCending order by default.

Example: SELECT empno, surname, q1target FROM salesmen
WHERE region = 'East'
ORDER BY q1target DESC;

to see all salesmen in West Region, showing the one with the highest
Quarter 1 target first.

Result table:

Empno Surname

50005 James
10001 Smith
20002 Brown

5. GROUP BY column list

Q1target Region

60000
50000
40000

East
East
East

GROUP BY is used to create summaries of data based on row groupings.
In the result table, each group is reduced to a single row.
GROUP BY is often used with one or more of the aggregate functions

(COUNT, SUM, AVG, MAX, MIN) in the 'SELECT column list' clause.
This is because a common reason for grouping rows is to find out totals

Querying the database 43

(SUM), maximums and minimums in the group (MAX, MIN), the precise
number of rows in each group (COUNT), etc.

There are strict rules to describe which columns can be included in the
'SELECT column list' when a GROUP BY is also in effect. These will be
discussed in detail in section 6.2.

Here is a SELECT to show the total Quarter 1 target for each sales
region, with the three resulting rows shown alph~betically by region.

Example:

Result table:

6. HA VING condition

SELECT region, SUM (q1target) FROM salesmen
GROUP BY region
ORDER BY region;

Region

East
South
West

SUM (qltarget)

150000
50000
25000

HAVING is a 'WHERE-clause for groups' (Date, 1988). Use it in conjunc­
tion with the GROUP BY clause to restrict the groups which appear in the
result table.

Usually a HAVING clause performs a condition check on one or more of
the column values included in the SELECT column list.

Example: SELECT region, SUM (q1target) FROM salesmen
GROUP BY region
HAVING SUM (q1target) > 25000
ORDER BY region;

to see the region and total Quarter 1 target for only those sales regions for
which the target is greater than 25000.

Result table:

7. UNION query

Region

East
South

SUM (qltarget)

150000
50000

UNION allows you to combine the resulting rows from two or more totally
separate queries into the same result table.

UNION is always followed by another SELECT statement.

44 Understanding SQL

Using UNION can give similar results to using an OR condition in a
WHERE clause. However, the ANSI standard uses opposite conventions for
the defaults for DISTINCT and ALL in SELECT and UNION clauses,
which can make a considerable difference to the result tables produced by
the two different methods. SELECT assumes a default of ALL; UNION
assumes a default of DISTINCT. In other words, all duplicate rows are
eliminated in a UNION statement unless you specifically demand ALL
rows, whereas in a WHERE .. OR .. condition they would automatically be
retained.

Example:

SELECT empno,surname,qltarget FROM salesmen;
WHERE region = 'West';
UNION

SELECT empno,surname,qltarget FROM salesmen
WHERE qltarget > 50000

ORDER BY empno;

to show all salesmen in West Region, and all salesmen for whom the
Quarter 1 target is greater than 50000, with the result table sorted in
employee number order.

Empno Surname

40004 Jones
50005 James

Qltarget Region

25000
60000

West
East

5.2.2 Essential points about SELECT

Here is a summary of the three most important points to note regarding the
SELECT syntax:

1. Only the first two clauses - i.e. the SELECT .. FROM .. - are essential.
Everything else is optional.

2. The clauses must always be used in the order given above. You
cannot, for example, put ORDER BY immediately after SELECT, or
immediately before GROUP BY. However, you can of course leave
out the WHERE, GROUP BY and HAVING clauses altogether, and
have ORDER BY immediately following FROM.

3. HAVING should only be used if there is also a GROUP BY clause.
(The ANSI standard does actually allow HAVING to be used without
GROUP BY, but this then makes it equivalent to WHERE. Many SQL
implementations do not support this usage.)

Querying the database 45

5.3 Using SELECT

Now that you have an idea of the scope of SELECT, let us look in more
detail at what ea~h element of the statement can be used to achieve.

We will not cover all the complexities of all the clauses in this one
chapter. We will leave discussion of multiple tables until chapter 6, and we
will also talk there about GROUP BY, HAVING, and UNION.

So this chapter will cover the basic SELECT statement, to get you to the
point where you can form a query to retrieve the required columns and
rows, and sequence them in the order that you need.

The 'simple' SELECT statement - SELECT..FROM ..
Let us look first at what can be done with the only essential parts of a
SELECT statement - the SELECT .. FROM ... Here are some examples of
valid SELECTs. All of these copy all the rows in the base table to the result
table.

SELECT * FROM salesmen;

(shows all columns).

SELECT empno,qltarget,surname FROM salesmen;

(shows only employee number, Quarter,. target, and salesman's surname).

SELECT surname,qltarget,qltarget*l.l FROM salesmen;

(shows salesman's surname, Quarter. target, and the calculated value of
target + .0%).

SELECT surname,qltarget+q2target+q3target+q4target
FROM salesmen;

(shows sal~sman's surname, and the total target for the entire year).

5.3.1 Manipulating NUMBERs

You can 'see from the above examples that you caD. use standard arithmetic
operators (+ - * !) to perform 'temporary' calculations on base table
numeric data. The answers appear in the result table, but of course are not
saved permanently in the base table. Such calculated columns usually
appear in the result table with a column heading the same as the 'calculation
expression' in the SELECT column list. This can look extremely unwieldy
- as it would for the 'total target' example above - but remember that you
could easily feed this result into a predefined report form which would
format the result table in a more 'user friendly' fashion.

46 Understanding SQL

5.3.2 Manipulating characters and dates (functions)

All SQL implementations also provide ways of changing the amount of
character and date type data between the base and the result tables - for
example, to copy over only the last three characters of employee numbers,
or only the year from a date. These manipulative commands are normally
referred to as functions. However, ANSI SQL includ~s no such functions in
the standard.

Similarly, most SQLs have formatting commands to change the display
format of data - for example, to show dates in British format DD/MMNY
rather than most implementations' standard American MM/DDNY, or to
convert all data to upper case display. ANSI SQL does not include any of
these either.

You will therefore firid that, although similar facilities occur over all
implementations and although they can be essential in producing the desired
output, there is no agreement over exactly what functions should be provided,
nor over what their syntax should be.

For that reason, this book makes very little mention of functions and
formatting commands. You should, however, remember that they exist, and
check out the full list available in the documentation of any particular SQL
system.

5.3.3 Restrictions on column lists

The ANSI standard does not allow you to use both the asterisk (all
columns) and a column specification. So a comm~d like:

SELECT *, qltarget*l.l FROM salesmen; ** ILLEGAL **
is illegal. However, many SQLs, including DB2, do allow such a construc­
tion.

5.3.4 Aggregate junctions

ANSI SQL provides five functions which summarise values from the whole
table. These are:

COUNT (*)

SUM (column list)
MAX
MIN
AVG

"

(number of rows)
(total value)
(maximum value)
(minimum value)
(average value)

Querying the database 47

All these can be used with or without the DISTINCT option (see 5.3.5).
These can be included in the SELECT column list. For example, you could
say

SELECT MAX(qltarget),MIN(qltarget),AVG(qltarget)
FROM salesmen;

to show the highest, lowest and average target figures respectively.

Result table:

MAX (qltarget) MIN (qltarget) AVG (qltarget)

60000 25000 45000

To see the number of salesmen in the table and the total expected quarter 1
targets you could say:

SELECT COUNT(*), SUM (qltarget) FROM salesmen;

Result table:

COUNT(*) SUM (qltarget)

5 225000

The aggregate functions are especially useful when used in the GROUP BY
clause, and in WHERE subqueries (see chapter 6).

5.3.5 Using DISTINCT

The DISTINCT option allows you to specify that you want to see only the
first occurrence of the column or combination of columns specified in the
'column list'. No repeated values are included. For example, if a newcomer
to the company wanted to see how many different sales region codes were
in use, he could say:

SELECT DISTINCT region FROM salesmen;

and get a result table showing four rows containing respectively 'North',
'South', 'West', and 'East'.

Using ALL instead of DISTINCT in an otherwise identical query would
give a fairly meaningless result showing the region from all rows in the
base table.

In fact, SQL assumes a default of ALL. So you will not usually see the
word ALL included in SELECT statements, although there is no harm in
putting it in if you want to be sure that you and other users understand
exactly what is intended by a particular statement.

48 Understanding SQL

DISTINCT is often used with the aggregate functions COUNT(*), SUM,
MIN, MAX and AVa, since it provides an easy way to filter out duplicates
from summaries. For example:

SELECT SUM (DISTINCT q1target) FROM salesmen;

to total all target figures with different values.
We will discuss other uses of DISTINCT in the next chapter.

5.3.6 Aliases and multiple tables

At this stage in a SELECT statement you can tell SQL to extract data from
several tables instead of just one and, to save yourself extra typing, you can
also specify an alias for a table (usually a 'short' name by which you can
refer to the table for the duration of this query). We will deal with multiple
table queries in chapter 6.

5.4 WHERE conditions

5.4.1 What is a WHERE condition?

A WHERE clause sets a condition which defines the rows to be passed to
the result table.

There are very few situations where you want to see all rows in a table,
so in practice most SELECT statements have a WHERE clause attached to
them.

WHERE conditions compare a column value against either a constant,
another column value, or an expression. For example:

SELECT surname FROM salesmen
WHERE q1target = 100000;

SELECT surname FROM salesmen
WHERE q1target > q4target

SELECT surname FROM salesmen
WHERE q1target < (q4target/1.75)

Constant

Column value

Expression

The result of a condition will be either TRUE, FALSE or NULL for each
row in the base table. For example, if q I target contains the value 50000,
then the condition

.. q1target = 50000

is TRUE, whereas the condition

.. q1target = 100000

is FALSE.

Querying the database 49

If q 1 target contained a NULL value, then the result of the condition

.. q1target = 50000

is NULL.
As a general rule, only rows for which a condition evaluates as TRUE are

passed to the result table. You can also include a check for NULL or NOT
NULL values in a condition (see below).

WHEREs can become quite complex. As we mentioned above there are
lots of operators which can apply to a WHERE condition. You can also set
up subqueries to compare a result with another set of data.

We will discuss the various WHERE operators in some detail iIi this
chapter. The topic of subqueries will be touched on here, but dealt with in
more detail in chapter 6, since in most cases subqueries involve accessing
data from more than one table.

5.4.2 The WHERE operators

Here is a summary of the comparison operators and operations available in
WHERE clauses. We will give examples of each one in the following
sections.

- simple comparisons (=, <, > etc)
- BETWEEN value 1 AND value2
- IN (list)

LIKE mask
- IS NULL
- NOT (expression)
- 'linked' conditions (AND, OR)
- subquery operators: EXISTS, ANY, ALL IN

Arithmetic comparisons
Probably the majority of your SQL queries will use simple 'arithmetic'
operators in comparisons. For example, to see all salesmen for whom the
Quarter 1 target is £100000, you say:

SELECT surname FROM salesmen
WHERE q1t~rget = 100000;

50 Under$tanding SQL

You could actually reverse the order of the WHERE comparison to read

SELECT surname FROM salesmen
WHERE 100000 = q1target;

and get precisely the same result, although the first order seems more
'Englishlike' and natural.

The complete list of arithmetic operators is:

>
<
>=
<=
<>

is equal to
is greater than
is less than
is greater than or equal to
is less than or equal to
is not equal to

Some SQL implementations also allow you to use' !=' and/or 'A=' to mean
'is not equal to'.

Of course, 'arithmetic' operators are not restricted to working only on
NUMBER data. They can be used for CHARACTER data, as well as most
of the non-ANSI data types.

Comparing different data types
Note that you cannot compare data of different data types (with the exception
of the various number-based data types) against each other. So all the
following comparisons would produce an error message

SELECT surname FROM salesmen
WHERE surname 100000 (character vs number)

WHERE surname Smith (no quotes round 'Smith')

WHERE q1target > date joined (number vs date)

Fortunately, most such data-type comparisons are obviously nonsensical -
no-one would deliberately compare 'qltarget' with 'datejoined'!

Problems usually arise either when you are not sure of a column's data
type and the name gives no clue to the type of information that it may
contain (e.g. a column with the name 'cl'), or when you specify a constant
incorrectly (e.g. forgetting to put quotation marks around a character
string). Avoid the first type of problem by giving columns sensible descriptive
names - 'address' rather than 'el'. You can of course check the data type of
a column in the System Catalog (see chapter 4).

Querying the database 51

Comparing number data
Numbers are 'sequenced' in the 'natural' order. Thus 1 is smaller than 10;
10 is greater than 0, and 0 is greater than -1.

You can validly compare number-based data of different data types - for
example, SMALLINT data against INTEGER, or DECIMAL with
NUMERIC.

Comparing character strings
Character strings are compared character by character on a left to right
basis. In other words, when sorting character data, the system first checks
the first letter in the column, and sorts the rows on that basis. If more than
one row has identical first letters in the specified column, then the system
proceeds to sort this group by the second character - and so it continues
until all rows I,lfe in the correct sequence.

WIth CHARACTER data, the meaning of 'less than', 'greater than' etc
becomes less obvious. The = clearly still means 'is the same as', as in:

SELECT surname, qltarget FROM salesmen
WHERE surname = 'Smith';

(to see details for John Smith only)

and the <> still means 'is not the same as', as in

SELECT surname, qltarget FROM salesmen
WHERE surname <> 'Smith';

(to see details for all salesmen except John Smith).

However, the 'sequencing' of alphanumeric characters - i.e. which are the
'smallest' and which the 'largest' - varies according to the computer
environment on which a particular implementation is running. Most computer
systems use either the ASCII (American Standard Code for Information
Interchange) or the EBDCIC (Extended Binary Coded Data Interchange
Code) character set. The same set of characters is available in both sets but
sequenced in a different order. As a rule of thumb. MS-DOS or PC-DOS
systems will use the ASCII character set; IBM mainframe-based systems
will probably use EBCDIC. The most obvious difference is that EBCDIC
considers lower case characters to be 'smaller' than upper case ones,
whereas ASCII sorts them the other way round. See the tables below.

Smallest

l
Largest

Alphanumeric comparison order - ASCll
Value in column

blank
0-9
A - Z (upper case alphabetic characters)
a - z (lower case alphabetic characters)

52 Understanding SQL

Thus lower case a is 'greater than' upper case A.

Smallest

~
Largest

Alphanumeric comparison order - EBCDIC
Value in column

blank
a-z
A-Z
0-9

Thus lower case a is 'smaller than' upper case A.
There is no 'rule' that either ASCII or EBCDIC should be used, and you

may well find that yet another character set, and hence yet another sorting
sequence, may be used on your particular computer.

This means, of course, that you could run an identical query on identical
data on three different computers, and end up with three different results!

Using functions to ensure correct sorting of character data
The most common area where this causes problems is in the sequencing or
retrieving of alphabetic data. In most cases, users consider that upper case
and lower case letters are functionally equivalent. In other words, a is the
same as A. A query like:

SELECT surname FROM salesmen
WHERE surname> 'Smith'

should show you 'Thomas', 'Zebedee' and 'williams', but not 'smith' and
'adams'.

The non-standard SQL commands available in all SQL implementations
usually provide a way of telling SQL to treat upper and lower case as the
same. Often this involves use of a function which the user has to specify in
the query. For example, both dBASE IV SQL and Oracle would allow you
to say

SELECT surname FROM salesmen
WHERE upper(surname) > 'SMITH';

which, for the duration of this query only, 'converts' all surnames in the
table to upper case.

You should check the documentation of your particular SQL
implementation to see how it recommends that you cope with this type of
problem.

NULLs in comparisons
Whether a NULL value is considered to be the 'lowest' or the 'highest'
value in comparisons depends on the particular SQL implementation. dBASE

Querying the database 53

IV doesn't implement NULLs at all anyway, so it does not have to cope
with the problem. Oracle puts NULL values before blanks.

Comparing dates
In date comparisons, as you would expect, earlier dates appear before later
dates. Thus 01/01/80 is 'smaller than' 01/01/90.

5.4.3 BETWEEN .. AND ..

BETWEEN allows you to easily specify a range in a condition. For
example, to retrieve the surnames of all salesmen for whom the target falls
between 50000 and 150000, you could say

SELECT surname FROM salesmen
WHERE q1target BETWEEN 50000 AND 150000

Notice that this is equivalent to a WHERE clause using arithmetic operators
linked with an AND condition (see 5.4.8 for further discussion of AND)

SELECT surname FROM salesmen
WHERE q1target >= 50000 AND q1target <= 150000;

BETWEEN simply provides a much mQre self-explanatory and shorter
method of achieving the same result.

BETWEEN can be used with all data types.

5.4.4 LIKE mask

LIKE allows you to select character strings which, although not identical,
still have some element in common. For example, you may want to retrieve
the surnames of all salesmen who live in postal district 'WI' - which is
stored not in a separate column but as part of the address field. Or you may
want to find every employee number ending in '100'.

To achieve this, you define a mask (sometimes called a template) around
which the data can fit. A mask uses wild cards (similar in operation to
those used in filenames by the MS-DOS operating system). This lets you
specify which elements of a character string are essential for a successful
data match.

The characters used to mean 'wild card' may vary between SQL
implementations. Oracle uses % to mean 'zero, one or more characters',
and _ to mean 'one single character'. Informix uses * and ? You can
combine these two wild cards in any order to specify quite complex masks.

Note that % and _ only have the meaning of 'wild card' when found with
the LIKE operator. A query using, for example, the = operator will look for
the precise characters '%' and '_' as part of the data. For example,

54 Understanding SQL

SELECT surname FROM salesmen
WHERE empno = '%100';

will look for - and probably not find - an employee number of '% 100'.

Examples of LIKE

SELECT surname FROM salesmen
WHERE empno LIKE '%100';

(to show all salesmen whose employee number ends in '100').

SELECT surname FROM salesmen
WHERE address LIKE '%W1%';

(to show all salesmen whose address contains the character string 'WI ').

SELECT surname FROM salesmen
WHERE empno LIKE '1_3_5';

(to show all salesmen whose employee number contains the numbers 1, 3,
and 5 in the first, third and fifth positions, and anything at all in the second
and fourth positions).

SELECT surname FROM salesmen
WHERE empno LIKE '1_3%';

(to show all salesmen whose employee number contains '1' in the first
position, '3' in the third, and anything at all in the second position, and in
positions four and five).

LIKE cannot be used with NUMBER data.

5.4.5 IN (list)

IN, like BETWEEN, is a way of simplifying a condition which"otherwise
would contain multiple linked ANDs and ORs. IN lets you specify a list of
values against which the column value in the WHERE clause is to be
compared. For example, to see all employees in 'East' and 'West' sales
regions, you could say:

SELECT surname FROM employee
WHERE region IN ('East' ,'West');

To see all salesmen whose target is either 50000, 75000 or 200000, you
would say

SELECT surname FROM salesmen
WHERE q1target IN (50000, 75000, 200000);

Querying the database 55

An alternative, but more clumsy, way of getting the same result would be
the query:

SELECT surname FROM salesmen
W~ERE q1target = 50000 OR
q1target = 75000 OR
q1target = 200000;

IN can be used with all data types.

5.4.6 IS NULL

IS NULL is used to check whether a column contains NULL values. For
example, you could find out if any addresses are NULL with the query:

SELECT surname FROM salesmen
WHERE address IS NULL;

5.4.7 NOT (expression)

All the WHERE operators apart from the 'arithmetic' operators can be
'negated' by preceding them with NOT. For example

SELECT surname FROM salesmen
WHERE surname NOT LIKE 'S%';

(to show all salesmen whose surname does not begin with S).

SELECT surname FROM salesmen
WHERE region NOT IN ('East', 'West');

(to show everyone in regions other than East or West).

SELECT surname FROM salesmen
WHERE address IS NOT NULL;

(to show everyone who has a 'positive' entry in the address column).

Although you cannot use NOT directly in front of arithmetic operators (for
example, a construction such as

SELECT surname FROM salesmen
WHERE q1target NOT > 100000 ** ILLIGlL **

is WRONG)

you can use NOT to negate entire expressions containing arithmetic or
other operators. For example:

56 Understanding SQL

SELECT surname FROM salesmen
WHERE NOT (q1target = 50000 OR surname = 'Smith');

(to show everyone who is not called 'Smith', who has a target different
from 50000).

SELECT surname FROM salesmen
WHERE NOT (q1target > 50000);

5.4.8 AND and OR

Any valid conditions created using the operators we have already discussed
can be 'linked together' by AND and OR.

AND and OR have slightly different interpretations from what might be
regarded as their normal 'English' usage. If you have not come across this
type of condition before, you may find yourself confused as to their effect.

Let us take a simple two-part condition to illustrate the difference
between these two operators. Here is a query repeated twice, once with
AND and once with OR.

AND
SELECT * FROM salesmen

WHE~ q1target = 50000
AND region = 'East';

Result table:

Empno Surname Q1target Region

10001 Smith 50000 East

(shows all salesmen in East Region who have a target of 50000).

A row will be passed to the result table only if all conditions evaluate as
TRUE.

OR
SELECT * FROM salesmen

WHERE q1target = 50000
OR region = 'East';

Querying the database 57

Result table:

Empno Surname Q1target Region

10001 Smith
20002 Brown
30003 Adams

50000
40000
50000

East
East
South

(shows all salesmen in East Region regardless of target, and also salesmen in
any region with a target of 50000).

A row will be passed to the result table if any of the conditions evaluate as
TRUE.

Conditions linked with AND are more restricting (Le. allow fewer rows
through to the result table) than those linked with OR.

Here are some more examples of linked conditions. Note that these
examples use all ANDs or all ORs. The next section looks at the effect of
mixing ANDs and ORs.

ORs
SELECT surname FROM salesmen

WHERE q1target = 50000
OR region = 'West'
OR surname LIKE 'S%';

(shows all salesmen in West Region regardless of target, and also salesmen
in any region with a target of 50000, and also all salesmen whose surname
begins with'S').

ANDs
SELECT surname FROM salesmen

WHERE q1target = 50000
AND region = 'West'
AND surname LIKE 'S%';

(shows salesmen in West Region whose surname begins with'S', and who
have a target of 50000).

Using several ANDs and ORs
You can link together any number of conditions with any combination of
AND and OR. For example:

SELECT surname FROM salesmen
WHERE q1target = 50000
OR region = 'West'
AND surname LIKE 'S%';

58 Understanding SQL

However, this immediately becomes confusing to interpret, because it is not
obvious how the conditions are to be grouped. Will this query produce

1. - all salesmen with a target of 50000 and also
- all s~esmen in West Region with a surname beginning with'S'

or

2. - all salesmen whose surname begins with'S' and who
- either have a target of 50000 or are in West Region?

They could be very different result tables!
Unfortunately, the various SQL implementations disagree on how to

'parse' statements containing multiple ANDs and ORs. Some SQLs work
on a straight 'left-to-right' basis. Others, including Oracle and dBASE IV
SQL, evaluate all AND clauses before all OR clauses. The two approaches
yield different results. The 'left-to-right' evaluation order produces Answer
2; the AND-has-precedence evaluation order produces Answer 1.

Here are worked examples of the logical steps that SQL takes to evaluate
the condition in both cases.

1. Method l-LEFT-TO-RIGHT

Step 1

Step 2

Step 3

Condition SQL's Action

q ltarget = 50000 Place in result table all rows where
target is 50000

OR region = 'West' Also place in result table all rows
where region is 'West'

AND surname LIKE 'S%' Check all rows in result table and
remove those where the surname does
not begin with'S'

2. Method 2 - AND clauses have precedence

Step 1

Step 2

Step 3

Condition SQUs Action

region = 'West' Place in result table all rows where
region contains 'West'

AND surname LIKE 'S%' Remove those rows from result
table where the surname does not
begin with'S'

OR q 1 target = 50000 Also place in result table all rows
where target = 50000

Make sure that you find out which method your particular SQL imple­
mentation uses; if necessary, by constructing some test data and trying
out various queries yourself.

Querying the database 59

Even better, use brackets to force any SQL to evaluate the condition in
the order you need.

Using brackets in conditions
You can use brackets to force SQL to evalQate linked conditions in the
order that you require. SQL evaluates bracketed conditions first, and then
applies a left-to-right evaluation order on the results. In the above example,
to be sure that any SQL implementation will produce Answer 2 rather than
Answer 1, you could say

SELECT surname FROM salesmen
WHERE (qltarget = 50000
OR region = 'West')
AND surname LIKE 'S%';

Using brackets makes the intended result of a condition clearer, even if the
brackets are merely used to confirm the 'natural' evaluation order. So, to
produce Answer 2 using Oracle, it would be better to include brackets for
clarity's sake:

SELECT surname FROM salesmen
WHERE qltarget = 50000
OR (region = 'West'
AND surname LIKE 'S%');

5.4.9 Simple subqueries

You can get SQL to perform another SELECT statement as part of the
WHERE clause, and to compare a column value against the result table of
that secondary SELECT. The second SELECT is known as a subquery.

Subqueries can act either on the same table as the main SELECT, or on a
different table (or tables). At this point we will only deal with subqueries
on the same table. See chapter 6 for a full discussion of multiple table
operations.

There are two k~nds of subqueries: those which return a single value, and
those which return multiple values. Those returning a single value need no
special syntax in addition to the operators that we have already covered;
those returning mUltiple values make use of the subquery operators IN,
EXISTS, ANY and ALL.

In this chapter we will only discuss those simple subqueries which return
a single value. See chapter 6 for a more in-depth treatment of subqueries.

You would need a subquery, for example, to find all salesmen who have
the same Quarter 1 target as John Smith. Using a subquery effectively lets
you use a single SQL statement to make two passes through the salesmen

60 Understanding SQL

table - first to fiond John Smith's target, and secondly to compare each row's
target figure against John Smith's. The SQL command to achieve this is
shown below.

Example:

SELECT surname FROM salesmen
WHERE qltarget =
(SELECT qltarget FROM salesmen

WHERE surname = 'Smith');

(to show all salesmen whose target is the same as John Smith's).

The subquery must be enclosed within brackets. Notice that this subquery
returns a single value.

How queries containing subqueries are evaluated
When presented with a condition containing a subquery, SQL evaluates the
subquery first. It then 'feeds in' the values returned in the subquery's result
table into the main condition.

SQL evaluates the query above as:

Condition

Step 1 surname = 'Smith'

Step 2 q ltarget = SELECT ..

SQL's Action

Place in an 'temporary' result table
the qltarget value for the row where
surname = 'Smith'
Place in the final result table all
rows where q ltarget is the same as
the value in the temporary result
table.

The subquery can be a complex condition using ANDs, DRs etc. It may
itself contain a subquery. If there are several subqueries in a statement, the
one nested 'deepest' is evaluated first.

You should indent your SQL statements to make the intended evaluation
order clearer. For example

SELECT surname FROM salesmen
WHERE qltarget IN
(SELECT qltarget FROM salesmen

WHERE date joined >
(SELECT avg(datejoined) FROM salesmen));

to show salesmen whose target is the same as that of any salesman who
joined the company after the average joining date!

We will talk more about subqueries in the next chapter.

Querying the database 61

5.5 ORDER BY column list (DESC)

This clause allows you to sequence the rows in the result table. Rows can
be 'ordered' on any single column or combination of columns.

Rows are normally sequenced in ascending order. You can change this by
specifying the DESC option with ORDER BY.

The rules for determining which values are the smallest and which the
largest, and for treatment of NULL values, are the same as those discussed
in section 5.4.2 when we talked about the arithmetic operators.

5.5.1 Ordering by a single column

This very simple method of sorting the result table just requires you to
specify the name of the appropriate column, with the DESCending option if
you require it.

Example:

SELECT * FROM salesmen
ORDER BY q1target DESC;

to show all salesmen with their targets, highest target first.

Result table:

Empno Surname Q1target Region

50005 James 60000 East
10001 Smith 50000 East
30003 Adams 50000 South
20002 Brown 40000 East
40004 Jones 25000 West

The command:

SELECT surname, q1target FROM salesmen
WHERE region = 'West'
ORDER BY q1target;

will show all salesmen in West Region in ascending order of target.
You do not have to include in the SELECT statement the column which

you want to ORDER BY. So you could say:

SELECT surname FROM salesmen
ORDER BY q1target;

62 Understanding SQL

However, in practice you will find that it usually makes more sense to
include it.

5.5.2 Ordering by calculated or 'junction' columns

If you include a calculation in your SELECT column list, then you may
well want to sort the result table on the outcome of this calculation.

However, SQL does not allow you to repeat the calculation in the
ORDER BY clause. So it is wrong to say:

SELECT surname, qltarget+q2target FROM salesmen
ORDER BY qltarget+q2target; **ILLEGAL**

Instead you must refer to the column by its column number. The result
table columns are numbered from I in the sequence in which you specify
them. Thus, in the example above, 'surname' is column I, and
'qItarget+q2target' is column 2.

(This restriction also applies to the aggregate functions SUM, MIN,
MAX etc. However, these functions only return a single row, and are
therefore only subject to ORDER BY when usec;l with the GROUP BY
clause. We will be dealing with this in chapter 6.)

To order the result table on the target calculation, you would say:

SELECT surname, qltarget+q2target FROM salesmen
ORDER BY 2;

Although it is perfectly legal to use column numbers in any ORDER BY
clause, your intentions are clearer if you use the column name. So, although
you would get the same results from:

and

SELECT surname,empno FROM salesmen
ORDER BY 2;

SELECT surname,empno FROM salesmen
ORDER BY empno;

the second phrasing is clearer, and therefore to be preferred.

5.5.3 Ordering by multiple columns

If more than one row has the same value in the ORDER BY column, then
although that group of rows will appear together in the sorted result table,
~he rows in the group will appear in no particular order. Indeed, you cannot
even guarantee that the rows in the group will appear in the same order if

Querying the database 63

you repeat an identical query several times! If you expect this situation to
occur with the 'main' column of the ORDER BY, and if the consistent
ordering of grouped rows is important to you, then you can specify a second
(and third, fourth etc if necessary) column to ORDER BY. Columns are
separated by commas. For example:

SELECT empno,q1target FROM salesmen
ORDER BY q1target,empno;

When more than one column appears in the ORDER BY clause, groups of
rows with the same column value are sorted on the basis of their value in
the second column. If there is more than one row with identical values in
the first and second ORDER BY columns, then this group is sorted on the
third ORDER BY column, and so on.

Example:
Take the following 5 entries from the salesmen table.

Empno q1target

10003 50000
20001 45000
20003 50000
20002 75000
10002 50000

Ordering the table on q ltarget with:

SELECT empno,q1target FROM salesmen
ORDER BY q1target;

will produce

Empno q1target

20001 45000
10003 50000
20003 5,0000
10002 50000
20002 75000

All rows with the same 'qItarget' value are grouped together, but in an
undefined order. Including a second column - e~pno - will show the group
sorted into employee number order.

SELECT empno,q1target FROM salesmen
ORDER BY q1target,empno;

64 Understanding SQL

Here is the new result table:

Empno q1target

20001 45000
10002 50000
10003 50000
20003 50000
20002 75000

Using DESC in a mUltiple column list
Any of the columns in the ORDER BY clause can take the DESCending
option. To see the above table with employee numbers in descending order,
say:

SELECT empno,q1target FROM salesmen
ORDER BY q1target,empno DESCi

Here is the result table:

Empno q1target

20001 45000
20003 50000
10003 50000
10002 50000
20002 75000

Summary

In this chapter you were introduced to the full range of options available on
SQL's SELECT command. Some of the clauses have been given in-depth
treatment; others have just been touched upon.

In chapter 6 we will cover the rest of the SELECT options.

6 More about SELECT

Overview

This chapter carries on examining the options available with the SELECT
command. Most important, you will see how to use joins to use SELECT
options with multiple tables. You will also learn how to summarise row
details by groups, and carry out more complex subqueries.

Major commands and topics covered

SELECT .. GROUP BY
UNION

6.1 Introduction

Multiple tables and joins
Advanced subqueries

In this chapter we will continue with our discussion of the SELECT
command. First we will finish working through the SELECT clauses that
were not covered in detail in the last chapter - GROUP BY and UNION.
Then we will look at the whole area of retrieving data from more than one
table with a single SELECT statement. We will also discuss subqueries in
more detail, showing you how to deal with a subquery that returns a set of
values rather than a single item.

6.2 GROUP BY columnUst

One of things that you will often want to do is to create summaries of your
data. For example, you might want to see the total target figures for each of
the four sales regions in the example system, or to see the total value of
orders placed by each customer.

SQL uses the GROUP BY clause to accomplish this kind of task.
GROUP BY produces a result table which contains just one row for every

'group' of rows in the base table that. contain the same value in the
column(s) specified in the GROUP BY clause.

65

66 Understanding SQL

6.2.1 Restrictions on SELECT columnlist with GROUP BY

Because GROUP BY acts by summa¢sing column values, it forces restric­
tions on the columns which can be chosen for display in 'SELECT column­
list'. You can say:

SELECT region FROM salesmen
GROUP BY region;

(to show a list of the different regions). In the example system we would
see:

Region

North
South
East
West

But you cannot say:

SELECT surname, region FROM salesmen
GROUP BY region; ** ILLEGAL **

SQL cannot produce a list of regions which also summarises salesmen's
names!

6.2.2 Rule for including columns in SELECT column list

The rule for deciding which columns can appear in the SELECT columnlist
is that you can only include:

- the column or combination of columns which form the basis for the
grouping, and/or

- an aggregate function (SUM, COUNT etc)

6.2.3 Aggregate functions with GROUP BY

In the previous chapter we saw how the aggregate functions can be applied
over the entire table. Used in exactly the same way, they become even more
informative when in conjunction with a GROUP BY clause. For example:

SELECT region,SUM(qltarget) FROM salesmen
GROUP BY region;

gives the result table like:

Region

North
South
East
West

Sum (q1target)

790000
999999
987654
500000

More about SELECT 67

To expand the query to also show the number of salesmen in each region,
and their average target, just say:

to give

SELECT region, SUM(q1target), COUNT(*), AVG(q1target)

Region

North
South
East
West

Sum (q1target) COUNT(*) AVG(q1target)

790000
999999
987654
500000

10
25
20
10

79000
39999
49382
50000

You cannot use an aggregate function in the GROUP BY clause itself. So
you cannot say something like:

SELECT region FROM salesmen
GROUP BY SUM(q1target); ** ILLEGAL **

6.2.4 Columns in GROUP BY that do not appear ill SELECT columlllist

You can include a column in the GROUP BY clause that does not appear in
the SELECT columnlist, although in most cases it does not make much
sense to do so. You could say:

SELECT SUM(q1target), COUNT(*), AVG(q1target) FROM salesmen
GROUP BY region;

to give the result table

Sum (q1target) COUNT(*) AVG(q1target)

190000
999999
987654
500000

10
25
20
10

79000
39999
49382
50000

68 Understanding SQL

But, as you can see, the result table is meaningless because it does not show
what these figures are talking about. You need to include 'region' in the
SELECT columnlist, as we did in the example in 6.2.3.

6.2.5 Multiple columns in GROUP BY

You can group rows based on their values in more than one column. In this
case, all rows with identical values in all the columns specified will form
one group.

For example, the command:

SELECT region, q1target, COUNT(*) FROM salesmen
GROUP BY region,q1target;

will show one row for each different target within a region, together with
the number of salesmen on this target.

Region q1target COUNT (*)

North 50000 5
North 75000 5
South 50000 6
South 75000 10
South 85000 9
East 25000 10
West 50000 7
West 55000 3

Since rows are grouped on the basis of identical values in all specified
columns, the order in which you specify the columns makes no difference
to the result. So the command:

SELECT region, q1target, COUNT(*) FROM salesmen
GROUP BY q1target,region;

will produce exactly the same result table as the previous example.
Note that this is completely different from what happens in the ORDER

BY clause where changing the order of specified columns would produce a
totally different result.

6.2.6 Using GROUP BY with WHERE and ORDER BY

Both these clauses work in their 'normal' manner when used in conjunction
with a GROUP BY. So

More about SELECT 69

SELECT region,SUM(qltarget) FROM salesmen
GROUP BY region
ORDER BY region;

will show the four regions in alphabetical order.

Region

East
North
South
West

SUM (qltarget)

987654
790000
999999
500000

SELECT region,SUM(qltarget) FROM salesmen
WHERE region <> 'East'
GROUP BY region
ORDER BY region;

will give us the same table as above, without a row for 'East' region.

6.3 HAVING condition

Region

North
South
West

SUM (qltarget)

790000
999999
500000

HAVING is used as a qualifier on the GROUP BY clause. As we said in
chapter 5, it is 'a WHERE clause for groups'. GROUP BY produces an
'intermediate' result table, which HAVING then checks to see which rows
satisfy the condition. Those that do not are excluded from the final result
table.

For example, if you wanted to perform a query showing the total Quarter
1 targets per region, but only for those regions where the total comes to
more than 900000, you would say:

SELECT region,SUM(qltarget) FROM salesmen
GROUP BY region
HAVING SUM(qltarget) > 700000;

and get the result table

70 Understanding SQL

Region

East
South

SUM (q1target)

987654
999999

It would be impossible to use WHERE to obtain the same result, because a
WHERE condition can never contain aggregate junctions. SQL will reject
any attempt to say something like:

SELECT region,SUM(q1target) FROM salesmen
WHERE SUM (q1target) > 900000 ** ILLEGAL **
GROUP BY region;

6.4 UNION •• SELECT statement

6.4.1 How UNION works

UNION allows you to use a single SQL statement to perform more than one
separate query on base tables and then combine the results into a single
result table. For example, if we wanted to see all salesmen in 'East' region,
and also all salesmen with a target of more than 100000, we could say:

SELECT empno,surname,q1target FROM salesmen
WHERE region = 'East'
UNION
SELECT empno,surname,q1target FROM salesmen

WHERE q1target >'100000;

In the result table, the rows retrieved by the first SELECT come before the
rows retrieved by the second SELECT. If you want to change the order, use
ORDER BY to apply to the whole result table (not to each separate
SELECT). So:

SELECT empno,surname,q1target FROM salesmen
WHERE region = 'East'
UNION
SELECT empno,surname,q1target FROM salesmen

WHERE q1target > 100000
ORDER BY empno;

will produce the same rows in employee number sequence.

6.4.2 UNION of different tables

In 6.4.1, we carried out two SELECTs o~ the same table. But you can also
use UNION to combine rows from different tables. So you could say:

More about SELECT 71

SELECT empno,surname,address FROM salesmen
WHERE region = 'East'
UNION
SELECT empno,surname,address FROM managers

WHERE region = 'East';

to see the combined rows of Managers and Salesmen who work for 'East'
region.

6.4.3 Restrictions on use of UNION

The columns given in each SELECT columnlist must be identical, both in
name and in specification (Le. data type and length).

You must specify the same columns in each SELECT statement.
So you could not create a 'result table containing three columns 'Empno'

and 'Surname' (from 'salesmen') plus 'Title' (from 'managers') with a
command like:

SELECT empno,surname FROM salesmen
UNION
SELECT empno, surname, title FROM managers;

** ILLEGAL **

Also, if the 'managers' table had defined 'surname' as being 30 characters
wide, as opposed to the 'salesmen' table's 20, then the next query will fail:

SELECT empno,surname FROM salesmen
UNION
SELECT empno,salesmen FROM managers;

6.4.4 UNION versus WHERE .. OR ..

If you want to combine rows from two different tables, then you have to use
UNION. But if you use UNION in two SELECTs from the same table, then
in most cases you could equally well use a WHERE .. OR .. condition instead.

So to obtain the same result table as in 6.4.1 in another way, we could
have said:

SELECT empno,surname,q1target FROM salesmen
WHERE region = 'East'

OR qltarget :> 100000,;

6.4.4.1 How UNION can be different/rom WHERE .. OR ..
Using UNION in two SELECTs from the same table usually gives identical
results to using an OR condItion in a WHERE clause.

72 Understanding SQL

However, the ANSI standard uses opposite conventions for the defaults
for DISTINCT and ALL in SELECT and UNION clauses, which can make
a considerable difference to the result tables produced by the two different
methods. SELECT assumes a default of ALL; UNION assumes a default of
DISTINCT. In other words, all duplicate rows are eliminated in a UNION
statement unless you specifically demand ALL rows, whereas in a
WHERE .. OR.. condition they would automatically be retained. So the
statement:

SELECT surname FROM salesmen
UNION
SELECT surname FROM salesmen;

will produce exactly the same result table as

SELECT surname FROM salesmen;

But saying

SELECT surname FROM salesmen
UNION ALL
SELECT surname FROM salesmen;

will 'double up' the result table, with each salesman's name appearing
twice.

It is unlikely that you would ever want to do this - but it is useful to
know what possibilities exist!

6.5 Multiple Tables in SELECTs

6.5.1 Introduction

In all our discussions about SELECT so far, we have considered the effect
of SELECT on a single table. This approach made it easier for you to
absorb the intricacies of the various SELECT clauses. However, you can
equally well use SELECT to extract information from more than one table.
Relational theory calls this type of operation a join.

Let us see how you can adapt the SELECTs that you already know about
to work with multiple tables. .

6.5.2 SELECTing columns from several tables

To tum a single-table query into a join, you have to tell SQL unambiguously
what columns you want from which tables, and how to link the various
tables together.

More about SELECT 73

In other words, you need to add:

the names of all tables from which data is required (in the FROM
clause)
the names of all columns involved from all tables
a table prefix for any columns with the same name in more than one
table
the basis for the join (in a WHERE clause)

We will take some examples from the 'salesmen' and 'contracts' tables. To
start with, let us assume that we have only two salesmen, and only three
contracts.

Example base tables

salesmen

empno surname

10001 Smith
20002 Jones

contracts

empno custname

20002 Thames Bros.
10001 Hi Markets
10001 Astra & Co

amount

50000
25000
10000

To show the employee number and surname of every salesman, together
with the customer name and amount for all their contracts (one row per
contract), you would say:

SELECT empno,surname,custname,amount
FROM salesmen, contracts
WHERE salesmen.empno = contracts.empno;

The result table would show:

empno surname

20002 Jones
10001 Smith
10001 Smith

custname

Thames Bros.
Hi Markets
Astra & Co

amount

50000
25000
10000

As you see, a join is not difficult to do! We simply specified:

The names of all tables involved

.. FROM salesmen, contracts

The FROM clause gives a comma-separated list of tables which SQL has to
interrogate.

74 Understanding SQL

The names of all columns involved

SELECT empno,surname,custname,amount ..

The SELECT columnlist just specifies all cQlumn names in the order that
you want them. You do not have to include either of the columns on which
the tables are joined (in our case, the 'empno' columns), although in
practice you will find that it probably makes sense to include at least one.

A table prefix where column names are the same in both tables

.. WHERE .alesmen.empno = contract •. empno

If columns in both tables have the same name, then you must specify in the
query which table you intend to refer to. Prefix the column name with the
table name followed by a full stop.

It is always possible to give a column name a table prefix, whether it is
required or not. So we could quite validly have given the SELECT command:

SELECT .alesman.empno,salesmen.surname,
contracts.custname,contract •. amount
FROM salesmen,contracts
WHERE salesmen.empno = contracts.empno;

You should do this if it makes your SELECT command clearer to understand.
You can also set up an alias for a table name. See section 6.6.3 for a full

explanation.

The basis for the join

.. WHERE .alesmen.empno = contracts.empno

If two tables are to be joined together, they must both have a 'cross­
reference' column which contains a value that is the same in both tables. If
the two tables have nothing in common, then it will be impossible to link
them together.

The columns do not have to have the same name, but they must have the
same column specification. So, provided that employee numbers in the
'contracts' table are defined as CHAR(5), as in 'salesmen', then it would
not matter if the column name was 'empnum' rather than 'empno'.

You do not have to define formally the basis of the join as a permanent
relationship (unlike dBASE III/lV's SET RELATION command). Simply
giving the cross-reference column in the WHERE clause is sufficient.

The figure below shows conceptually what SQL does.

More about SELECT 75

salesmen

empno surname

10001 Smith
20002 Jones

empno custname

20002 Thames Bros.
10001 Hi Markets
10001 Astra & Co

contracts

amount

50000
25000
10000

SQL works out that 'empno' and 'surname' come from the 'salesmen'
table, and that 'custname' and 'amount' come from 'contracts'. It then
forms the links between the two tables to extract the 'matching' rows.

6.5.3 Setting up an alias for a table

As you can see from the above examples, you can soon end up with a long
SELECT statement full of table prefixes. You can save yourself typing,
whilst still retaining the clarity that table prefixes give your statements, by
defining another name - an alias - by which you can refer to the table.

To define an alias, follow the table name in the FROM clause with a
space, and then the alias. For example:

.. FROM salesmen s, contracts c

Although an alias can be any valid table name, it makes sense to set up a
short (although still meaningful) name.

If an alias has been defined, then you must use the alias rather than the
table name throughout the whole SELECT statement. So it is valid to say:

SELECT s.empno,s.surname,c.custname,c.amount
FROM salesmen s, contracts c
WHERE s.empno = c.empno;

But you could not say:

SELECT salesmen. empno, salesmen. surname,
contracts. custname, contracts. amount
FROM salesmen s, contracts c
WHERE s.empno = c.empno;

6.5.4 Different types of joins

** ILLEGAL **

There are several different types of join available within SQL. It is fairly
common for manuals to refer to them by the names by which they are
known in the relational model. Here is an explanation of the various types.

76 Understanding SQL

6.5.4.1 General join
In a general join, all columns in the WHERE clause also appear in the
SELECT columnlist. This is usually achieved by using the • (all columns)
with SELECT. So:

SELECT * FROM salesmen, contracts
WHERE salesmen.empno = contracts.empnoi

is a general join.

6.5.4.2 Naturaljoin
A natural join is a join where fewer join columns appear in the SELECT
columnlist than in the WHERE clause. As we said above, you do not have
to include all, or indeed any, of the WHERE columns in the result table. It
is perfectly valid to produce natural joins with:

SELECT surname, amount FROM salesmen, contracts
WHERE salesmen.empno = contracts.empnoi

(no 'join' columns in the SELECT list).

and

SELECT empno,surname,amount FROM salesmen, contracts
WHERE salesmen.empno = contracts.empnoi

(one 'join' column in the SELECT list).

6.5.4.3 Equi-join
An equi-join is one where the tables are linked by a condition of equality -
in other words, the = sign. Both general and natural joins can also be equi­
joins, as you can see from the examples above.

6.5.4.4 Non-equi-join
Not surprisingly, a non-equi-join is one where tables are linked by a
condition of inequality - for example, <>, <, or >. Again, both general and
natural joins can be non-equi-joins. In practice, non-equi-joins are not very
common.

6.5.4.5 Inner and outer joins
The distinctions between the various joins described above may seem rather
esoteric. However, the distinction between an inner and an outer join has
direct influence on the results of a SELECT query! What is more, ANSI
SQL supports the inner join, but not the outer join.

More about SELECT 77

Inner joins
Normally, if a row in one of the tables to be joined has no matching value
in the other table, then no corresponding row will appear in the 'joined'
result table.

Let us illustrate this with an example. First we will add a new salesman,
James Brown, to the 'salesmen' table, with an employee number '10003'.
Since he is new, he has not sold anything yet, so he has no entries in the
'contracts' table. The base 'salesmen' and 'contracts' tables now contain:

salesmen contracts

empno surname

10001 Smith
20002 Jones
10003 Brown

The join statement:

empno custname

20002 Thames Bros.
10001 Hi Markets
10001 Astra & Co

SELECT salesmen.empno,surname,custname,amount
FROM salesmen,contracts
WHERE salesmen.empno = contracts.empno;

will still give

empno surname

20002 Jones
10001 Smith
10001 Smith

custname

Thames Bros.
Hi Markets
Astra & Co

amount

50000
25000
10000

amount

50000
25000
10000

exactly as it did before employee number '10003' had been added to the
table! Because there is no corresponding entry for '10003' in 'contracts',
the inner join rule cannot allow this employee to appear at all.

Outer joins
Obviously, it can be useful to see rows for which there is no matching entry
in another table - for example, all salesmen who have not sold anything.

Some SQL implementations - for example, Oracle and Informix - support
the outer join to allow just that facility.

Such SQLs require you to state specifically that a particular join is an
outer join. Inner joins are always the default. Oracle uses a (+) to signal an
outer join; Informix uses OUTER. For example, in Oracle you would say

78 Understanding SQL

SELECT salesmen.empno,surname
FROM salesmen, contracts
WHERE salesmen.empno = contracts.empno (+);

to give the result table:

empno surname

10003 Brown

6.5.4.6 Subqueries instead of outer joins
If your version of SQL does not support outer joins, you can still get the
required result by using a subquery instead. (See section 6.6 for further
discussion of subqueries.) To get the same result as the example above, you
could say:

SELECT empno,surname FROM salesmen
WHERE empno NOT IN
(SELECT empno FROM contracts);

Although this is not in itself any more complicated. than using a join, it
makes yet another different thing to learn!

6.6 More on sub queries

6.6.1 Introduction

In chapter 5, we looked at subqueries returning a single value, used on the
same ta.ble as the main SELECT. For example:

SELECT empno,surname FROM salesmen
WHERE q1target >
(SELECT AVG(q1target) FROM salesmen);

to show all salesmen whose target is greater than the average.
We used one of the aggregate functions to make sure that the subquery

returned a single value, and used a simple arithmetic operator for the
comparison.

We will now look at using subqueries on multiple tables, and at subqueries
which return a set of values ..

More about SELECT 79

6.6.2 Subqueries on multiple tables

You can apply a subquery to a table other than that on which the main
SELECT is being performed. For example, you might want to find all
salesmen whose Quarter 1 target is greater than the maximum contract value
in the contracts table. You could achieve this with:

SELECT empno,surname FROM salesmen
WHERE qltarget >
(SELECT MAX(amount) FROM contracts);

6.6.3 Subqueries returning a set of values

You will find that you often need to perform a query which checks a
column value against a set, or list, of other values (which may be in either
the same table or in a different table from the main SELECT). For example,
you might want to see:

salesmen who have no entry in the contracts table
- salesmen whose target is different from any target for anyone in East

Region

To accomplish such tasks, you need to use a different set of WHERE
operators. Provided for this purpose are:

IN
NOT IN
EXISTS
NOT EXISTS
ANY
ALL

6.6.3.1 IN and NOT IN
This operation is similar in concept to the IN (list) we discussed in section
5.4.5. The only difference is that for IN (list) the user has to specify the list
of values for comparison; in a subquery SQL works out the list for itself.

So, to see all salesmen in North, South and West regions whose target is
the same as any target for anyone in East region, you would say:

SELECT empno,surname FROM salesmen
WHERE qltarget IN
(SELECT qltarget FROM salesmen

WHERE region = 'East')
AND region <> 'East';

SQL first evaluates the subquery to produce an 'internal' list of all the

80 Understanding SQL

Quarter 1 targets for everyone in East Region. It then compares each target
in the base table against this list. If a target appears in the list, then that row
is passed to the 'intermediate' result table. This result table is then checked
in the normal way to remove rows not in East Region.

You can reverse the effect of IN by preceding it with NOT. Repeating the
query above with NOT IN instead of IN will show you everyone in North,
South and West regions whose target is different from any target in the
'internal' list generated by the subquery.

6.6.3.2 ANY
ANY is used in conjunction with the arithmetic operators to check a column
value as being equal to, greater than or less than any value in the list
generated by the subquery.

You can use ANY preceded by any arithmetic operator. For example:

>ANY
=ANY
<=ANY

(greater than any ..)
(equal to any ..)
(less than or equal to any ..)

Using =ANY is equivalent to using IN. The query in 6.6.3.1 could equally
well have been expressed as:

SELECT empno,surname FROM salesmen
WHERE qltarget =ANY
(SELECT qltarget FROM salesmen

WHERE region = 'East')
AND region <> 'East';

You can use ANY in ways which might not seem obvious at first glance.
For instance, if you want to see all salesmen except those on the lowest
target figure, you could say

SELECT empno,surname FROM salesmen
WHERE qltarget > ANY
(SELECT qltarget FROM salesmen);

As a result of the subquery, SQL generates an 'internal' list of all Quarter 1
target figures. It then checks each target figure in the base table to see if it is
larger than any of the values in the internal table. Only the lowest target
figures are equal to rather than greater than any other values in the
internal list, and so all rows except these are passed to the final result table.

You will probably agree that this is not intuitively obvious! For this
reason, you will often be better off avoiding the use of ANY, and rephrasing
the query. Luckily this is usually quite easy to do. We could produce the
same result table of all salesmen not on the lowest target figure by giving
the much clearer statement:

SELECT empno,surname FROM salesmen
WHERE qltarget <>

More about SELECT 81

(SELECT MIN(qltarget) FROM salesmen);

6.6.3.3 ALL
ALL is used in a similar way to ANY - i.e. with the arithmetic operators.
However, in an ALL condition, the WHERE column value has to be greater
than/less than etc all the values generated by the subquery.

For this reason, it does not make sense to use ALL with the equals sign,
as in =ALL. Such a condition could only evaluate as TRUE if all the values
in the 'internal' subquery list were identical.

To see all salesmen on the lowest Quarter 1 target level you could say:

SELECT empno,surname FROM salesmen
WHERE qltarget <= ALL
(SELECT qltarget FROM salesmen);

Again, the subquery generates an internal list of all Quarter 1 target values.
It then checks each base table target figure against the entire list to
eliminate all those where the target is higher than any value in the list. Only
the lowest target figures do not come into this category, so only those
salesmen on the lowest target value are passed to the final result table.

Just as with ANY, this evaluation is certainly not obvious at first sight.
Again, you should rephrase the query more clearly if possible. We could
produce the same result with the much simpler:

SELECT empno,surname FROM salesmen
WHERE qltarget =
(SELECT MIN(qltarget) FROM salesmen);

6.6.3.4 EXISTS and NOT EXISTS
EXISTS checks for each row in the base table whether any rows at all
satisfy the condition in the subquery. If any do, then EXISTS is TRUE.

EXISTS is the only subquery operator which allows you to specify more
than one column in the subquery SELECT. This is because an EXISTS
clause does not check a particular column value (as every other subquery
does); it merely produces a TRUE/FALSE result. In fact, it is easiest to use
the * (all columns) in an EXISTS clause.

EXISTS is almost always used to check whether or not a particular value
occurs in a different table from that used in the main SELECT. We could
use EXISTS as a way to find out which salesmen have entries in the
contracts table:

82 Understanding SQL

SELECT empno,name FROM salesmen
WHERE EXISTS
(SELECT * FROM contracts

WHERE salesmen.empno = contracts.empno);

To see salesmen who have not made any sales, you could replace EXISTS
with NOT EXISTS:

SELECT empno,name FROM salesmen
WHERE NOT EXISTS
(SELECT * FROM contracts

WHERE salesmen.empno = contracts.empno);

(See section 6.5.4.5 for another way of getting the same result.)
You can always replace an ANY or an ALL condition with an appro­

priate EXISTS/NOT EXISTS one.

Summary

You have now covered all the major elements of the SELECT statement. As
you now realise, SELECT is really the most important command in an SQL
system; certainly it is the one which most users will use for 90% of their
work.

In the next chapter we will look at how the data that SELECT uses
actually gets into the tables in the first place!

7 Updating the Database

Overview

In this chapter we will discuss the various ways of updating tables. You
will learn the commands to enter new rows, alter existing data items, delete
rows - and recover from mistakes! We will also discuss ways of transferring
data from one table to another, and how to 'import' data from a non-SQL
file into an SQL table.

Commands and major topics covered

INSERT .. VALUES
INSERT INTO ..
UPDATE .. SET
DELETE FROM

7.1 Introduction

INPUT
COMMIT
ROLLBACK
Import/Export commands

So far we have spent a lot of time looking at the ways of retrieving data
from existing tables. But we have only given a cursory glance to the ways
in which that data gets into the tables in the first place (see section 3.3.2 for
a short discussion of INSERT).

It made sense to discuss the SELECT command before the various data
input and editing commands, because the UPDATE and DELETE commands
rely heavily on knowledge of the WHERE clauses used in SELECT. You
often need to perform tasks such as:

- increase all East Region targets by 10%
- change John Smith's home phone number
- delete all salesmen in North Region

and so on. All these would require a condition to force the update to apply
only to the required set of rows.

SQL provides various ways of updating tables. The commands used vary

83

84 Understanding SQL

with the kind of update that you want to perform. Naturally, they also vary
to some extent between implementations. This is particularly true in the
area of transfer of data to and from non-SQL files and SQL tables (for
example, transferring rows from a dBASE III database into an Oracle table,
or from Oracle to Lotus 1-2-3). The ANSI standard does not lay down any
rules for such commands. We will cover them here because it is an area
which is becoming more and more important as SQL systems proliferate on
PC-based systems.

The various types of update that can be applied to the database are:

- interactively adding a completely new row (all columns)
- interactively adding a completely new row (some columns only)
- changing some or all column entries for one or more rows
- deleting one or more rows
- transferring one or more rows from one table to another
- creating new rows by 'importing' data from a non-SQL table

7.2 Interactively adding new rows - INSERT (and INPUT)

7.2.1 Syntax of INSERT

'Interactively' is used here to highlight the difference in updating techniques
between the user typing in one or more new rows (interactive), and a
'block' transfer of rows from one table (or non-SQL file) to another.

We are dealing here with the simple situation wher~ the user needs to
perform a task such as:

- add a new salesman to the 'salesman' table
- add a new contract for a salesman

The SQL 'Command to achieve this is:

INSERT INTO tablename (columnlist) VALUES
(valuelist) ;

This allows you to enter one new row, with values input either into all
columns in the table, or into specified columns only.

The row that you INSERTed will normally appear as the last row of the
table. However, since base tables are, by definition, unordered, you should
not rely on it appearing in any particular position. Use ORDER BY with
your SELECT command if the order of rows is important to you.

Some SQLs (for example, Informix) also provide a non-standard command
like:

INPUT (columnlist)
(row 1 values
row 2 values
etc ..) ;

Updating the database 85

which allows you to enter column values into several new rows with a
single command. We will not go into it in detail here. However, as always,
you should be aware that your particular SQL implementation may contain
features that are not in the ANSI standard, but which you may find very
useful! (Just to confuse matters, Oracle uses a command 'INPUT' as part of
the process of adding to and editing commands that you previously typed
in!)

7.2.2 Adding a new row - data into all columns

This is the simplest form of the INSERT command. Simply specify the
table to be updated, and then list the values for each column. You must
enter a value for every column in the table. Values are assigned to columns
on a 'left-to-right' basis.

We will create a small version of the 'salesmen' table to illustrate the
updating commands. Here is the CREATE command to set up 'salesmen';

CREATE TABLE salesmen
(empno CHAR(5),
surname CHAR(20),
region CHAR(5),
qltarget NUMBER (8, 2)
date joined DATE);

To insert a new row, you would say:

INSERT INTO salesmen VALUES
(' 40004' ,
'Marks' ,
'North' ,
75000
TO_DATE('1-JAN-87'));

(Remember that the 'date' data type is not standard ANSI SQL, and that
although most SQLs implement it, they will often require a function to
convert character input to date format.)

86 Understanding SQL

7.2.3 Adding a new row - data into selected columns

You can use INSERT VALUES to specify exactly which columns you want
to input data for. Values are then assigned on a 'left-to-right' basis into the
columns you specify. For example, you may want to enter a row for which
you do not yet know the target figure or the region. To do so, just say:

INSERT INTO salesmen (empno,surname,datejoined) VALUES
(' 40004',
'Marks' "
TO_DATE('1-JAN-87'));

7.2.4 Restrictions on INSERT VALUES

1. Integrity constraints
The row that you INSERT must obviously satisfy any integrity constraints
defined during CREATE TABLE - for example, some columns may have
been specified as NOT NULL or NOT NULL UNIQUE. (See chapter 4 for a
discussion of the CREATE TABLE command.) All data entered must
naturally be of the right type and length for that column.

2. Only one table at a time
INSERT can operate on only one table. So this attempt to enter both a new
salesman and his first contract is illegal.

INSERT INTO salesmen (empno,surname),
contracts (empno,amount)

VALUES ('40004','Marks' ,'40004' ,10000);

** ILLEGAL **

You will have to perform two separate INSERT!,! to get the result that you
require.

7.3 Changing existing data - UPDATE

7.3.1 Rules for u~ing UPDATE

To edit data items that are already in the table, you need to use the SQL
command UPDATE. This takes the form:

UPDATE tablename
SET columnname = newvalue
(WHERE cGndition);

This allows you to update one or more columns for all rows, or for selected
rows in the table.

Updating the database 87

The new value for the column can be a constant (e.g. 100000 or 'South'),
a calculation (e.g. qltarget * 1.1), or a value from another column (setting
qltarget equal to q2target). Naturally, the new value must conform to the
column specifications defined when the table was CREATEd.

If no WHERE clause is given, then the UPDATE will be applied to all
rows. In a WHERE clause, you can use any of the condition operators you
learned about for SELECT. You can also use subqueries. See chapters 5 and
6 for more information on WHERE clauses.

You can specify several columns to be updated in the same UPDATE
statement. Simply repeat the format 'columnname = newvalue' as many
times as necessary. Separate each column update with a comma.

UPDATEs are applied row by row, starting from the top of the table.

7.3.2 Examples of UPDATE

Here are some examples of UPDATEs.
Let us assume that the 'salesmen' table has in it the following rows:

Empno Surname Region Q1target Datejoined

10001 Smith East 50000 7-0CT-85
30003 Jones West 99000 23-JAN-89
20002 Adams East 40000 13-FEB-82
40004 Marks South 60000 01-JAN-87

Examples of single-column updates
You could edit the original table to increase all targets by 10% with:

UPDATE salesmen
SET q1target = q1target*1.1;

calculation,
all rows

You could increase the targets for all salesmen in East Region by adding a
WHERE clause to the statement:

UPDATE salesmen
SET q1target = q1target*1.1
WHERE region = 'East';

You could change all entries for 'East' to 'S.E' with:

UPDATE salesmen
SET region = 'S.E.'
WHERE region = 'East';

Calculation,
row subset

Constant,
row subset

88 Understanding SQL

You could use a subquery to give employee number 10001 the same target
as employee 20002:

UPDATE salesmen Column Value,
SET qltarget row subset

(SELECT qltarget FROM salesmen
WHERE empno = '20002')

WHERE empno = '10001';

And you could even use a subquery to give employee number 10001 the
same target figure as the manager whose employee number is '90009' (from
the 'managers' table):

UPDATE salesmen
SET qltarget

(SELECT q1target FROM managers
WHERE managerno = '90009')

WHERE empno = '10001';

Examples of multiple-column updates

Column Value,
row subset

In all the above examples, you could have updated several columns in each
row. For example, to increase the targets of salesmen in East Region by
10% and to change the name 'East' to 'S.E.', you would say:

UPDATE salesmen
SET q1target = q1target*1.1,

region = 'S.E.'
WHERE region = 'East';

7.3.3 Restrictions on UPDATE

7.3.3.1 Only one table at a time
UPDATE cannot update more than one table at once. So a command which
attempts to change employee number 10001 's region to 'East', and the
amount of his sale (in the contract table) to 7000:

will fail.

UPDATE salesmen, contracts
SET region = 'East',

amount = 7000
WHERE empno = '10001';

** ILLEGAL **

To achieve the required result, you would have to perform two separate
updates.

Updating the database 89

7.3.3.2 No 'self-referencing' of tables in WHERE subqueries
If an UPDATE includes a WHERE clause, and that WHERE clause itself
includes a subquery, then the table being referenced in the subquery's
FROM clause cannot be the same as the table being updated. In other
words, the following UPDATE, which attempts to set to 90000 all targets
smaller than the average, is illegal:

UPDATE salesmen ** ILLEGAL **
SET qltarget = 90000

WHERE qltarget <
(SELECT AVG(qltarget) FROM salesmen);

This is true for ANSI SQL and DB2. However, Oracle is quite happy to
process such a 'self-referencing' statement correctly.

7.3.3.3 Problems with UNIQUE columns
You know from chapter 3 that a column can be defined as NOT NULL
UNIQUE, or that a UNIQUE INDEX can be created on a column. This has
the effect of stopping anyone value from appearing more than once in the
table. UPDATE can have problems when updating such a column, since as
soon as SQL finds a violation of the UNIQUE property of the column, the
UPDATE will stop.

Normally, of course, you want such violations to be stopped from getting
into the table. So, if you attempt to add a row for employee number
, 10001', and there is already an entry for this salesman in the table, then the
attempt will, correctly, be rejected.

But there are some circumstances where you would like UPDATE to
temporarily ignore the UNIQUE constraint. Let us assume that you want to
increase all the employee numbers by 1. (For the sake of simplicity, we will
also assume that 'empno' was created as a NUMBER column, and that the
current table holds the rows in the order 10001, 10002, 10003 etc.)

The command to achieve this operation would be:

UPDATE salesmen
SET empno = empno+l;

However, as soon as UPDATE 'adds one to' the employee number in the
first row, 10001 becomes 10002. This immediately violates the UNIQUE
constraint; there is already an entry for 10002 in the table! And so the
UPDATE fails.

There is no easy way round this problem. Unfortunately, you cannot tell
SQL to 'temporarily ignore' the UNIQUE constraint. If the problem was
caused by a UNIQUE INDEX, then you will have to delete the index
(DROP INDEX), perform the UPDATE, and recreate the index afterwards.

90 Understanding SQL

If the UNIQUE was specified as part of the column definition, then you
could either use ALTER COLUMN .. MODIFY to remove the UNIQUE (but
remember, this is not ANSI SQL, and not all SQLs support the MODIFY
clause), or create a new table without the UNIQUE constraint and transfer
over and UPDATE the data there. (See section 7.5 for a full discussion of
this subject.)

7.4 Deleting rows - DELETE

7.4.1 How to use DELETE

The DELETE command can be used to delete one or more rows from a
table.

It takes the form:

DELETE FROM tablename
(WHERE condition);

As with UPDATE, the WHERE clause is optional, and can contain any
conditions that you could use in a SELECT clause.

For example, to delete all salesmen in 'East' region, you would say:

DELETE FROM salesmen
WHERE region = 'East';

To delete a single employee you might say:

DELETE FROM salesmen
WHERE empno = '10001';

7.4.2 Deleting all rows

Beware! If you use DELETE with no WHERE clause, then all the rows in
the table will be deleted. This is very easy to do by mistake! So:

DELETE FROM salesmen;

will instantly remove all rows from the table. The table structure will
remain intact; this is not·the same as DROP TABLE.

7.4.3 Restrictions on DELETE

DELETE, just like UPDATE, cannot contain a 'self-referencing' table in
the WHERE clause. So an attempt to delete all rows where the target figure
is less than the average target will fail:

Updating the database 91

DELETE FROM salesmen ** ILLEGAL **
WHERE qltarget <

SELECT AVG(qltarget) FROM salesmen;

As before, this is true for ANSI SQL and DB2, but not for Oracle.

7.S Copying rows from one table to another - INSERT •. SELECT ..

7.5.1 How to use INSERT .. SELECT

Another form of the INSERT command allows you to copy rows between
tables. The command has the syntax:

INSERT INTO tablename (column list)
SELECT statement;

The SELECT statement cannot include the GROUP BY, HAVING or
ORDER BY clauses. But you can use the full range of WHERE operators,
just as in a 'normal' SELECT. (Note that, as with UPDATE and DELETE,
ANSI SQL does not permit a 'self-referencing' FROM clause. See section
7.3.3.2 for a dj!scription of the problem.)

You can choose to copy all columns (*), or a list of selected columns. In
either case, the columns in your SELECT list will be assigned to the
columns in the new table on a 'left-to-right' basis. You must include the
correct number of columns 'on both sides' of the transfer; in other words, if
the table that you are attempting to INSERT INTO has only two columns,
then attempting to copy all columns from 'salesmen' will fail.

Naturally, data being copied over must be of the correct data type for
each new table column. However, the columns do not have to be of the
same width, or have the same names. For CHAR data, SQL will either 'pad
out' a value with blanks, or truncate the entry to fit the new column width.

The rows that you SELECT for copying will be added to the new table.
They do not replace any rows already there.

Here are some valid and invalid examples of INSERT .. SELECT. First, let
us create a new table with three columns:

CREATE TABLE newemp
(empnum CHAR(5),
name CHAR(15),
qltarget NUMBER (8,2));

92 Understanding SQL

7.5.2 Valid INSERTs INTO newemp

1. INSERT INTO newemp
SELECT empno,surname,qltarget FROM salesmen;

This copies over the three specified columns from all rows.

2. INSERT INTO newemp
SELECT empno,surname,q 1 target FROM salesmen

WHERE region = 'East';

This copies the three specified columns for salesmen in 'East' region
only.

3. INSERT INTO newemp
SELECT empno,surname,qltarget*2 FROM salesmen;

This copies the employee number, surname, and the target figure
multiplied by 2, for all rows.

4. INSERT INTO newemp
SELECT empno,surname,qltarget FROM salesmen

WHERE salesmen.empno NOT IN
(SELECT empno FROM contracts);

This copies those three columns for all salesmen with no entries in the
'contracts' table.

5. INSERT INTO newemp (empnum,qItarget)
SELECT empno,qltarget FROM salesmen;

This copies only the employee number and target. from all rows.

7.5.3 Invalid INSERTs INTO newemp

All the following INSERTs will fail. The reason for the failure is given
below 'each statement.

1. INSERT INTO newemp
SELECT * FROM salesmen;

Fails because: The number of columns in 'salesmen' is greater than
the number of columns in 'newemp'.

2. INSERT INTO newemp
SELECT empno FROM salesmen;

Fails because: There is more than one column in newemp.

Updating the database 93

3. INSERT INTO newemp
SELECT empno,sumame,q 1 target* 100000 FROM salesmen;

Fails because: The target figure is larger than the 6-integer width
allowed by the column definition.

4. INSERT INTO newemp
SELECT q 1 target,empno,sumame FROM salesmen;

Fails because: You cannot insert the contents of a NUMBER column
('qltarget') into a CHAR column (empnum).

7.6 Using INSERT .. SELECT to delete and alter columns

As we saw in chapter 3, ANSI SQL does not support a command to delete a
column from a table. And the ALTER TABLE command only allows you to
ADD a column rather than modifying the specification of an existing
column (although some SQL implementations, such as Oracle, do provide a
'MODIFY' option).

You can carry out column deletion and modification (changing data
types, column widths and names) by using the INSERT .. SELECT command.
The general 'steps' that you have to follow through are:

1. Create a new table (any name you like) containing the column defini­
tions that you need.

2. Use INSERT INTO .. SELECT .. to copy over the rows that you require
from the old table (usually all rows).

3. SELECT from the System Catalog tables to find out what views and
indexes depend on the original table.

4. DROP (or rename) the original table. All the indexes and views
associated with it will also be dropped.

5. Rename the new table to have the same name as the original.
(There is no ANSI SQL command 'RENAME', but most SQL's

support such a command. If yours does not, then you will have to take
the extra step of CREA T(E)ing another table with the correct new
structure, calling it by the original name, and then doing another
INSERT .. SELECT to copy all rows and columns from the second
table.)

6. Recreate any indexes or views which existed on the original table.

94 Understanding SQL

Do you really need a new table?

In some cases, you may find that you do not really need to create a new
table. A VIEW may achieve the same end result with much less effort. If
you simply want to show fewer columns, perhaps in a different order, with
different column names, then a VIEW will probably do what you require.
See the next chapter for a full discussion of what VIEWs can do for you.

7.7 'Undoing' your mistakes (COMMIT and ROLLBACK)

You are quite likely to make mistakes when updating the database. WHERE
clauses are prone to error. It is easy to find that you have changed the target
figure for all salesmen rather than just those in East Region or, even worse,
that you have just deleted all rows in your table instead of just the one for
employee number '10001'.

However, there is a way to recover from this apparently disastrous
situation!

We mentioned in section 3.3.7 that transactions are not saved permanently
into the database until the COMMIT WORK command has been issued.
You can use the ROLLBACK WORK command to 'backtrack' from any
wrongly entered update.

(Although the ANSI standard specifies the word 'WORK' as part of the
COMMIT and ROLLBACK commands, most SQLs allow you to just say
'COMMIT' and 'ROLLBACK'.)

So, if you inadvertently deleted all rows with

DELETE FROM salesmen;

then you could simply say:

ROLLBACK WORK

to return the table to the state it was in at the time of the last COMMIT.
Of course, this may have the effect of removing other changes that you

made which you did want to keep. You have to decide whether it is easier
to ROLLBACK to a previous state, or 'manually' to undo the incorrect
change.

The option to ROLLBACK will not be available to you if you have
chosen to SET AUTOCOMMIT ON. In this case, all transactions are
COMMITted automatically as soon as you enter them.

If you QUIT the SQL system, any unCOMMITted transactions are auto­
matically COMMITted for you.

(Note that dBASE IV SQL does not support the COMMIT WORK
command. It does support a BEGIN .. END TRANSACTION block, and you

Updating the database 95

can ROLLBACK to the beginning of the block at any time before the END
TRANSACTION statement. In other circumstances, all changes to a dBASE
IV SQL database are automatically COMMITted immediately.)

7.8 Importing and exporting data

You may be lucky enough to be able to be able to carry out all your work
within a single SQL environment; for example, to manage to use Oracle for
all database-management related tasks. But many users will find that the
SQL product which they use quite happily for input and retrieval of data,
cannot satisfy their other demands. This is especially true now that SQL
systems are readily available on personal computers, whose users are
accustomed to swapping data between packages. For example, they may
want to:

- produce graphs from the data
- merge selected items into 'standard' letters produced by a word

processing package
copy data to a spreadsheet for more complex analysis and then bring
it back into the SQL system.

Even the user who can happily achieve all that he wants to do within his
SQL product, may find that he needs to use data produced by people who
use different packages, or merely different SQL systems. Someone who
uses a database under dBASE IV SQL may well need to exchange data with
an Oracle user.

The various SQL suppliers recognise this requirement, and have provided
for it in their own various ways. Since there is no ANSI specification for
'data interchange' commands, and since the IBM DB2 'standard' is weak in
this respect, you will find that each supplier has its own way of importing
and exporting data, with a greater or lesser degree of flexibilty.

The facilities offered range from dBASE IV SQL's very flexible (but PC­
oriented) abilities to import and export everything from ASCII files through
to Lotus 1-2-3 worksheets, through Oracle's ASCII to EBCDIC translator.

It is beyond the scope of this book to go through the operation of each
system's 'conversion' commands. The important thing is that you should be
aware that it is possible to import and export data from and to different
systems.

For the four systems that we are considering in some detail in this book,
here are the commands that you should look up:

96 Understanding SQL

Product Commands

dBASE IV SQL LOAD DATA !import)
UNLOAD DATA (export)

Oracle IMP and EXP
The SQL*LOADER module

DB2 The LOAD utility

Informix IMPORT

Summary

Now you know how to input data into a table, either interactively, by 'bulk'
copying from another SQL table, or by importing rows from non-SQL files.

8 Creating and using views

Overview

In this chapter we will look at how views can be used to allow users easily
to access different aspects of the database. We will see how to create views,
what restrictions there are on using them, and discuss why you might want
to use them at all!

Major commands and topics covered

CREATE VIEW
DROP VIEW

8.1 An overview of views

8.1.1 Why do you need views?

Most databases are likely to contain several tables, lots of columns, and
even more rows. The sheer weight of information available can overwhelm
the naive - and sometimes even the more experienced - user. Certainly,
SQL provides a powerful tool in the SELECT command for structuring and
retrieving exactly what data items are required at anyone time - but most
users do not want to spend their days formulating complex (and probably
nearly identical) SELECT statements to extract what they want to see from
the mass of data available. What is more, there may well be data items that
some users should not be allowed to see. Should the accounts clerk be able
to log in to SQL and look up the managing director's salary? The director
would not think so! So we can see that this mass of information does not
need to be, and in some cases cannot be allowed to be, available to all users
at all times.

So it would be useful to have ways of:

- saving time when retrieving data

97

98 Understanding SQL

and/or
- restriCting the data that users are allowed to access

SQL provides VIEWS to satisfy these needs.

8.1.2 What is a view?

The CREATE VIEW command allows the user to set up different 'views'
of the database - different 'angles' from which to examine the data. Using
the correct view will present the user immediately with exactly the data that
he requires, without having to go through the tedious task of writing
SELECT statements every time.

You can set up VIEWS which constrain their users to seeing:

- a subset of rows from one or more tables.
- a subset of columns from one or more tables.

a subset of both rows and columns from one or more tables.

The diagram below shows you the concepts behind a view.

'salesmen' __ ~1
table •

, ___ -t ___ 'salesview'
view

A VIEW is set up with a vanatton on the SELECT command. We will
discuss the CREATE VIEW command in section 8.2; but here is an

Creating and using views 99

example of a simple CREATE VIEW just to show you the principle of how
a view is formed.

CREATE VIEW east sales AS
SELECT empno,surname,qltarget FROM salesmen

WHERE region = 'East';

Once the view called 'eastsales' has been created, then every time you want
to see the employee number, surname and target of all salesmen in East
Region all you need do is say:

SELECT * FROM eastsales;

There are some exceptions (see 8.5), but in general, any set of rows and
columns that you could produce with a SELECT can form a VIEW. So you
could easily set up different views to show their users:

all salesmen in East Region
- all salesmen who have not sold anything yet
- the total contract amounts so far, grouped by region

and so on.
In most cases, a view appears to the user to be exactly like a base table.

You can CREATE it, CREATE a SYNONYM for it, SELECT from it,
UPDATE it and INSERT new rows into it (with certain restrictions; see
8.5) and DELETE it.j You can grant different access privileges to different
users, just as with a base table. (See 102.7 for a full discussion of
privileges.)

However, a view is fundamentally different from a base table. A base
table actually contains data. A VIEW is more like a result table which has
been made permanently available for querying. But unlike a result table, a
VIEW is dynamic. This means that if you change data in the base tables
from which a VIEW is composed, then the data in the VIEW changes
immediately to reflect the new base tables. Every time the view is used,
SQL reinterprets the 'formula' which was used to create it and reproduces
the latest version of the data. For this reason, a view is sometimes referred
to as a virtual table.

8.2 Creating a view - CREATE VIEW

8.2.1 The CREATE VIEW command

The basic syntax of CREATE VIEW is:

100 Understanding SQL

CREATE VIEW viewname (column list) AS
SELECT statement

(WITH CHECK OPTION);

Both the column list and the WITH CHECK OPTION clause are optional.
Once a view has been created, its 'definition' (the SELECT formula

which created it) is stored in the appropriate System Catalog table.
To create a view showing only salesmen in East Region, you could say:

CREATE VIEW east sales AS
SELECT empno,surname,address FROM salesmen

WHERE region = 'East';

This creates the view 'eastsales', which contains three of the columns from
'salesmen' and only a subset of rows; i.e. those where region is 'East'.

Once this has been done, the user can access 'eastsales' just as if it was a
base table. Every time he wants to see all salesmen in East Region, he can
say:

SELECT * FROM eastsales;

rather than the longer

SELECT empno,surname,address from salesmen
WHERE region = 'East';

In both cases, he would see the same display on the screen.

Avoiding the use of*
Although it is quite valid to specify the * (all columns) in the SELECT
clause of a CREATE VIEW, doing so can lead to problems if the definition
of the base table is altered. For example, you might create the view
'eastsales' with

CREATE VIEW east sales AS
SELECT * FROM salesmen

WHERE region = 'East'

If you later add a new column to the salesmen table with:

ALTER TABLE salesmen
ADD (postcode (CHAR 8));

most implementations of SQL, such as DB2 and Oracle, will spot an
inconsistency between the original specification and the current base table,
and any further operations referencing the view will fail. (This also holds
true when deleting a column.)

For this reason it is always safer to specify all the individual column

Creating and using views 101

names in the SELECT clause, even though it may seem like a waste of time
if you simply want to pick up all columns and use the names already
defined in the base table.

If you do specify the column names individually, you are safeguarded
against problems occurring when columns are added to the base table.
However, you will still find similar problems if a base-table column is
deleted, or has its name changed. Naturally, the view definition finds that an
important part of its 'formula' is missing, and any further references to the
view will fail.

8.2.2 Rowand column subsets

As we mentioned above, views can consist of subsets of columns, rows or
both columns and rows, from one or more tables. You use the
SELECT .. WHERE .. statement to specify which rows/columns are to be
allowed into the view. Here are some examples of valid CREATE VIEWs:

CREATE VIEW largetarget AS Row Subset, One Table
SELECT * FROM salesmen

WHERE q1target > 150000;

CREATE VIEW onlysurname AS Column Subset, One Table
SELECT surname FROM salesmen;

CREATE VIEW surtarget AS Row and Column Subset,
One Table SELECT surname FROM salesmen

WHERE q1target > 150000;

CREATE VIEW multirows AS
SELECT * FROM salesmen s,contracts c

WHERE s.empno = c.empno

Row Subset,
Two Tables

CREATE VIEW multicols AS Rowand Column Subset
SELECT s.empno,surname,amount Two Tables
FROM salesmen s, contracts c

WHERE s.empno = c.empno;

CREATE VIEW region group (region, total) AS Grouped View
SELECT region, SUM (q1target) FROM salesmen

GROUP BY region;

As you can see, it appears that any SELECT statement which is valid when
given as an ordinary data retrieval command, can also validly be used to

102 Understanding SQL

create a VIEW. However, there are in fact quite a few restrictions on the
SELECT statements which can be made. These are discussed fully in 8.5.

8.2.3 Changing column names

8.2.3.1 The default column names
Unless you specify otherwise, the columns in a VIEW 'inherit' the same
names as the columns in the corresponding base tables. In other words, they
behave exactly as 'normal' result tables. So, if you create a view with:

CREATE VIEW eastsales AS
SELECT empno,surname FROM salesmen

WHERE region = 'East';

then the view called 'eastsales' will have two columns, called 'empno' and
'surname'.

Empno Surname

10001 Smith
20002 Brown

8.2.3.2 How to change column names
You can specify different column names as an optional part of CREATE
VIEW. Simply include a comma-separated column name list after the name
of the view. The list must be contained in brackets, and it must contain
headings for all the columns in the SELECT clause.

The columns selected by the SELECT statement will be assigned to your
'alternative' column names on a 'left to right' basis. For example:

CREATE VIEW eastsales (Employee, Name, Half Year) AS
SELECT empno,surname,q1target+q2target

FROM salesmen
WHERE region = 'East';

will give a view with three columns

Employee Name

10001
20002

Smith
Brown

Half Year

78000
145000

In any subsequent operations on the data in the view, you must refer to
those columns by their new names. So,

SELECT empno FROM east sales; ** ILLEGAL **

Creating and using views 103

has to be discarded in favour of:

SELECT employee FROM eastsales;

8.2.3.3 When you have to specify different column names
There are three situations when you must define specific column names for
the view. These are:

when the view is created with columns of the same name from more
than one base table.
when one of the columns is a calculated column or contains an
aggregate function.
when one of the columns contains a non-ANSI-SQL function.

In all these cases, SQL cannot decide by itself what to call the view
columns. You have to set up the names yourself. Here are three examples:

1. CREATE VIEW twotables (Employee, surname, empnum, amount) AS
SELECT s.empno,s.surname,c.empno,c.amount
FROM salesmen s, contracts c,
WHERE s.empno = c.empno;

where a column called 'empno' is picked up from both base tables.

2. CREATE VIEW eastsales (empno,surname,halfyear) AS
SELECT empno,surname,qltarget+q2target
FROM salesmen
WHERE region = 'East';

where the calculation 'qltarget+q2target' has to be assigned a name.

3. CREATE VIEW east sales (empno,surname,YearJoined) AS
SELECT empno,surname,YEAR(datejoined)
FROM' salesmen
WHERE region = 'East';

This example uses the dBASE IV function 'YEARO' to display only the
year from the date. Of course, this type of function is not in the ANSI
standard, but you will find that every implementation contains useful
functions similar to this.

8.2.4 The WITH CHECK OPTION

8.2.4.1 What does WITH CHECK OPTION do?
The WITH CHECK OPTION clause is used to ensure that whenever a view
is updated with INSERT or UPDATE, no values are allowed to be entered
which contravene the 'formula' which CREATEd the view. In other words,

104 Understanding SQL

you can only enter into a view rows which satisfy the condition used to
create the view. Let us illustrate this with an example:

CREATE VIEW largetargets AS
SELECT empno,surname,q1target FROM salesmen

WHERE q1target > 150000;

If the WITH CHECK OPTION clause is not specified, then it would be
perfectly possible to INSERT a row for a salesman whose target is only
30000:

INSERT INTO east sales VALUES
(' 40004' ,
Marks,
10000);

The 'salesmen' base table will, quite correctly, be updated to include this
row. However, the row will immediately disappear from the view, since it
does not satisfy the view formula of 'WHERE qltarget > 150000'.

Although this behaviour is logical, it seems to go against the whole idea
of having the view in the first place. If a user is supposed to be seeing only
salesmen with targets over 150000, then he should not really be allowed to
update the base table with targets of values under 150000.

The problem can be avoided if you use the WITH CHECK OPTION
clause. If we created 'largetargets' as:

CREATE VIEW largetargets AS
SELECT empno,surname,q1target FROM salesmen

WHERE q1target > 150000
WITH CHECK OPTION

then the INSERT statement above will be rejected, as it should be.

8.2.4.2 Restriction on WITH CHECK OPTION
You can only use WITH CHECK OPTION on a view which is updatable.
See section 8.5 for a full discussion of which sorts of views are allowed to
be updated. If you attempt to specify WITH CHECK OPTION on a non­
updatable view, then the whole CREATE VIEW command will fail.

You would usually want to specify the WITH CHECK OPTION clause
on any (updatable) view that you create.

8.2.4.3 Using WITH CHECK OPTION to validate data entry
As you can see, WITH CHECK OPTION provides a useful way to validate
data entry into base tables. The only 'validation' checks otherwise provided
by ANSI SQL are the CREATE TABLE options NOT NULL and UNIQUE.

Creating and using views 105

If you want to ensure that Quarter 1 target figures are never entered as
zero or less than zero, then you could define a view:

CREATE VIEW salesentry AS
SELECT * FROM salesmen

WHERE qltarget > 0
WITH CHECK OPTION;

If all data entry to the base table 'salesmen' is carried out through the
identical view 'salesentry', then no targets of zero or less will be allowed
through.

8.3 Deleting a view - DROP VIEW

ANSI SQL makes no provision for removing a view from the database -
just as it makes none for removing a table! However, the de facto standard
command for deleting a view is:

DROP VIEW viewname;

This is used in exactly the same way as the DROP TABLE command. For
example:

DROP VIEW eastsales;

will remove the view definition for 'eastsales' from the appropriate System
Catalog tables.

Any other views dependent on the dropped view (i.e. those which
reference the dropped view in their own CREATE VIEW definition) will
also be dropped from the database.

8.4 Using views

Once a view has been created, you can carry out on the view most of the
operations that you can carry out on base tables. (The exceptions to this rule
are given in section 8.5.) The most common action, of course, will be to
query the view with SELECT.

If we create 'eastsales' as:

CREATE VIEW east sales AS
SELECT empno,surname,qltarget

FROM salesmen
WHERE region = 'East'

(showing all salesmen in East Region)

106 Understanding SQL

we can then query it with commands like:

SELECT * FROM eastsales;

SELECT surname,qltarget FROM eastsales;

SELECT empno,qltarget FROM east sales
WHERE qltarget > 200000;

We could update it with commands like:

INSERT INTO east sales VALUES
(30003,
, Adams' ,
95000);

You can even use a view in the SELECT clause used to create another
view. You could say:

CREATE VIEW next view AS
SELECT empno,surname FROM eastsales

WHERE surname LIKE 'S%';

to create a view showing all salesmen in East Region whose surname begins
with'S'.

8.5 Restrictions on views

There are two types of restrictions on what you can do with views. They
are:

restrictions on the SELECT statement used to create the view in the
first place
restrictions on what you can do with a view once it has been created

As always, the different SQL implementations have slightly different rules
about what is and is not allowed when creating and using views. However,
since the rules are, in the main, based on what it is logically possible to
achieve with a view, this is one of the areas where most SQLs are fairly
consistently in agreement.

As an example of a logically impossible operation, consider a view based
on the GROUP BY statement (the view itself is perfecly valid):

CREATE VIEW regiontotals (Region, Total) AS
SELECT region,sum(qltarget) FROM salesmen

GROUP BY region;

Creating and using views 107

This would produce a view showing something like:

Region

South
West
North
East

Total

500000
600000
250000
450000

You could not issue a command such as:

INSERT INTO regiontotals VALUES
(Southwest,
500000);

** ILLEGAL **

There is no way that this statement can be related to anything in the
underlying base table - it is logically impossible. All SQL implementations
would reject such a command on a grouped view.

In the next sections, we will -cover all the restrictions on views in some
detail.

/

8.5.1 Restrictio~ns on SELECT when CREAT(E)ing a VIEW

In the SELECT statement used to create· a view:

- you may not use UNION
- you may not use ORDER BY

It is perfectly acceptable to use ORDER BY and UNION when querying an
existing view. So, although you could not say:

CREATE VIEW east sales AS
SELECT empno,surname FROM salesmen
WHERE region = 'East'

ORDER BY empno; ** ILLEGAL **

you can get the result that you want by first creating the view as

CREATE VIEW east sales AS
SELECT empno,surname FROM salesmen
WHERE region = 'East'

and then querying it with:

SELECT * FROM east sales
ORDER BY empno;

108 Understanding SQL

Similarly, you could not say:

CREATE VIEW eastwestsales AS ** ILLEGAL **
SELECT empno,surname FROM salesmen

WHERE region = 'East'
tnfIOH

SELECT empno,surname FROM salesmen
WHERE region = 'West';

But you could get the same result by creating two views for East Sales and
West Sales regions, and then combining them in a SELECT:

SELECT * FROM east sales
UNION
SELECT * FROM westsales;

Of course, in this particular example you would have been better off using
an 'IN list' or an 'OR' condition in the original SELECT used to create the
view.

CREATE VIEW eastwestsales AS
SELECT empno,surname FROM salesmen

WHERE region IN ('East' ,'West');

8.5.2 Restrictions on using existing views

Most of the restrictions on using existing views affect the commands for
updating tables - INSERT VALUES and UPDATE. However, grouped
views (those created with a GROUP BY clause), and views created using
functions or calculations, are also subject to certain restrictions on SELECT.
There are rules governing what can and cannot be done with existing views;
these are summarised in 8.5.2.1.

As we mentioned in section 8.5, what you can and cannot do with a
view depends on what is logically possible. To help you to understand the
operations that are logically possible, here is an explanation of how SQL
interprets commands on views.

SQL commands acting on base tables act directly on the 'real' data in the
base rows. A command issued on a VIEW does not have any 'real' data
directly available to work on; the formula of the view is 'getting in the way'
of the base table. When SQL sees a command issued on a view, it uses the
view 'formula' to reformulate that command as if the command had been
made on the base table. If such a reformulation does not produce a valid
SQL statement, then the command is rejected.

Creating and using views 109

8.5.2.1 Rules/or creating updatable views
In ANSI SQL, a view is only updatable if all the conditions below apply to
the view definition (that is, to the SELECT expression, that defines the
view).

1. It does not include the DISTINCT option
2. It does not include a function or a calculation
3. The FROM clause references only one table (which itself must be

updatable)
4. The WHERE clause does not contain a subquery
5. There is no GROUP BY clause
6. There is no HA VING clause

And of course, we have already said that CREATE VIEW does not support
the ORDER BY or UNION clauses in the SELECT definition.

8.5.2.2 Examples o/updatable views
For example, if 'eastsales' has been created as

CREATE VIEW east sales AS
SELECT empno,surname,qltarget FROM salesmen

WHERE region = 'East';

then an UPDATE statement such as:

UPDATE east sales
SET qltarget = q1target *1.1;

(to increase everybody's targets by 10%)

will be reformulated internally by SQL as:

UPDATE salesmen
SET q1target = q1target*1.1
WHERE reqion = 'East';

This, of course, is a perfectly valid SQL statement. 'Eastsales' is therefore
said to be an updatable view.

8.5.2.3 Examples 0/ non-updatable views
However, if 'regiontotals' had been created as a view containing an aggregate
function and a GROUP BY clause, such as:

CREATE VIEW regiontotals (region, tot,al) AS
SELECT region,SUM(q1target) FROM salesmen
GROUP BY region;

then a command such as

110 Understanding SQL

INSERT INTO regiontotals VALUES
('Southwest' ,99000);

will be reformulated as something like:

** ILLEGAL **

INSERT INTO salesmen (region,SUM(qltarget)) VALUES
('Southwest' ,99000); ** ILLEGAL **

This is not a valid SQL statement, since you cannot specify a column
containing an aggregate function in an INSERT command. In addition, the
'Southwest' region has no obvious relationship with anything in the 'sales­
men' table - it does not contain salesmen's employee numbers or individual
targets etc. The view violates rules 2 and 5 of the list we gave in 8.5.2.1.

Here is another example of a non-updatable view. This time, the view
contains data from more than one table, thus violating rule 3 from the list
above. If the view was created as:

CREATE VIEW twotables AS
SELECT s.empno,s,surname,c.amount

FROM salesmen s, contracts c
WHERE s.empno=c.empno;

then the update attempt:

INSERT INTO twotables VALUES
('40004' ,

'Spencer' ,
39000); ** ILLEGAL **

will fail. SQL cannot reformulate the statement into anything resembling a
valid INSERT command, since INSERT cannot reference two tables at
once.

Of course, you could argue that SQL should be enhanced to give it the
capabilities to translate such a command into the two separate INSERT
V ALUES statements that would be required to perform the update success­
fully. After all, the human eye can easily see that what the update is
intended to do is add one row to 'salesmen' (entering employee number
40004, called Spencer), and also add one row to 'contracts' (entering
employee number 40004's contract amount of 39000). However, SQL is not
capable of performing such translations in its current state.

8.5.2.4 Rules/or querying views
As we saw in 8.5.2.1, the rules for permitting updates on views are fairly
well defined. However, it is not so easy to define precisely what restrictions

Creating and using views 111

there are on SELECTing from views. Perhaps the best that we can do is to
state the obvious and say that when the query is 'reformulated', it must
form a valid SQL statement.

There are some general guidelines that can be laid down:

1. A view column derived from an aggregate function or calculation
may only be named in the SELECT or ORDER BY clauses of the
SELECT statement used to query the view.

2. A view column derived from an aggregate function may not itself
be used with a function.

3. A view created from a GROUP BY clause cannot be joined with
another table or view.

4. A view created from a GROUP BY clause cannot use a WHERE,
GROUP BY or HAVING clause in a FROM statement.

8.5.2.5 Examples of non-queryable views
Here is an example of another illegal command attempted against the
grouped view 'regiontotals' defined in 8.5.2.3. In this case, we are attempting
to SELECT all regions where the 'total' figure is greater than 500000.

SELECT region,total FROM regiontotals
WHERE total> 500000;

This will be reformulated by SQL as:

SELECT region,SUM(qltarget) FROM salesmen
WHERE SUM(qltarqet) > 500000
GROUP BY region;

** ILLEGAL **

** ILLEGAL **

This is not a valid SQL statement, since WHERE clauses cannot contain
aggregate functions. It violates rule 1 in 8.5.2.1.

Below is an example of a violation of rule 2 in our list. This produces a
'nested' function in the reformulation, which is not permitted in SQL. If we
perform the following query on 'regiontotals':

SELECT AVG(total) FROM regiontotals;

then SQL reformulates it as something like:

SELECT AVG(SUM(qltarget)) FROM salesmen;

8.5.2.6 Why restrictions on views are a problem

** ILLEGAL **

** ILLEGAL **

Views present a confused interface to the SQL user. In many situations they
function exactly as base tables do, allowing users to query and update data
freely. In other situations, the fact that a view is an 'extraction' of data

112 Understanding SQL

from other tables prevents the user from carrying out what at first glance
appear to be identical operations. When you consider that in many cases
users of an SQL application will not be aware that they are using a view
rather than a base table, it is hardly su'tprising that users are sometimes
irritated to find that, so far as they are concerned, an 'identical' command
works fine on one table but not another.

On the other hand, as we have seen, there are good reasons why apparently
'valid' commands have to fail on some views. SQL implementations have
yet to work out a consistent way of informing the user of the reasons which
cause failures in view access and updates; however, there must be some­
thing better than Informix's ubiquitious 'Invalid SQL statement' message!

8.6 Using views to preserve perceived data structures

You can see from the previous sections that views can be used both to save
users' time when performing frequent identical operations on the database,
and to restrict the data items a user is allowed to access.

Views are also a useful way of preserving the same user interface to data
through changes to the underlying table structures. In any production
application, existing table structures often have to be changed, either
because the database design was not correct in the first place, or because
changes in the business have made necessary the addition or deletion of
columns and tables. Whatever the reason, such changes can be very confusing
for the average user.

For example, the database manager may decide that, owing to the
company's new requirement to break down salesman's targets over differ­
ent product lines for analysis, it will now be more sensible to 'split' the
'salesmen' table into two. One table will hold the salesman's name,
address, date of birth etc; the other will hold multiple rows for each
salesman, showing the quarterly targets for each product. Some users will
need to know about this change in order to access the new information
available. But if the majority of users simply need to continue to see the
salesman's employee number, name, and total targets per quarter, then the
database manager could create a view to 'reproduce' the data originally
held in the old 'salesmen' table.

The view could even be given the name 'salesmen' (provided of course
that the new tables were created with different names!). Those users not
affected by the new requirement would never even be aware that the
database structure had changed.

Creating and using views 113

Summary

In this chapter you saw how SQL lets you create and delete views which
provide different perspectives on the database. Views are useful because:

1. They save users time in entering complex SELECTs.
2. They are an easy way to restrict the data that a particular user is

allowed to access.
3. They can be used to 'cushion' users against changes in underlying

database structures.

We also looked at some of the restrictions on creating and using views.

9 Optimising performance

Overview

This chapter deals with ways of improving the performance of an SQL
database. We will talk about options available in every SQL implementa­
tion, such as indexing, and changing the design of queries.

Major commands and topics covered

CREATE INDEX
DRbpINDEX

9.1 Introduction

Query design

If you understand all the commands that we have covered so far in this
book, then you will certainly be able to get SQL to do more or less anything
you want it to do, from creating tables and views, through inputting data, to
SELECTing any set of data that you need. But it may not do it as quickly as
you would like!

You will find that there are several ways by which you may be able to
speed up SQL. Some are things which all SQLs support. Others are specific
to a particular implementation. Here we will cover in some detail the
options available to all SQL users, and give a brief rundown on some of the
implementation-specific ones. None is essential to the correct operation of
an SQL system; on the other hand, they may make the difference between
users being happy to use the ·computer or deciding that it would be quicker
to use pen and paper instead!

114

Optimising performance 115

9.2 Indexing a table - CREATE INDEX

9.2.1 What is an index?

An index provides SQL with a quick way to 'look up' entries in a table (just
as an index to a book provides a quick way to look up topics in the text).
An index groups all identical entries for a particqlar column (or columns)
together, letting SQL access those entries almost instantaneously.

SQL uses indexes for two, totally unrelated, purposes. The primary use
for an index is to speed up data access. The second thing most SQLs use an
index for (contrary to the principles of the relational model) is to enforce
uniqueness of rows. The UNIQUEness concept and SQL's misuse of it is
covered in section 4.4.5.2. We will talk about the use of the CREATE
UNIQUE INDEX command in section 9.2.2.3.

Note for dBASE III and IV users

Users of dBASE III and IV (not dBASE IV SQL) and some other PC­
based non-relational databases have a 'definition' problem with the word
'index'. In dBASE, one of the primary uses of an index is to order the data.
In SQL, the index has no effect whatever upon the sequence in which rows
are displayed; this is controlled solely by the ORDER BY clause in a
WHERE condition.

9.2.2 Using CREATE INDEX

9.2.2.1 The basic command
You set up an index with the CREATE INDEX command. The syntax of
this is:

CREATE (UNIQUE) INDEX indexname ON tablename
columnlist

For example, to set up an index on the contracts table to speed up access by
employee number, we would say:

CREATE INDEX contempno ON contracts
(empno) ;

The column on which the index is created is called the index key.
This now provides 'quick access' to the values in the 'empno' column.

For example, a query such as:

116 Understanding SQL

SELECT empno,amount FROM contracts
WHERE empno = '10001';

would execute much more quickly.

9.2.2.2 Indexes on multiple columns (concatenated indexes)
If you need to access data based on more than one column of a table, you
can specify several columns in the index key. For example:

CREATE INDEX empcust ON contracts
(empno, custname) ;

This would speed up a query such as:

SELECT empno,custname,amount FROM contracts
WHERE empno = '10001'
AND custname = 'Brown Brothers' ;

This kind of mdex is also called a concatenated index.

9.2.2.3 The UNIQUE option
Most SQLs use the UNIQUE option on CREATE INDEX as their only way
of enforcing that a table does not contain duplicate rows. (Whether or not
this is the best way of achieving that result is discussed in section 4.4.5.3).
A UNIQUE index created on the primary key of the table will ensure that
no 'doubling up' of data can occur. For example, in the 'salesmen' table,
there should only ever be one entry for anyone employee number. If no
index, or an index without the UNIQUE option, exists on the 'empno'
column, then most SQLs would be quite happy to let you have multiple
entries for the same employee number. You could issue the command:

INSERT INTO salesmen (empno,surname) VALUES
(' 10001', , Smith');

followed by

INSERT INTO salesmen (empno,surname) VALUES
('10001', 'Brown');

and end up with two entries under employee number 10001.
However, if an index was created by:

CREATE UNIQUE INDEX ON salesmen
(empno) ;

then the attempt to insert a second entry for' 10001' would be rejected.
The UNIQUE option can apply equally well to indexes which have

multiple-column keys. The command:

Optimising performance 117

CREATE UNIQUE INDEX empcustdate ON contracts
(empno,custname,contdate);

would enforce the contracts table's primary key of the combination of
employee number, customer name, and contract date.

9.2.3 What does an index look like?

You can think of an index as a separate file containing pointers to the
original table. Conceptually, it looks rather like this:

Original Table Index on 'empno'

Empno Amount

20002 10,000 ____________ 10001
10001 25,000 10001
30003 15,000 20002
90009 50,000 20002
20002 25,000 30003
10001 13,000 90009

To help you see how the index works, we have drawn lines between the first
two index entries and their corresponding wws in the base table.

Details of indexes (Le. the table that they were created on, and the key used
to create them) are stored in one of the System Catalog tables. You can see
what indexes are available for a table with a SELECT command like:

SELECT * FROM sysidxs
WHERE tbname = 'contracts';

(this uses the dBASE IV SQL catalog table 'sysidxs').

The index is not itself a table, and you cannot access it with commands like
SELECT , UPDATE etc. Indeed, you cannot access it directly at all! All you
can do with an index is CREATE it or DROP it. It is SQL that decides
wnether or not to use an index to help with a retrieval command; it is SQL
that updates the indexes as changes are made to the table.

9.2.4 How does it speed up data access?

To show how using an index can speed up the system, consider the
'contracts' table in our example database. Let us assume' that it has five
thousand entries, only two of which are for employee number' 10001'. If
the table has no index associated with it, then a query such as:

118 Understanding SQL

SELECT * FROM contracts
WHERE empno = '10001';

(to see all the contracts for employee number 10001), has to examine every
row in the table to see whether it refers to this employee.

However, if an index has been created on the employee number column,
then SQL can go immediately to the first entry for ~mployee 10001. It then
passes rows to the result table until it reaches a row for employee 10002. At
this point it 'knows' that there are no more entries for 10001, so it stops
looking through the base table.

Since there are only two entries for employee 10001, SQL has only had
to examine two rows instead of five thousand. Obviously, it is impossible to
quantify the actual time saved by using the index, since that depends
entirely on the computer system used. However, we can certainly say that
the operation with the index will be much faster than without.

9.2.5 Index overheads

From the above example, you might assume that it would be a good idea to
create indexes on every possible column and combination of columns, just
to cover the remote possibility that you might need them some day!
However, this would not be sensible.

Maintaining an index makes extra work for SQL. After every change to
the database (every INSERT, UPDATE or DELETE), SQL has to check
which indexes are affected, and record the new data. This all takes time.
Updating one index takes a small amount of time (probably insignificant);
updating twenty indexes might take so long that the user starts to complain
about the response time of the system. In addition, indexes take up space on
the disk. This mayor may not be a consideration for you; however, in
principle you do not want to waste resources unnecessarily.

Indexes also take time to set up in the first place. It may well be worth
spending five minutes creating an index on 'empno' if you know that you are
going to be doing frequent queries based on employee numbers. If you are
doing a 'one off' enquiry to find all employees whose address contains the
postcode 'WI', then you would be better off just performing the query, and
not wasting time setting up the index at all.

9.2.6 When does SQL use indexes?

9.2.6.1 The 'general' rule
We mentioned above that the user has no control over whether or not an
index is used by SQL for any particular operation. SQL looks at the

Optimising performance 119

command that it has to process and the available indexes, and 'decides'
which, if any, index to use. The SQL module which controls this process is
called the optimiser. The optimiser's job is to examine a query, and decide
upon the most efficient strategy for producing a result. The more 'intelligent'
the optimiser, the better the performance of the SQL system will be. The
'rules' followed by any optimiser will probably change in different releases
of any SQL product, since the SQL suppliers are naturally always working
on increasing the efficiency of their products.

Different SQL implementations have slightly different internal 'rules'
about index usage. However, it is possible to generalise about usage so that
you can decide whether or not it is worth setting up an index on a particular
column.

The basic rule for index use is that if:

and

then

there is a WHERE clause in the statement being parsed.

at least the first column mentioned in the WHERE condition (for any
particular table) has had an index created on it

SQL will definitely use the index.

9.2.6.2 Examples of us ingl not using an index
So, if an index has been created on the employee number of the 'contracts'
table, then the following commands will certainly use the index:

SELECT * FROM contracts
WHERE empno = '10001';

SELECT * FROM salesmen, contracts
WHERE salesmen.empno = contracts.empno;

The next command will definitely not use the index, since the WHERE
clause does not reference the 'empno' column at all:

SELECT * FROM contracts
WHERE custname = 'Brown Brothers';

In the example in the next command, where 'empno' is referenced as the
second column in the WHERE clause, the situation is less clear cut. Here
we move into the realms of the differences between SQL implementations;
some might use the existing index, others might not.

SELECT * FROM contracts
WHERE custname = 'Brown Brothers'
AND empno = '10001';

120 Understanding SQL

9.3 Rephrasing commands to force index use

9.3.1 Why should you rephrase commands?

Notice that you could easily rephrase the WHERE condition in the section
above to make sure that SQL does use the index. Simply reversing the order
of the clauses will give:

SELECT * FROM contracts
WHERE empno = '10001'
AND custname = 'Brown Brothers';

There are many situations like this where you can control whether an index
is used or not.

By now, you should have realised that SQL has a high level of redundancy
in its SELECT command. You can often achieve an identical result by
combining different operators in different ways. Sometimes, one method
will yield the result significantly more quickly than others.

For 'one off' queries, it probably really does not matter which form of
SELECT you use. Use whichever is easiest for you to understand! But for
frequently-used retrievals, you should try to find the quickest method
available - the one that will use an index.

Here are a few situations to avoid when setting up queries. In all the
following situations, SQL will be unable to use an index to speed up
processing. In many cases, you could rewrite the query to allow an index to
be used.

This list is certainly not exhaustive. Nor is it the case that these 'rules'
will work in all SQL implementations (or even, for that matter, in future
releases of DB2). The best advice that we can give regarding 'speeding up'
your system is that, if a query seems to take an inordinately long time,
consider whether it could be rephrased to achieve the same result, and try it
out!

9.3.2 Examples of conditions that will not use indexes

(The examples here are taken from DB2.)

9.3.2.1 Using NOT with LlKE, BETWEEN, IN, EXISTS
SQL does not use an index if the WHERE clause depends on a NOT
operator. So if an index had been set up on the 'amount' column on the
contracts table, then:

SELECT * FROM contracts
WHERE amount BETWEEN 10000 AND 34000;

will use the index, whereas

Optimising performance 121

SELECT * FROM contracts
WHERE amount NOT BETWEEN 10000 AND 34000;

will not use the index.

Solution
Rewrite the query to use < and >, or an IN(list). So:

SELECT * FROM contracts
WHERE amount >= 10000
AND amount <=30000;

will use the index.

9.3.2.2 Comparing a column with a column or literal of a different length
SQL will not use an index if the items being compared are of different
lengths. For example, let us say that two tables contain a field 'surname',
and table1 defines it as CHAR(15) whereas table2 has defined it as CHAR(20).
Even if table2 has an index set up on 'surname', then the following
SELECT could not use it.

SELECT table1.surname, table2.amount FROM table1,table2
WHERE table1.surname = table2.surname;

Similarly, if a column is to be compared with a constant, then the constant
must be of the same length. For example, if the 'empno' column is defined
as being CHAR(5), then a SELECT to extract all entries from 'contracts'
for employee number 10001 will not use the index if the constant is defined
as a 6-character item:

SELECT * FROM contracts
WHERE empno = '10001 ';

9.3.2.3 Using a concatenated index in the 'wrong' order
If you have set up a concatenated index, then in some situations keys other
than the first will not be used. For example, if you set up an index on
'salesmen' ;

CREATE INDEX regemp ON salesmen (region,empno);

the index will be used in the two follwing queries (where region is
referenced first in the WHERE clause):

SELECT * FROM salesmen
WHERE region = 'East'
AND empno = '10002';

(uses both keys)

122 Understanding SQL

SELECT * FROM salesmen (uses region key only)
WHERE region = 'East'
AND q1target = 50000;

But the index will not be used in a query such as:

SELECT * FROM salesmen
WHERE empno = '10001';

or in a join like:

SELECT * FROM salesmen, contracts
WHERE salesmen.empno = contracts.empno;

because in these two queries there is no mention of the region key.

Solution
If you are going to reference the employee number in this way frequently,
then you should set up another index which has 'empno' as the first or only
column in the index key.

9.3.2.4 Calculations on index key columns
If the WHERE clause includes a calculation on a column which has had an
index created on it, then the index will not be used. For example, if we have
set up an index on 'qltarget', then the query:

SELECT * FROM salesmen
WHERE q1target = 60000;

will use the index. But the following queries will not:

SELECT * FROM salesmen
WHERE q1target * 4 = 240000;

and

SELECT * FROM salesmen
WHERE q1target + q2target = 200000;

9.3.2.5 Character strings beginning with a 'wild card' (%)
Indexes cannot be used on character strings beginning with the 'any character'
sign' %'. So this query on the indexed column 'empno' :

SELECT * FROM salesmen
WHERE empno = '%0001';

(to find any employee number ending in '001 '), will not use the index.

Optimising performance 123

Solution
This can be difficult to avoid. But you may be able to use an 'IN(list)'
instead. For example, if you are really only interested in employees lOOOI,
20001,50001 and 70001, you could say:

SELECT * FROM salesmen
WHERE empno IN ('10001' ,'20001' ,'50001' ,'70001');

and benefit from the index.

9.4 Deleting an index - DROP INDEX

If you no longer need an index, then you can remove it from the database
with the DROP INDEX command. You simply say:

DROP INDEX indexname;

For example, to get rid of the 'regemp' index created in 9.3.2.3, you would
say:

DROP INDEX regemp;

9.5 Add-on products to help you to design efficient queries

Most suppliers provide some help for users attempting to unravel the
complexities of the most efficient way to write queries. In fact, most
suppliers devote a few pages to this subject in the system documentation,
which will probably be enough to point you in the right direction for your
particular implementation. Users of the more established SQL systems
often have available 'add-on' products - such as System Center's 'DBI
Optimize' for DB2 users - which can be set to examine any query and
suggest ways in which it might be made more efficient. As SQL systems
become more widespread in the PC marketplace, we can expect that such
'add-on' products will become available for a wider range of systems.

9.6 Other ways of improving performance

Improving query design is not the only way to improve performance. Most
SQL systems have various 'p~ameters' - for example, space allocated to
the various system areas - which can be changed to optimise the performance
of your particular needs on your particular computer system. In addition,
most suppliers provide utilities to assign tables, indexes, etc to particular
physical storage areas which correspond to the 'logical' storage requirements
of the database. This should help to group together tables which are

124 Understanding SQL

frequently accessed together. We are not going to deal with these techniques
here - they are implementation dependent, and have no relation to the SQL
language itself. But remember that reorganisation of the physical and
logical storage of your databases can often lead to performance gains.

Summary

Now you know how to improve the performance of your SQL system by
using - or choosing not to use - indexes. You are also aware that you may
be able to improve performance by juggling the way that your SQL
implementation stores the databases. And last, but by no means least, you
know that it is worth looking for 'outside help' in the form of add-on
products which may help you to pinpoint weak points in your querying
techniques.

10 Database security and integrity

Overview

This chapter deals with the problems of keeping the data in the database
intact.

Major commands and topics covered

GRANT
REVOKE

10.1 Introduction

It is obviously important for any system that stores potentially confidential
information to be able to control who is allowed to access what. It is also
important that, once a user has established his right to access and update a
particular data item, the system should be able to control what data is
entered.

The first type of control is known as database security. The second type
is called database integrity.

In fact, we have already covered in previous chapters the measures that
can be taken to preserve database integrity. We will summarise them briefly
in section 10.3 just to remind you.

The major part of this chapter will deal with database security measures.

10.2 Database security

10.2.1 Who controls database security?

Up to this point in the book we have been looking at SQL as though we
were using it on a 'single user' system. We have made no provision for

125

126 Understanding SQL

checking whether, having learned the UPDATE command, a user is actually
allowed to use it! But in practice, the majority of installed SQL systems are
running on multi-user systems. Somebody, with the aid of the SQL GRANT
command, has to be in charge of allocating authorisations and privileges
to all the users of the SQL database. This person is usually known as the
Database Administrator (DBA). If you are using SQL on a single-user
microcomputer system, you will be the DBA. Obviously, your job in this
case will not be very demanding! If you are an 'ordinary' user on a multi­
user system, you may never get the chance yourself to use the DBA-level
commands that you will learn about here. However, even 'ordinary' users
can use the security commands to some extent (for example, to control
other people's access to their own tables); and even a 'single-user' DBA
may find it useful to set up different user names to prevent him from
abusing his own powers by mistake! So all users of an SQL system need to
know about the security controls that SQL can provide.

10.2.2 Overview of SQL's security levels

SQL provides a very flexible way of controlling access to data. Access is
controlled at two different levels.

Levell - authorisation to use the SQL system, with password protection on
entry to the system.

Level 2 - privileges assigned to a particular user, applicable at table level.
At the 'highest' level, a user is GRANTed an 'overall' access level to the

system. GRANTing authorisation is also sometimes known as 'enrolling' a
user' onto the system. When a user is enrolled onto the SQL system he is
assigned:

- a user name
a password, (or 'identifier')
an authorisation level which controls the general type of operation
that he is allowed to carry out on the database

Most SQL systems demand that the user should 'log in' to the database by
providing his user name and password. SQL checks these entries in the
appropriate System Catalog table, and 'looks up' the authorisation level
belonging to this user.

Once in the SQL system, GRANT can control the type of operation that
each user can carry out on a particular table or view. The privilege levels
available range from SELECT (query capability only) through to UPDATE,
and can apply to a whole table or to selected columns.

The privilege levels assigned to a user for a particular table take priority

Database security and integrity 127

over the user's general authorisation level. So a user whose authorisation
level in principle allows him to UPDATE any table in the database may find
that his privilege level for the 'salesmen' table only allows him to SELECT
data.

The combination of authorisation and privileges gives the DBA very tight
control over who can do what to the database.

We will discuss the authorisation and privilege levels in detail in the
following sections.

10.2.3 Differences between SQL implementations

Most SQLs provide the dual-level security system described briefly above.
But, naturally, the different SQLs enforce slightly different authorisation
and privilege options. You may find that your particular SQL does not, for
example, have a privilege level called 'INDEX', or that your implementa­
tion's CONNECT authorisation allows users to do more (or less) than the
option described here. Here, we will use the Oracle options for illustration
purposes. However, the principles of allocating correct access controls
remain the same regardless of the exact options available.

You will also find that, while privileges are always allocated by GRANT,
the method for assigning authorisations varies considerably between
implementations. Oracle uses a version of the GRANT command; DB2 and
Informix assign authorisations when a database or schema is created; and
dBASE ~V SQL does not implement authorisations at all!

Note/or dBASE 1V SQL users
dBASE IV SQL is unusual in that there is no 'forced' log-in to the system,
and so there is no authorisation level of security. You can choose to run
dBASE with PROTECT set on, in which case a log-in sequence will be
demanded; however, this has no relation to SQL's authorisation procedures.

10.2.4 Ownership of tables and views

Up until now we have made the tacit assumption that all table operations we
have learned (SELECT, UPDATE, DELETE etc) are being carried out by
the creator of that table. We have therefore not needed to specify the owner
of the table as part of the table name. However, once we introduce the
concept of a multi-user database, it becomes vitally important to know who
created a table. Users have complete freedom of usage over tables that they
themselves have created; however, they have no rights to do anything with
tables created by other users, unless such rights (or 'privileges') are
GRANTed to them. Table names may always be prefixed by the user name
allocated when a user is enrolled into the SQL database. So, if the

128 Understanding SQL

'salesmen' table was created by user 'david', we could validly say:

SELECT * FROM david. salesmen;

The USER associated with a table is stored in the System Catalog as part of
the table definition. If you give a command which does not prefix the table
name with a user name, then SQL assumes that you are referring to a table
that you created. For the sake of clarity, we will refer to tables by their
'full' names throughout this chapter.

10.2.5 GRANT and REVOKE

GRANT and REVOKE are the two SQL commands concerned with
controlling which users have access to the SQL system, and at what
privilege level. The same command is used for both authorisation and
privilege level allocation.

GRANT is used to give users authorisations and privileges; REVOKE is
used to remove a previously GRANTed authorisation. (In fact, ANSI SQL
does not support REVOKE. However, since it is another of the 'obviously
useful' commands which DB2 does support, you will find it available in
most SQL implementations. Oracle, Informix and dBASE IV SQL all use
it.)

10.2.6 GRANT for authorisations

10.2.6.1 The syntax o/GRANT
The form of the GRANT command to enrol a new user or to change the
status of an existing user, is:

GRANT authorisation level TO username
IDENTIFIED BY password;

For example:

GRANT CONNECT TO liz
IDENTIFIED BY pword;

Once this command has been given, 'liz' can enter the SQL system when
she gives the password 'pword'. User names must be unique. However, two
users could have the same password.

The levels of authorisation available are (in increasing order of 'powerful­
ness'):

1. CONNECT
2. RESOURCE
3. DBA

Database security and integrity 129

A user can be granted more than one of these authorisations in a single
GRANT command:

GRANT RESOURCE, DBA TO liz
IDENTIFIED BY pwordi

Contrary to what you might suppose, GRANTing DBA authorisation does
not automatically confer RESOURCE authorisation as well, although grant­
ing RESOURCE does confer CONNECT.

10.2.6.2 What does CONNECT authorisation entitle you to do?
A user with CONNECT authorisation can:

- SELECT from other users' tables
- UPDATE, INSERT and DELETE data from other users' tables

He cannot:

- CREATE his own tables
- DROP other people's tables

10.2.6.3 What does RESOURCE authorisation enable you to do?
Users with RESOURCE authorisation can do everything the user with
CONNECT authorisation can do and, in addition:

- CREATE their own tables
- DROP their own tables

10.2.6.4 What does DBA authorisation enable you to do?
A user with DBA authorisation can carry out any operation on any tables in
the database. Obviously, the number of users at DBA level should be
severely limited!

10.2.6.5 Changing passwords
Once a user has been enrolled, any further reference to that user name will
be interpreted by SQL as a change to the user details rather than an attempt
to enrol another user. The password can be changed by reissuing the
original GRANT command with a new password attached. So:

GRANT RESOURCE TO liz
IDENTIFIED BY newpassi

10.2.6.6 Changing authorisations - adding and REVOK(E)ing
New authorisations can be added simply by reissuing a GRANT command.
Thus, if 'liz' already has RESOURCE privilege, then DBA privilege could
be assigned as well simply by saying:

130 Understanding SQL

GRANT RESOURCE,DBA TO liz
IDENTIFIED BY newpass;

To remove an authorisation, use the REVOKE command. So to remove the
DBA privilege from 'liz', say:

REVOKE DBA FROM liz;

To remove more than one privilege, list them separated by commas. Thus:

REVOKE RESOURCE,DBA FROM liz;

You can remove a user from the database completely by REVOK(E)ing the
CONNECT privilege:

REVOKE CONNECT FROM liz;

This last command would remove user liz from the system. However,
tables, indexes and views that she created whilst owner of RESOURCE are
not dropped from the system. Users who have been granted privileges to
use those tables can continue to do so, and if 'liz' is reinstated she can
access those tables again.

10.2.7 GRANT

10.2.7.1 The syntax o/GRANT
The GRANT command for assigning privileges has the syntax:

GRANT (ALL/privilege list) ON tablename
TO user name (PUBLIC)
(WITH GRANT OPTION);

For 'example, to give user 'liz' the right to UPDATE 'david's table called
'managers', we would say:

GRANT UPDATE ON david.managers
TO liz;

If all users are to be allowed to access this table, then the PUBLIC option
should be specified. So:

GRANT UPDATE ON david. managers
TO PUBLIC;

will allow everyone to update david's 'managers' table.
PUBLIC includes all current and future users of the system.

10.2.7.2 Privilege levels available
The privilege levels supported by ANSI SQL are:

SELECT
UPDATE (column list)
INSERT
DELETE

Database security and integrity 131

In addition, DB2 and many other implementations support the ALTER and
INDEX privileges. (ANSI SQL obviously cannot offer an ALTER privilege,
since it does not support the ALTER TABLE command.!)

Any or all of these privileges can be granted to any user. To grant more
than one privilege, separate them by commas; to grant all privileges, you
can use the shorthand 'ALL'. It does not matter in what order you specify
the privileges. Here are two examples of privileges being GRANTed:

and

GRANT SELECT,UPDATE ON david. managers
TO liz;

GRANT ALL ON david. managers
TO liz;

You can also assign a set of privileges to more than one user at a time. For
example,

GRANT SELECT,UPDATE ON david.managers
TO liz,paul;

The names of .the privilege levels are self explanatory. Just in case you are
not clear about what each level entitles the user to do, here is a brief
explanation of each one.

SELECT Allows the user to perform any retrieval operation with the
SELECT command.

INSERT Allows the user to INSERT new rows into the table.
DELETE Allows the user to DELETE rows from the table.
ALTER Allows the user to use the ALTER TABLE command.
UPDATE Allows the user to UPDATE data in the table.
INDEX Allows the user to CREATE and DROP INDEXes on the table.

The UPDATE privilege can be selectively applied to a column list. So 'liz'
could be given UPDATE privilege on only columns 'address' and 'phone'
of the 'managers' table with:

GRANT UPDATE (address,phone) ON david. managers
TO liz;

10.2.7.3 Who is allowed to assign privileges?
There are three classes of people who, in different circumstances, can grant
privileges to other users to use tables.

132 Understanding SQL

Firstly, anyone with DBA privilege can assign privileges to any user for
any table.

Secondly, the owner of a table (i.e. the person who created it) can assign
any privilege level to any other user.

Thirdly, if a user has been assigned the right to access a table WITH
GRANT OPTION, then he too can assign other users the same or 'lesser'
privileges over the table. A user cannot assign privileges that he himself
does not have. So, if 'liz' CREATEs a TABLE called 'salesmen', she can
assign 'david' SELECT, INSERT and UPDATE privileges on that table
with:

GRANT SELECT,INSERT,DELETE ON liz.salesmen
TO david
WITH GRANT OPTION;

The user 'david' can then himself GRANT any other user the right to
SELECT, INSERT or DELETE from the salesmen table. For example, he
could say:

GRANT SELECT ON liz.salesmen
TO paul;

But if he tried to GRANT a privilege which he does not himself have, such
as UPDATE, then the GRANT to 'paul' will fail.

He can also 'pass on' the WITH GRANT OPTION if he wishes. So 'david'
could have said:

GRANT SELECT ON liz.salesmen
TO paul
WITH GRANT OPTION;

which will allow 'paul' to GRANT the SELECT privilege on 'salesmen' to
yet another user.

10.2.8 Removing privileges - REVOKE

REVOKE is used to remove a privilege from a user. Anyone with DBA
authorisation can REVOKE privileges from any user; owners of a table can
revoke privileges from anyone to whom they have previously GRANTed a
privilege. You can REVOKE any or all of the user's privileges. For
example,

Database security and integrity 133

REVOKE DELETE ON liz.salesmen
FROM david;

will remove david's ability to DELETE the table, although he will still be
able to use his INSERT and SELECT privileges.

REVOKE ALL ON liz.salesmen
FROM david;

will remove his right to access that table at all.

10.2.9 Cascading REVOKES

When a user REVOKEs a privilege that he previously GRANTed to another
user, that privilege is automatically removed 'all down the line'. In other
words, if user 1 GRANTs a privilege to user 2 WITH GRANT OPTION,
and user 2 GRANTs it to user 3, then when user 1 REVOKEs the privilege
from user 2, user 3 will lose it as well. In this way, REVOKEs can
'cascade' down a line of users, reaching people the originator of the
REVOKE never intended to influence.

There is no real way of avoiding this situation. Users simply have to be
warned of the danger of REVOK(E)ing a privilege without being sure who
will be affected.

10.2.10 Privileges and views

Privileges can be assigned to views in exactly the same way as they can to
tables. 'Updatable' views (see chapter 8) can be assigned all privilege
levels; 'non-updatable' views can only have SELECT or INDEX allocated.
If you attempt to GRANT UPDATE, INSERT or DELETE privilege to a
non-updatable view, you will get an error message.

10.3 Database integrity

As we, mentioned at the beginning of this chapter, the security measures
discussed above are only one aspect of the whole problem of ensuring that
the data in the SQL database is correct. There are also various types of
integrity constraints which can be applied to data in tables. All these have
been covered as separate topics in other chapters of this book. We will
summarise them here, together with references to the chapter in which they
appear.

At the simplest 'integrity' level, columns are defined as being of a
particular data type and width, and may make use of the NOT NULL option

134 Understanding SQL

(chapter 4). Columns may also be described as UNIQUE (either through the
CREATE TABLE command or with a CREATE UNIQUE INDEx state­
ment), which ensures that data is not duplicated incorrectly (chapters 4 and
9). And you can create VIEWS with the WITH CHECK OPTION clause to
force base. table updates to observe range constraints (see chapter 8).

Another aspect of preserving the integrity of the system is the COMMIT
and ROLLBACK commands, which allow easy recovery from mistakes
entered into the database (see chapter 7).

You should also look at chapter 13 for a discussion of where ANSI SQL
fails to provide adequate integrity constraints.

Summary

This chapter dealt with the security commands that you can use to controls
access to the system, to individual tables, and even to specific columns. We
also reminded you about the integrity measures that can be used to validate
data entry.

11 Embedded SQL

Using SQL statements within a programming language

Overview

This chapter takes a brief look at embedding SQL commands within a host
language. It is intended to introduce you to the concepts involved rather
than to provide full coverage of the subject.

Major commands covered

SELECT . .INTO ..
DECLARE CURSOR
OPEN cursor

11.1 What is embedded SQL?

FETCH cursor
CLOSE cursor
UPDATE..WHERE CURRENT OF
DELETE .. WHERE CURRENT OF

So far, we have dealt exclusively with interactive SQL - commands that
you type in yourself at the keyboard. Interactive SQL commands are carried
out as soon as you enter the semi-colon (;) to indicate the end of a
statement.

However, you can also embed SQL commands within standard procedural
programming languages, such as C, BASIC, Cobol, and Fortran. Such
languages are called host languages. There are several variations on inter­
active commands which can only be used when embedded in a host
language.

This book does not attempt to teach you everything about how to use
embedded SQL. However, we will give a short overview of the ideas
involved, and a list of the 'embedding' commands that are normally used.

In a host language/SQL program, it is the host language which is the

135

136 Understanding SQL

'driving force' in the system. The host is used to write menus, do screen
design, output reports - in short, to do all the things that you would
normally use a procedural programming language for. The host needs SQL
'merely' as a way of extracting data from the database (of course, this is
still the reason for the program's existence in the first place!). Once it has
the data, then it is the host's responsibilty to display it, include it in further
processing, print it out,. or whatever is required. But it is SQL that has to
'bend' itself to work with the host language, rather than the other way
around. SQL has to pass data to the host in terms that the host can
understand.

Procedural programming languages are not 'set oriented', as SQL is.
They prefer dealing with records, and indeed, individual fields, one at a
time. Most of the extra commands that SQL employs to interface with the
host language are concerned with 'breaking down' the output from an
interactive SQL command into a set of variables which can be passed to
the host language.

dBASE IV has been used for the examples of program code shown here.
We have deliberately kept the host language programs extremely simple,
since the aim of this section is to show you the new SQL commands, not to
confuse you with another language!

11.2 The SQL 'embedded' commands

11.2.1 Host language requirements

11.2 .1.1 Variable names
The names of the variables used for passing over data in a form that the
host can use must conform to any naming conventions of the host language.
In addition, depending on the host used, variables mayor may not have to
be defined in the host program before the SQL statement is reached.

11.2.1.2 EXEC SQL..
Most host languages expect any SQL statement to be preceded by the
command:

EXEC SQL

For example:

EXEC SQL SELECT SUM (qltarget) INTO mtotal;

This is a 'signal' to the Host/SQL system that the next statement has to be
'translated' into the h<;>st language when the program is compiled.

Embedded SQL 137

dBASE IV is unusual in that it does not require the EXEC SQL statement
when SQL is called from a dBASE IV program. However, the EXEC SQL
is required if dBASE IV SQL is embedded within, for example, C.

11.2.2 Standard SQL commands embedded in the host program

This is yet another of the areas where different SQL implementations can
vary widely. In general, you can use any SQL 'interactive' command
embedded in a host language, and it will produce exactly the same result as
when you use it 'interactively'. However, some SQLs will not allow you to
embed the data definition commands (CREATE TABLE etc).

So you could quite validly give the command within a host language
program:

DELETE FROM salesmen WHERE empno = '10001';

However, when you are using the data manipulation commands (SELECT,
UPDATE, DELETE etc) in a program, you often want to access a single
row and apply a host language command to that row only. For example, you
may want to display the information from one row as a 'form', or to ask the
user whether or not this particular row should be deleted. In such cases, you
need to use the special SQL commands intended for just this purpose. These
commands are described in the following sections.

11.2.3 SELECT •. INTO •• (variable list)

For example:

SELECT surname,q1target FROM salesmen
WHERE empno = '10001'
INTO msurname,mq1target';

This command is used when you expect the SELECT to return a single row.
The column values in the result table are assigned to the variables on a left­
to-right basis. If more than one row is returned, SQL will just use the first
row.

This is the kind of embedded SQL command which might be used if the
host language had produced a program to:

- ask the user which employee number he wanted to view
- display the surname and region of the employee

The program would look something like this:

138 Understanding SQL

ACCEPT 'Which employee do you want? ' TO mempno

SELECT surname,region
INTO msurname,mregion
FROM salesmen
WHERE empno = mempno;

? 'The surname is ' + msurname
? 'The Sales Region is ' + mregion

11.2.4 UsingCURSORs

If the result of a SELECT is expected to produce more than one row, then
you cannot use the SELECT . .INTO statement. You have to set up an SQL
cursor. This is like a pointer which moves through the SELECTed set of
rows, passing the values of each row into memory variables. The initial
DECLARE CURSOR statement defines a SELECT statement, and the
'result table' produced by that SELECT statement can then be 'stepped
through' by various cursor control commands. There are four SQL state­
ments concerning setup and movement of cursors. They are:

DECLARE cursorname CURSOR
OPEN cursorname
FETCH cursorname
CLOSE cursorname

They are used as follows:

11.2 .4.1 DECLARE CURSOR
Syntax:

DECLARE cursorname CURSOR FOR
SELECT statement;

This command defines the SELECT statement which will later be executed
(by the OPEN command). A cursor must be DECLAREd before it can be
referenced in any other cursor-related command. To set up a cursor to
retrieve all rows for salesmen in East Region, we could say in the host
program:

DECLARE east sales CURSOR FOR
SELECT empno,surname,qltarget

FROM salesmen
WHERE region = 'East';

Embedded SQL 139

DECLARE statements would normally be placed at the beginning of a
program, together with other host language definition statements (e.g. variable
declarations)

11.2.4.2 OPEN
Syntax:

OPEN cursorname;

OPEN is used to execute the SELECT statement defined by the DECLARE
CURSOR. The cursor is 'pointed' at the position before the first row of the
result table.

To perform the SELECT in the 'eastsales' cursor, we would say:

OPEN eastsales;

11.2.4.3 FETCH
Syntax:

FETCH cursorname INTO memory variable list;

The FETCH statement advances the cursor 'pointer' to the next row in the
result table. It then passes the column values in that row into a set of
memory variables (exactly as the SELECT . .INTO .. command does).

To pass 'the values in the first row of the result table produced by the
'OPEN eastsales' command to a variable list, we would say:

FETCH eastsales INTO mempno,msurname,mqltarget;

Once the values have reached the variables, then the host language can do
whatever it wants with them (display, perform further calculations, print,
etc).

Obviously, the FETCH command needs to be enclosed in a loop of some
sort. In our dBASE IV program, we could say:

DO WHILE .T.
IF sqlc:ode = 0

FETCH eastsales INTO mempno,msurname,mqltarget;
? 'Employee 't mempnot 'is called' t msurname

ELSE
EXIT

ENDIF
ENDDO

We will end up with a list of employee details, one underneath the other.
SQLCODE is a special variable maintained by SQL to check on the result

of an embedded SELECT (or FETCH) statement. If SQLCODE is zero, then

140 Understanding SQL

the result t~ble (or the current FETCH) has values in it, and the program
can continue. If SQLCODE is negative, something has gone seriously
wrong with the query (for example, querying a table which does not exist).
If it is positive, then SQL, is issuing a 'warning' (for example, there may be
no rows in the result table). A 'real' program (as opposed to the simple
examples that we are using here) should make provision for all three cases.

In our example, when the cursor has processed the last row in the result
table then SQLCODE will be set to a negative value, and the program will
'EXIT' (jump to the next command after ENDDO).

11.2.4.4 CLOSE
Syntax:

CLOSE cursorname;

The CLOSE statement releases the memory variables used by the cursor. As
a matter of good programming practice, cursors should be CLOSEd when
they are no longer required. This is often done at the end of the host
language program.

Our example could issue the:

CLOSE eastsales;

statement immediately after the ENDDO in the loop above:

11.2.4.5 The program listing
Here is the entire program that we put together above:

DECLARE eastsales CURSOR FOR
SELECT empno,surname,qltarget

FROM salesmen
WHERE region = 'East';

OPEN eastsales;

DO WHILE .T.
IF sqlcode = 0

FETCH eastsales INTO mempno,msurname,mqltarget;

ELSE

ENDDO

EXIT
ENDIF

? 'Employee '+ mempno+ 'is called' + msurname

CLOSE eastsales;

Embedded SQL 141

11.2.5 UPDATE and DELETE with cursors

Syntax:

and

UPDATE table SET column = expression
WHERE CURRENT OF cursor;

DELETE FROM table
WHERE CURRENT OF cursor;

Both of these commands apply themselves to the row that the cursor is
currently pointing at.

If you want to check with the user whether a particular row should be
updated or deleted, or if you have already used the cursor to point at a row
and want to c~rry out subsequent update or delete, you should use the
'cursor' form of the UPDATE and DELETE commands. These are used in
combination with the DECLARE CURSOR, OPEN and CLOSE commands,
just as FETCH is. In fact, they are usually used after a FETCH, since the
reason for using the 'embedded' form of the command is that you want to
access that row individually for some other reason.

For example, if you want to delete a row after checking with the user,
you might write the following code:

DECLARE east sales CURSOR FOR
SELECT empno,surname FROM salesmen

WHERE region = 'East';
OPEN eastsales;
DO WHILE .T.

IF sqlcode = 0

ELSE

ENDDO

FETCH east sales INTO mempno,msurname;
ACCEPT 'Delete employee' + mempno TO mdel
IF mdel = 'Y'

DELETE FROM salesmen
WHERE CURRENT OF eastsales;

ENDIF

EXIT

CLOSE east sales;

If you wanted to UPDATE the Quarter 1 target figure instead of deleting the
row, then you could replace the DELETE FROM .. WHERE CURRENT OF ..
with:

142 Understanding SQL

Summary

UPDATE salesmen
SET qltarget = qltarget*2
WHERE CURRENT OF eastsales;

You learned here how to embed SQL commands within a host language.
We looked at the special forms of the data manipulation commands, and
saw that you can also use the 'interactive' commands within programs.

12 Non-standard SQL

Overview

This chapter looks at those features such as form and report generators
which, while not part of the SQL language, are nevertheless very important
to users.

It also covers some of the non-ANSI SQL commands available in the
four SQL implementations that this book uses, and provides a comparison
chart of features available in those four SQLs.

12.1 The user interface - introduction to Oracle

The rest of this book has dealt with the 'core' SQL commands and shown
some of the aspects in which four actual SQL implementations differ from
the ANSI standard. However, for many users the' accuracy' of an implementa­
tion is a far less important issue than that of its ease of use. Although users
want the power of SQL, most of them do not want the hard work of learning
the intricacies of the SELECT statement! In practice, users are much more
interested in the non-SQL facilities provided by most SQL suppliers - the
user interface, the form and menu generators, the report writers, and the
interfaces with other industry-standard packages.

Nowadays, nearly all SQLs come with easy-to-use, menu-driven user
interfaces, and contain tools to distance the user from the hard-core SQL
commands. Although every manufacturer implements its version of these
tools in different ways, the basic concept is the same in every system.

In this chapter, we look briefly at the set of tools offered with Professional
Oracle. These are representative of the kind of utilities that you would
expect to find in any modern SQL implementation.

Naturally, this book is not the place to attempt a full description of all the
Oracle facilities; nor is this an Oracle tutorial. All we do here is to show
you the kind of add-on features available in most SQL implementations to
make the user's life easier.

143

144 Understanding SQL

Oracle - a modular system

The various components of an Oracle system can be bought or installed as
separate modules. The only essential part of the system is SQL*Plus - the
module which allows you to use SQL statements interactively. Some of the
other modules available are:

- SQL*Forms
- SQL*ReportWriter
- SQL*Menu
- SQL*Calc
- Add-In for 1-2-3
- SQL*Graph
- Pro*C

(a form generator)
(a report writer)
(menu-interface generator)
(spreadsheet)
(Oracle via Lotus 1-2-3)
(graphs)
(the C language for Oracle)

The user has to log in to each module separately. For example, to set up a
simple application, the developer would first have to use SQL *Plus to
create tables; then SQL *Forms to design input and query forms; then
SQL*ReportWriter to design printed output; and lastly SQL*Menu to tie all
the other elements together.

In other SQL implementations you may find all these elements available
within a single 'package'.

In this chapter we will look in some detail at SQL*Forms and SQL*Report­
Writer, with a brief discussion of SQL*Menu and the Database Add-In for
1-2-3. SQL*Calc is simply a 1-2-3 like spreadsheet (which can also access
data from the Oracle database), and SQL*Graph is a way to extract numeric
data from the Oracle database and display it in a variety of graph formats.

12.2 Forms generation - SQL*Forms

12.2.1 What is aforms generator?

A forms generator allows you to develop forms-based applications for
entering, querying, updating and deleting data.

First you have to create the form; once it exists you can choose the action
you want to use it for (e.g. adding data, or finding records which satisfy
particular criteria). Oracle uses function keys to select actions; other SQL
implementations use a menu-based control structure.

Oracle's menu-driven form-generator system makes it easy to create both
simple and complex forms.

Non-standard SQL 145

12.2.2 Creating a simple form

Before you can use SQL *Forms, you must have already created a table
under the SQL*Plus module of Oracle (the 'area' of Oracle within which
you have access to the complete range of SQL commands covered in this
book). Once the table or tables have been specified, you can move to
SQL * Forms to build the forms that you need.

At the most basic level, the forms generator can automatically produce a
form which simply puts the column names (as defined by the CREATE
TABLE command) on the screen and allows the user to enter or edit data.
All you need to do to achieve this is to tell Oracle:

- what name you want to give to the form
- which table (or tables) you want to work with
- how many rows of data are to be shown on the screen at one time

Oracle will then display its default layout for the form, using the column
names and widths already stored in the data dictionary. If the total field
widths will fit onto an SO-character screen, then. Oracle will choose a 'line
based' layout. If the total width is over 80 characters, then Oracle will go
for a 'page based' design. Thus the default layout for the 'salesmen' table
would be page based, like this:

--------- Salesmen ---------

SURNAME
FIRSTNAME
EMPNO
DATE JOINED
ADDRESS
PHONE
REGION
QITARGET
Q2TARGET
Q3TARGET
Q4TARGET

The layout for the 'contracts' table would be line-based:

146 Understanding SQL

-------- Salesmen --------

EMPNO CONTNUM CONTDATE CUSTNUM AMOUNT

You can choose to display fonns from more than one table on the screen at
the same time, although to link them together so that the infonnation they
display is 'synchronised' - for example, so that a header showing the
salesman's name is followed by a list of all the contracts for that particular
salesman - you have to embed an Oracle 'macro' or SQL statement (see
12.2.4).

When you use the fonn for entering data, you can use the cursor keys to
move within a row, and to move from one row to the next or previous one.
You can also use the 'editing' keys to insert or delete characters and words.

If you chose to show more than one row on the screen, then Oracle will
simply move you to the next line when you have finished with the first
record. Oracle will automatically validate your entries against the data type
of the column. So, if you tried to enter a letter in the AMOUNT field, you
would be given the error message 'Legal characters are 0-9'.

12.2.3 Customising the form - Screen Painter and menus

Although the default fonn is quick and easy to create, most users will want
something which looks better on the screen, and which offers more control
over input. Oracle provides pop·up menus which give you control of each
individual field, allowing you to specify things like:

- whether updates are pennitted
- what fonnat the data should appear in
- whether data should be forced into upper case
- default values
- upper and lower range limits
- help messages

The Screen Painter allows you to change text on the screen and 'Cut and
Paste' text and fields into different places. You can also improve the look of
the fonn by drawing graphics boxes and lines in appropriate places.

After a few minutes of work, the 'salesmen' fonn could look like this:

Non-standard SQL 147

Personnel System

Employee Details - Salesmen

Employee Number: Surname:
Region: First Name:

Address: Joined on:

Target Details

Quarter One: Quarter Two:
Quarter Three: Quarter Four:

12.2.4 Customising the form - including SQL statements

Oracle allows you to make the validation capabilities of the form as
complex as you require by letting you embed SQL statements within the
form. These statements can be 'triggered' either when the cursor enters a
field, when it leaves a field, or when a field is changed. For example, you
could ensure that a valid region code was entered by using the SQL
WHERE clause,

WHERE :region IN ('N','S','E','W')

to be triggered whenever the user changes the contents of the 'region' field.
You can specify help messages to appear when the trigger statement fails.

Fer example, if the user entered a region of 'X' , the message:

'Valid regions are N,S,E and W'

could be shown.
You can use these advanced facilities to de, things like:

generate sequential employee numbers
verify data by looking up in tables or lists
look up and display data from other tables
perform calculations
synchronise display of data from two tables

148 Understanding SQL

12.2.5 Using the form

Once the form has been created, it can be used for:

- adding new rows
- editing existing rows
- deleting rows

To find a particular row to edit or delete, you can specify 'search' criteria
simply by entering appropriate data into fields while in 'query' mode.
Oracle finds the first record to satisfy your criteria; you can then page
forward to see if any more record.s have been selected.

12.3 Creating reports - SQL*ReportWriter

12.3.1 What is a report writer?

The forms generator discussed above is used for input, and for screen-based
access of data. For printed output, a Report Writer can be used to show data
in a variety of different formats.

Reports can range from a simple 'tabular' listing, to mailing labels and
personalised 'form letters'.

As with forms generation, you first have to create the repott layout, and
can then use it to display or print the data. Oracle allows you to execute
reports either from within SQL*ReportWriter or from the operating system
level.

12.3.2 Creating a simple report

SQL *Forms allows you to create a usable form even if you have no
knowledge of SQL commands. However, to use SQL*ReportWriter you
need to be able to use the SELECT statement in order to tell Oracle:

- which columns are to be included in the report
- which rows are to be shown

This SELECT statement is called the query associated with the report. Any
valid SELECT statement may be used. For example, to show the names and
phone numbers of all salesmen in West Region, you could specify the SQL
statement:

SELECT surname,firstname,phone FROM salesmen
WHERE region = 'w'
ORDER BY surname;

Non-standard SQL 149

To get Oracle to produce a simple tabular report all you have to do is
specify:

the name that you want to give to the report
- the name that you want to give to the query
- the query statement itself

The report can have more than one query associated with it.
Oracle will take default values from the data dictionary for items such as

column widths, column headings and display formats.
The simple report produced by the above SQL statement would look like:

Surname

Smith
Jones

SALESMEN DETAILS
Firstname

John
Jane

12.3.3 Customising the report

Phone

01-123-4567
0435-54896

The default report is unlikely to look good enough for most users' purposes.
Oracle provides easy-to-use menu options to allow you to do things like:

- change the column headings
- add a page header and footer
- group the rows (e.g. by region)
- add a group header and footer
- change the display format for a column
- summarise data (using any of the SQL aggregate functions)
- link data from different tables (e.g. to show all contracts for each

salesman)
- produce calculated .fields

It is also easy to produce a report which is page based rather than tabular.
For example, you could easily produce a report which showed the data for
each record in exactly the same layout that we used for the screen-based
form in 14.2.3.

A variation on this technique can be used to produce personalised 'form
letters'. The report format for such a letter would look something like:

Dear Mr &SURNAME,

We are pleased to confirm our offer of a job as Salesman. You will be
working for ®ION region, and your target for the third quarter 1990
will be &Q3TARGET.

We look forward to you joining us on &DATEJOINED.

150 Understanding SQL

12.4 Creating a menu interface - SQL*Menu

12.4.1 What is a menu interface?

A menu interface (or menu tree) is a series of interconnected menus from
which users can select and perform certain tasks. Using a menu tree makes
it easy for end-users to use the computer system effectively with minimal
knowledge of SQL.

SQL*Menu allows developers to set up quickly an easy-to-use system
from which users can do things like:

- enter and query data using forms created in SQL *Forms
- run reports created in SQL*ReportWriter
- run graphs created in SQL *Graph
- execute SQL *Plus command files

Setting up the menu tree simply involves:

- assigning a name to each menu
- setting up the text for each menu option

assigning a command to be carried out when a menu option is
selected

Special features include:

- controlling user access by allowing different groups of users to access
different options from the menus

- setting up help screens

12.5 Oracle Database Add-In for Lotus 1-2-3

It can be useful for users of both Oracle and Lotus 1-2-3 to be able to
query data from the Oracle database and feed results directly into a Lotus
1-2-3 spreadsheet.

Once the Database Add-In has been installed, an SQL statement can' be
embedded into a spreadsheet simply by entering it into a worksheet cell
preceded by the special function '@SQL'. For example, you could access
the total Quarter 1 target for all salesmen by moving to cell Al and entering
the command:

@SQL(SELECT SUM (qltarget) FROM salesmen;)

The contents of this cell can be used in other 1-2-3 formulae in exactly the
same way as a 'normal' worksheet cell. For example, to see the effect of a

Non-standard SQL 151

10% increase in the Quarter 1 target figures, you could go to cell Bland
enter the formula:

+A1 *1.1

Users familiar with SQL can enter the SQL statements directly; however,
Oracle provides a help system (compatible with 1-2-3's familiar menu and
help structures) allowing users to 'build' valid SQL statements step by step.

12.6 Differences from ANSI SQL in DB2, dBASE IV SQL, Informix
and Oracle

In the first part of this chapter we looked at the kind of utilities which make
the task of using SQL much easier, although they themselves are certainly
not part of the SQL language. However, as you will have gathered from
previous chapters, most SQL implementations also contain 'deviations'
from ANSI SQL which are considered to be part of that particular set of
SQL commands. Here we will take a brief look at some of the more
important commands available in the 'core' set of statements of the four
SQL implementations that we have used throughout the book.

AH these SQLs have available lots of 'interactive' commands which are
not part of the 'core' ANSI/DB2 SQL command set. Here are a few of the
most obviaus areas where such commands make the product easier to use
(although quite possibly less 'relational'!). We have mentioned the major
commands for each product in each area to make it easier for you to track
them down in the manuals. This is certainly not an exhaustive list, but it
will give you an idea of the kind of features that you might expect to find in
a 'typical' SQL product.

12.6.1 Formatting column displays

You may want to show dates in different formats, or display numbers to
different numbers of decimal places.

Check out: DB2

dBASE
Oracle
Informix

Query Management Facility
(QMF)

SET DATE, SET FORMAT
COLUMN .. FORMAT, SET NUMFORMAT
FORMAT COLUMN

152 Understanding SQL

12.6.2 Improving the display of a result table

Result tables show the information you want, but often,in a very repetitive
fashion. Without resorting to full-fledged report generation utilities, you
can get an improved SELECT display (especially in the area of showing
subtotals and totals) with commands such as:

DB2 - Query Management Facility
(QMF)

Oracle - BREAK, COMPUTE
Informix - FORMAT

dBASE IV SQL does not offer any such commands in this area.

12.6.3 Improving ease of access to System Catalog data

Although all the data about everything in the database is held in the System
Catalog, it can be long-winded to perform common tasks such as looking at
the column names for a particular table. In addition, it can be helpful to add
descriptions to tables and columns so that users can see what they are for!
Taking this even further, DB2 has an EXPLAIN command which shows the
strategy that SQL adopts when processing any data manipulation commands
(SELECT, UPDATE etc). This can be very useful when you attempt to
optimise queries.

Check out:
DB2
Oracle

ciBASE
Informix

COMMENT ON, EXPLAIN
COMMENT ON
DESCRIBE table
SHOW DATABASE
DESCRIBE DATABASE/TABLE

12.6.4 Using functions to manipulate part of a column

All our four SQLs provide a wide range of functions, ranging from 'conver­
sions' (for example, character to number, date to character), through 'strings'
(for example, upper to lower case and vice versa, and accessing only part of
a field), through 'arithmetic' (for example, absolute values, modulus), and
many more.

Non-standard SQL 153

12.7 Chart comparing main features in the four SQL implementations

This chart shows some of the major areas where these four SQLs differ, or
at least, might be expected to differ. Remember that they all offer a fairly
complete SQL implementation, supporting most if not all of the ANSI
standard commands. We have not included ANSI standard features which
they all support, since this would not be particularly informative. As you
know, they all allow you to create tables and views, update and delete data,
and perform complex SELECTs on tables. (There is at least one 'SQL'
product - not one of our four - which does not even support the CREATE
TABLE command!)

Feature Comparison Chart

Feature DB2 ciBASE

Table and column structures - Maximums
Column width (chars) 254
Columns per row 300
Row size (bytes) 32,714
Size of numeric fields 15
(digits)
Length of index key
(bytes)
No.columns in index
No. of columns in
ORDER BY
Total length of all
ORDER BY columns

Security
Passwords on entry
to SQL database
Include INDEX
privilege as well as
all ANSI privileges

Table definitions
NULLs supported
Data types in
addition to ANSI
standard

255

16

4044
bytes

Yes

Yes

Yes
Date

Graphic
Time

254
255

4000
36

100

U/L
U/L

100
bytes

No

Yes

No
Date

Logical
Serial

Informix Oracle

32,767
U/L

32,767
32

U/L

U/L
8

U/L

No

Yes

Yes
Date

Money

240
255
U/L

40

U/L

U/L
15

U/L

Yes

Yes

Yes
Date

Raw
LOBg

RowID

154 Understanding SQL

Functions
Aggregate functions None None None STD
in addition to ANSI VAR
standard
Date functions Yes Yes Yes Yes
Time functions Yes No Yes Yes
Arithmetic functions Yes Yes Yes Yes
Financial functions No Yes Yes Yes
Trigonometric No Yes No Yes

NON-ANSI commands
ALTER TABLE Yes Yes Yes Yes
DROP xx Yes Yes Yes Yes
REVOKE Yes Yes Yes Yes

WHERE clause
Outer join No No Yes Yes
UNION Yes Yes Yes Yes
INTERSECT No No No Yes
DIFFERENCE No No No Yes

User Interface
Command driven Yes Yes Yes Yes
Forms generator Yes No Yes Yes
Report generator Yes No Yes Yes
Menu generator Yes No Yes Yes

Summary

This chapter gave you a feel for the kind of add-on features that you would
hope to find in an SQL product. If you are evaluating SQL implementations
with a view to buying, then the availability and quality of these 'user­
interface' features should certainly form a major part of your evaluation
criteria.

It also showed you some of the non-ANSI commands that you might find
useful in particular SQL implementations.

13 The relational database model

Overview

In chapter 1, we mentioned that SQL is based on relational principles. This
chapter discusses in some detail the relational model as defined by Dr E.F.
Codd.

Each of Codd's 12 'Fidelity Rules' is quoted, together with a brief
explanation of why that rule is significant for database design, and where (if
appropriate) ANSI standard SQL fails to meet the requirements of a relational
database system.

You will see that although SQL is a database manipulation language
based on relational principles, none of the SQL/RDBMS implementations
available today succeeds in faithfully implementing all the 'rules' of the
model.

13.1 Introduction

By this point in the book, you should have a fairly good understanding of
SQL. You are now in a position to be able to look at the theory which
underlies the SQLlanguage.

In chapter 1, we briefly mentioned the relational model as being the
'inspiration' for SQL. Now we will discuss that model in more detail.

13.2 Background to relational theory

To claim that a DBMS is 'relational' is, in fact, to make a very precise
claim indeed. A relational database should conform to the relational model
first described in 1970 by Dr Edgar Codd (at the time working for IBM),
and refined upon ever since. In his original paper on the subject (Codd
1970), Codd revolutionised the mainframe and mini world by presenting a
radically new way of viewing the data in a database system. Previously,
databases were hierarchical or networked; now, a more powerful method of
holding and accessing data had been introduced.

155

156 Understanding SQL

It is important to realise that Codd did not produce an implementation of
the relationai model. In 1970, the relational model was a mathematical
model embodying criteria which any implementation would have to meet to
be called truly relational; however, the actual translation of the concepts
into 'real' systems has been left to the individual software designers. As we
said in chapter 1, Codd feels that no existing database systems conform
fully to the relational model!

Although Codd remains one of the relational model's greatest exponents,
his views do not go unchallenged. There are frequent discussions between
experts as to the 'correct' or 'best' way to define various of the relational
'rules'. Indeed, Codd's own ideas about the relational model have matured,
not surprisingly, over the past twenty years. The results of these esoteric
discussions will no doubt slowly percolate down to the real world of ANSI
standards and 'practical' SQL implementations.

In the PC world, the buzz word 'relational database' has come to have the
very generalised meaning of 'a database which can access information from
more than one file at one time'. Thus in the early 1980s the best selling
dBASE II was tagged by its suppliers as 'relational' because it could draw
data from two files simultaneously. However, as you will see below, the
relational model demands much more of the system than just that!

In 1986 Codd published a set of 12 rules which summarise the criteria
that a database system must meet to qualify as relational. These are
summarised below; to discuss them in detail would take a· whole book by
itself. Even IBM's DB2 only 'scored' 7 out of a possible 12; all other
systems came even lower.

Of course, a low score on the 'relational test' does not make a product
unusable. The popular PC product dBASE IV (not dBASE IV SQL) would
probably score 0 in the test; even so, millions of users have produced
complex applications using dBASE IV and its predecessors. However, it is
certain that the trend is towards developing database systems that conform
more fully to the relational model; implementations which do not conform
may eventually find themselves out of the mainstream of technology.

13.3 The 12 'Fidelity Rules'

The rules quoted here were defined by Codd in an attempt to clarify the
properties a relational database should have (Codd 1986). What we will
attempt to do in this section is to explain the practical meaning of each rule,
and to talk briefly about whether or not ANSI SQL manages to implement
that rule successfully. For further details of the precise meaning of the
rules, and areas in which ANSI SQL falls short in various 'minor' ways,
you should read the Codd article, or Chris Date (1988). Although Codd's

The relational database model 157

Fidelity Rules are known as the 'twelve' rules, there are actually thirteen of
them! They start with Rule O.

13.3.1 The foundation rule

Any system claiming to be a relational DBMS must manage the database
entirely through its relational capabilities.

All this is saying is that a 'real' relational database system must not mix
relational and non-relational features. The 'relational capabilities' referred
to are defined precisely in the following 13 rules. As you will see, neither
ANSI nor any other SQL satisfies all 13 rules; therefore no current SQL
implementation completely satisfies the foundation rule either.

13.3.2. The info.rmation rule

All information in a relational database must be represented explicitly at the
logical level in exactly one way - in tables.

What does this rule mean?
This rule means what it says - all data, including information about the
database itself, must be kept in tables with a row/column structure.

One advantage of tabular structures is that they are:

- familiar (the column/row structure of a table is intuitively clear)
- general (most types of data can easily be represented in them)
- flexible (they can easily be restructured vertically (selecting columns),

horizontally (selecting rows), or both ways)

Another advantage is that if all data is stored in tables, and nothing but
tables, then the DBMS can apply mathematical operations and strict logic to
them. This eliminates many of the deficiencies of 'traditional' database
storage methods.

Codd produced a set of fundamental operations on tables, drawn from
mathematical set theory, which always result in a new table being derived
from one or more other tables.

These operations are known as:

- Selection (retrieving a specified set of rows)
Projection (retrieving a specified set of columns)
Product (retrieving all possible combinations of one row from each of
two tables)

- Union (retrieving all rows appearing in either or both tables)
- Intersect (retrieving only the rows that appear in both of two specified

tables)

158 Understanding SQL

Difference (retrieving all rows that appear in the first, but not the
second, of two tables)

- Join (retrieving all possible pairs of rows that jointly satisfy a specified
condition)

Although the rule does not directly specify so, any relational database
system which keeps all data in tables should be able to support all of these
operations.

To what extent does SQL support rule 1?
This is one of the few rules that ANSI SQL, and indeed every current SQL
implementation, do support fully. The tabular structure of 'real' relational
database systems is seen as the 'trademark' of the relational concept.

13.3.3 Guaranteed access rule

Every data value in a relational database is guaranteed to be logically
accessible by resorting to a combination of table name, primary key value,
and column name.

What does this mean?
This means that you should be able to 'pick up' any value in any column,
provided that you:

- know the name of the table
- can identify the correct row using the primary key
-:- know.the column name

To what extent does SQL support rule 2?
Problems can arise here with the primary key concept. In principle, every
table should have a primary key - a column or combination of columns
whose values uniquely identify a particular row. (In the 'salesmen' table in
our example database, the column holding the employee number ('empno')
acts as the primary key. There should be no more than one entry for each
employee number; therefore the value in 'empnQ' is enough to distinguish
that row from all others.)

However, ANSI SQL does not explicitly support primary keys. As a
result, most SQL implementations allow duplicate rows in a table - an idea
which is completely contrary to the relational model as defined by Codd.
Certainly, it is possible to choose to enforce primary keys by using the
UNIQUE option (either with CREATE TABLE or with CREATE UNIQUE
INDEX - see chapter 9 for a discussion of this point), but if the user
chooses not to use primary keys, then he has no way of logically distin­
guishing one row from another.

The relational database model 159

So ANSI SQL, and most current SQL implementations, do not enforce
support of this f!Jle.

13.3.4 Missing information rule

Missing value indicators (distinct from empty character strings or a string
of blank characters, and distinct from zero or any other number) must be
represented and supported at the logical level, in a systematic way, indepen­
dent of data type. The DBMS must support manipulative functions for these
indicators which must be independent of the data type of the missing
information.

What does this mean?
This rule is talking about three-way logic. Any column should show a
value as either known and 'positive' (e.g. 'Smith', or 50000, or even -
50000), known and 'blank' (e.g. ' , or 0), or not known (NULL).

In databases not based on the relational model, information is usually
stored on a two-way logic basis, and there is no way to tell the difference
between a column in which the value has 'intentionally' been left blank (for
example, the phone number column when the person does not have a
phone), and a column where the value is blank because its value is
'unknown' (for example, the phone number column when we know that the
person has a phone, but we do not know the number). In theory, the
opportunity to record a third 'logical state' should be a major advantage.

To what extent does SQL support rule 3?
ANSI SQL, and most SQL implementations, offer a limited support for this
rule in the shape of the NULL entry. Any column can have the 'value'
NULL entered in, to distinguish it from 'known but blank or zero'. For
example, you could say:

INSERT INTO salesmen (empno,q1target,phonenumber)
VALUES ('10001',

0,
NULL) ;

NULL can be used for a column of any data type, and any column can be
queried with the IS NULL/IS NOT NULL operator. This satisfies the
second part of the rule.

However, NULLs are not implemented consistently even within a single
implementation. For some commands they are ignored, (e.g. the AVG
function); for others they may be included. Codd's associate, Chris Date,
has said that given the current state of NULLs in ANSI SQL, it would
probably be have been better to leave them out completely! (Date, 1988).

160 Understanding SQL

So the rule is supported in theory, but in practice leaves much to be
desired.

13.3.5 System Catalog rule

The database description must be represented at the logical level just like
ordinary data, so that authorised users can apply the same relational language
to its interrogation as they apply to regular data.

What does this mean?
This means that all the details of the tables, views, indexes, etc that make
up the database, should be stored in tables just like 'real' data, and should
be able to be accessed using exactly the same commands.

To what extent does SQL support rule 4?
ANSI SQL does not support this rule at all! The ANSI standard makes no
attempt to define a rule for system catalog design. However, in practice, all
'real' SQL implementations seem to support the rule fully. All SQLs
support a System Catalog consisting of tables which the user can access
with the SELECT command. For example, the dBASE IV SQL user can
say:

SELECT * FROM syscols
WHERE tbname = 'salesmen';

and see the column names and descriptions for the salesmen table.

13.3.6 Comprehensive language rule

No matter how many languages and terminal interaction modes are supported
(for example, fill-in-the-blanks mode), at least one language must:

- be expressible as character strings per some well defined syntax
- be comprehensive in supporting all of:

1. data definition
2. view definition
3. data manipulation (interactively and by program)
4. integrity constraints
5. authorisation
6. transaction boundaries (commit and rollback)

What does this mean?
At least one of the ways of manipulating the database must be a high level
language (i.e. not binary, and not purely a 'fill-in-the blanks', easy-to-use

The relational database model 161

terminal entry capability). That language (in our case, SQL) must allow
users to define tables and views, and to retrieve and update data. It must
support 'built in' checks on data entry, and allow access to tables and views
to be controlled by some kind of password check. It must also recognise
that to preserve the integrity of the database, it must be possible to 'undo'
transactions (where a transaction may be a single command or a' 'logical'
group of commands). And it should be possible to 'embed' SQL commands
within a 'programming language' (in the broadest sense), or to use them
interactively.

To what extent does SQL satisfy rule 5?
In a general sense, ANSI SQL and virtually every other SQL supports this
rule. After all, SQL is a language expressible as character strings, which
can define data and views, etc. That is what this whole boqk has been
about! However, within the various categories, the manner of implementing
the requirements varies considerably.

13.3.7 View updatability rule

The DBMS must have a way of determining (at view definition time)
whether a view can be used to:

- insert rows
- delete rows
- update which if any of the columns of tl,te underlying base tables

It must store the result of this investigation in the System Catalog.

What does this mean?
In chapter 8 we discussed views in some detail. You know from those
discussions that some views are updatable, and some, by the nature of the
'formula' on which they are built, are not. For example, a view which shows
just the employee number and region from the 'salesmen' table is updatable;
a view showing the grouped total targets for each sales region is not.

The DBMS has to have some way of knowing whether a view is, or is
not, updatable.

To what extent does SQL satisfy rule 6?
Since ANSI SQL does not define a System Catalog (see rule 4), it cannot in
theory support this rule either.

This is another rule which most 'real' SQLs satisfy reasonably well.
Every SQL has a table 'in the System Catalog which holds VIEW details,
including the formula on which the view is based. From this it can
determine whether any particular attempted update is permissible.

162 Understanding SQL

13.3.8 Set level update rule

The capability of operating on whole tables applies not only to retrieval, but
also to insertion, update and deletion of data.

What does this mean?
This means that you should be able to apply any 'data manipulation'
operation (SQL's SELECT, UPDATE, INSERT and DELETE) to any part
of a table, from the whole table through to one or zero rows. In other words,
you should never be constrained to search a table manually row by row to
find the record that you require.

To what extent does ANSI SQL satisfy rule 7?
All SQLs offer the ability to scan a whole table for any data manipulation
command. For example:

UPDATE salesmen
SET q1target = 100000;

(to give all salesmen a target of 100000), and

DELETE FROM salesmen
WHERE region = 'East';

(to scan the whole table and remove everyone in East Region).
So this rule is in general well supported.

13.3.9 Physical data independence rule

Application programs and interactive terminal activities should not have to
be modified when changes are made to internal storage or access methods.

What does this mean?
This means that if, for example, the database is moved from one disk to
another, users should remain unaware of the change. No SQL command
should depend on knowing physically where data is located.

To what extent does ANSI SQL support this rule?
ANSI SQL, and all other current SQL implementations do support this rule.
It is the DBMS itself which notes where data actually resides; all SQL
commands simply refer to data items by their logical names.

The relational database model 163

13.3.10 Logical data independence rule

Application programs and interactive terminal activities should not have to
be modified when information-preserving changes of any kind that theo­
retically permit unimpairment are made to the base tables.

What does this mean?
If tables are split into component parts or renamed, then since all the data in
the original components is still there in the new ones it is theoretically
possible for data manipulation activities to continue as before. (Of course,
if data items (tables, views, columns) are deleted, then some changes to
existing queries would have to be made.) So, any relational database
language should provide facilities to 'fake' the original data structures so
that existing queries can continue to be run.

To what extent does ANSI SQL support rule 9?
Since all SQLs support the concept of VIEWs, they all support this rule. A
VIEW with the name of the original table can be created, 'pulling together'
the items in the original table from their new logical locations. In theory at
least, data manipulation commands should run unchanged.

However, since VIEWs are subject to various 'updatability' constraints
(see 8.5), the same queries and updates may not run in practice.

13.3.11 Integrity independence rule

Integrity constraints specific to a particular relational database must be
definable in the relational data language, and stored in the System Catalog
(not the application programs).

What does this mean?
You should be able to set up 'integrity constraints' - checks on the validity
of the data - using SQL, and not be left relying on writing programs to do
data validation. SQL should itself keep track of any constraints that you
have defined.

To what extent does ANSI SQL satisfy rule 1O?
You can certainly set up integrity constraints within SQL, and those that
you set up are stored in the System Catalog. However, ANSI SQL is very
limited as to the constraints that you can use. Virtually all that you can do is
use the CREATE TABLE command to:

define columns as NOT NULL
define a column as UNIQUE
define the data type and width of a column

164 Understanding SQL

Another kind of integrity constraint is the VIEW defined with the WITH
CHECK OPTION. This allows you to use WHERE conditions to place
much tighter constraints on data entry to the base table.

However, it is in principle always possible to bypass a view and enter
data directly into the base table, thus bypassing the integrity constraints.

ANSI SQL does not enforce use of primary or foreign keys, which are
one of the principal 'integrity' elements of the relational model.

DB2 allows you to specify DEFAULTs (of blanks or zero, as opposed to
NULL) as part of a column definition. It would be useful if SQL supported
a 'looser' DEFAULT option (allowing the user to define his own defaults
for a particular column), and included a RANGE CHECK on a column
definition - for example, to ensure that salesmen's targets are never less
than zero, or greater than 500000.

13.3.12 Distributed independence rule

Applications programs and interactive terminal activities should not have to
be modified when data is distributed or redistributed on different computers.

What does this mean?
This is really a 'wider' version of rule 8. In the same way that users should
not need to be aware what area of disk their tables reside on, they should
not need to know which computer their tables are on either.

To what extent does ANSI SQL support rule II?
At the time of writing, such support is not mentioned in the ANSI specifica­
tion. This whole topic is really 'talking futures' in practical terms; the
possibilities of distributing SQL databases over networked computers are
only just starting to become reality. IBM has said that DB2 will support this
rule at some future date.

13.3.13 Non-subversion rule

If a DBMS has a low level (procedural, one-record-at-a-time) language, that
low level cannot be used to subvert or bypass the integrity rules and
constraints expressed in the higher level relational language (multiple­
records-at-a-time).

What does this mean?
This means that any language controlling access to an RDBMS cannot be
allowed to 'cheat' and perform operations that are contrary to the rules of
the main data manipulation language. For example, if a column is defined
as NOT NULL by the main DML (in our case, of course, SQL), then no

The relational database model 165

other method of accessing the column should be allowed to enter a NULL
value.

To what extent does ANSI SQL satisfy rule 12?
The ANSI standard does not attempt to address this rule. ANSI is only
responsible for SQL - 'the higher level relational language' mentioned in
the rule definition. Any other language used to access the 'database engine'
is beyond ANSI's scope.

Summary

As you have seen, the ANSI standard cannot be said to be 'fully relational'
by Codd's definition. Nor are any other SQL implementations much better.

However, regardless of how 'relational' SQL really is, it has come to be
the language most closely associated with databases based on the relational
model. You have to work with what exists, and learn to ignore its short­
comings. There is little doubt that SQL databases will become the standard
on microcomputers, minis and mainframes over the next few years. All that
users can do is hope that suppliers can agree on a genuine 'standard' SQL,
whether or not it fulfils all the demands of the relational model.

166 Understanding SQL

Bibliography

American National Standards Institute: Database Language SQL, Document
ANSI X3.135-1986

D.Beech: 'New Life for SQL', Datamation, February 1st 1989.
E.F. Codd: 'A Relational Model of Data for Large Shared Data Banks'.

Communications of the ACM, Vo1.13, No.6 (June 1970)
E.F. Codd: 'The Twelve Rules for Determining how Relational a DBMS

product is', The Relational Institute Technical Report, 16/5/86
E.F. Codd: 'Fatal Flaws in SQL', Datamation, August 15th and September

1st 1988
C.J. Date: A Guide to the SQL Standar<1, Addison-Wesley, 1988
C.J. Date: Where SQL falls short, Datamation, May 1 1987

Appendix A: SQL commands grouped by category 167

Appendix A SQL commands grouped
by category

This table includes all the ANSI SQL commands, plus those non-ANSI
commands which are found in most, if not all, SQL implementations (e.g.
DROP, ALTER).

COMMAND

Data Definition Language:

ALTER TABLE

CREATE DATABASE

CREATE INDEX

CREATE SCHEMA

CREATE TABLE

CREATE SYNONYM

CREATE VIEW

DROP (XX)

DESCRIPTlON

Adds columns to an existing table

Assigns a physical and logical location
for a group of tables

Creates an index on a table

Assigns a logical location for a group
of tables

Creates a table, specifying columns

Creates an alternative name for a table
or view

Creates a view from one or more base
tables

Removes a table, index, synonym orview
from the database

168 Understanding SQL

COMMAND

Data Manipulation Language:

DELETE

INSERT

SELECT

UPDATE

Data Control Language

COMMIT

GRANT

REVOKE

ROLLBACK

DESCRIPTION

Removes rows from a table

Adds new rows to a table

Retrieves rows from a table

Changes existing data in a table

Stores work permanently in the
database

Assigns authorisations and
privileges

Removes authorisations and
privileges

Restores database to the state
after last COMMIT

Appendix B
SQLs

DB2

Background to the four

DB2 was not the first commercial implementation of SQL to come onto the
market. However, once it was launched by IBM in 1983 for its MVS
mainframe systems, it quickly established itself as the de facto standard for
SQL systems. Its close relative for VSE and VM systems, SQL/DS, is very
similar to DB2. Many of the commands available in DB2 but not ANSI
SQL, such as ALTER and DROP TABLE, have been adopted by other
SQLs.

There are various add-on products available for the IBM SQL products,
such as System Center's SQL/EDIT and SQLIREPORT (providing the full
screen form and report generators that SQL/DS lacks), and DB/OPTIMIZE
(to help with the task of interpreting DB2's EXPLAIN output and recom­
mending the best strategies for optimising queries). Informix Software also
produce a report generator for DB2 called Report/DB2.

dBASE IV - Version 1.0

When Ashton-Tate launched dBASE IV in 1988, a fully-fledged SQL
implementation was included in addition to all the features which dBASE
IV added to dBASE III+. This implementation does not include NULLs,
which are an important feature of most other SQLs. Nor does it integrate
very well (or at all) with most of the features that make dBASE attractive to
PC users - the report generator, forms generator, and Control Centre
menus. It does, however, allow the user access to all the dBASE functions
and SET commands, and SQL commands can be embedded in the dBASE
programming language. In addition, SQL tables can be converted to dBASE
IV databases.

Given that it is 'thrown in' with dBASE IV, it represents good value for
money! Its inclusion with the best-selling dBASE has probably had the
effect of introducing the idea of SQL into the PC world much more
effectively than any advertising by other suppliers. However, in this

169

170 Understanding SQL

version, it is unlikely that many people would buy dBASE just for its SQL
facilities.

A new version of SQL is promised with the next release of dBASE IV.
As of early 1990, this release had not materialised; nor was Ashton-Tate
able to provide a pre-release version for review for this book. If the new
version of SQL removes existing bugs, and integrates with the 'user­
friendly' features of dBASE IV, then it could become a strong competitor to
the other SQL products in the PC marketplace.

Informix-SQL

Informix Software has produced one of the more commonly used SQL
systems, available on Unix-based minis and on PCs. In addition, the
Informix database engine forms the basis for proprietary SQL products such
as the Uniplex database module.

It comes as standard with a simple forms generator ('Perform'), a report
generator ('Ace'), a menu tree generator, and a help module which allows
naive users to 'build' their database a step at a time. The system operates a
1-2-3 style menu system; alternatively, experienced SQL users can type
commands directly.

Also availabl~ is Informix-4GL, a fourth generation language which
allows users to create full-blown applications quickly and easily. The SQL
command set is the same as that of Informix-SQL.

Oracle (Version 5.1.22)

Oracle Corporation produced one of the first commercial SQL implementa­
tions (for Unix-based minis), and has since gone from strength to strength.
Oracle is now available on IBM mainframes, minis, and PCs. It has a very
robust implementation of SQL, similar in many ways to DB2, and generally
has a good reputation in SQL circles. It also provides lots of 'extra'
commands which can make practical use of the SQL database much easier
(for example, outer joins, DIFFERENCE and INTERSECT as well as
UNION, the CONNECT clause, no restriction in subqueries on references
to the 'main' table, and the ability to CREATE a new TABLE AS a
SELECT clause).

The Oracle package includes SQL*Forms, SQL*ReportWriter and
SQL*Menu for easy-to-use form based input, report generation, and produc­
tion of menu-driven applications. It also has an interface to Lotus Corpora­
tion's 1-2-3, and has its own spreadsheet, SQL*Calc.

Index

abbreviating SQL commands 32
adding a column 35-36
adding rows 19
adding new users 126
aggregate functions 41, 42, 46, 48,

62,66
alias 41, 48, 75
ALL operator 47, 81
ALL privilege 131
ALTER TABLE 35
altering a column 36, 93
ALTER privilege 131
AND operator 53,56
ANSI stlPldard 6, 12,28,29,31,33,

35,38,40,44,46,50,85,89,90,
93,94,103,104109,130,134,
143, 151-165, 167

ANY operator 84
ASC (ascending) 42
ascending order 42
ASCII 51, 52
authorisation 126
AUTOCOMMIT ON 25, 94
AVG function 46,47

base table 10
BETWEEN operator 53

calculations 45, 62
cascading revokes 133
case sensitivity 14
CHAR data type 31, 32
chart comparing SQLs 153

CHECK OPTION clause 100, 103-
104

CLOSE statement 140
Codd E.F. 1,4, 6, 155
column

adding 35-36
altering 93
data types 31
deleting 93
ordering by 62
renaming 102
restrictions on names 30
restrictions on usage 46
indexing on 115

commands
COMMIT statement 24, 27, 94
comparing data 50-53
comparison operators 49
concatenated index 116
CONNECT authorisation 128
conditions 48

brackets in 59
evaluation order 57-58
logical results 48

COUNT function 46, 47
CREATE INDEX 115
CREATE TABLE 18,33
CREATE VIEW 99
cross-references 74
cursors 138

data security 24, 125
data types

definition 31

171

172 Index

comparing different 50
database

creation 28
definition 27
design 9,17

database management system
(DBMS) 2

database manipulation language
(DML) 2

DATE data type 31, 33, 85
Date, Chris 6
dBASE IV 2, 8, 27, 28, 29, 31, 33,

40,52,58,94,95115,127,137,
151-152,153,169

DB2 1,5,7,8,28,32,33,36,89,
95, 100, 121, 124, 131, 151, 153,
156,169

DECIMAL data type 31
DECLARE CURSOR statement 138
DELETE privilege 131
DELETE statement 20, 90
delete

columns 93
index 123
rows 90
tables 38
users 126
views 105

DESC (descending) 42, 61, 64
DISTINCT 47
DROP INDEX statement 123
DROP DATABASE 29
DROP TABLE 38
DROP VIEW 105
duplicate rows 12

EBCDIC 51, 52
embedded SQL 3,135-142
ending an SQL session 27
equijoin 76
example database 10
EXEC SQL 136
EXISTS operator 79,81

EXIT statement 27
exporting data 95

FETCH statement 139
fidelity rules 4,5 155-168
field 10
FLOAT data type 31
foreign key 12
formatting data 46
forms generators 144-147
fourth generation language (4GL) 3
FROM clause 41
functions

aggregate 42-48,62,66
character/date 46, 52, 103

GRANT statement 24, 126, 128
GROUP BY clause

with aggregate functions 42
usage 65--69
restrictions on 43, 66

HAVING clause 43, 69
history of SQL 1
host language 135

importing data 95
IN operator 54, 79
indexes

concatenated 116
creating 115
dropping 123
effect of using 11, 115
when to use 11, 119-122
unique 25, 35, 116

Informix 2, 8, 14,28,31,33,40,77,
112, 128, 151-152, 153, 170

INPUT statement 36
INSERT privilege 131
INSERT statement

INSERT .. VALUES .. 19,36-
38,84-86

INSERT .. SELECT .. 91

inserting rows 19
INTEGER data type 31
integrity constraints 17, 25, 86,

133-134, 163
INTO clause 137
IS NULL 55

join

key

equijoin 76
general join 72, 76
inner join 76, 77
outer join 77
natural join 76
non-equijoin 76

foreign 12
index 115
primary 12

LIKE operator 53

MAX function 46
menu generators 150
MIN function 46
multiple tables 72

normalising data 23
NOT NULL operator 34, 36
NOT operator 55
NULL operator 5, 34, 52, 55
NUMERIC data type 31

OPEN CurSor 138, 139
operators

arithmetic 42, 50
comparison 42
logical 42

operating system commands
optimising queries 114-124
OR operator 56
ORACLE 2, 8,14,24,25,27,30,

31,33,35,36,52,58,77,85,89,

Index 173

91,93,95,100, 127, 143-150,
151-152,153,170

ORDER BY clause 42, 61-64
ordering data 61-64

passwords 26
performance improvements 114-124
primary key 12
privileges 126
procedural language 3, 135
programming languages 3,135
protecting data 24, 125
punctuation 14

queries
querying catalog tables 29
querying data 39

QUIT statement 27

record 10
relational model 4, 5, 155
report generators 148-149
reserved words 12
RESOURCE authorisation 128
result table 10, 40
REVOKE statement 24, 132
ROLLBACK statement 94
row 10

security of data 24, 125
security with views 24
SELECT privilege 131
SELECT statement 11,39,40,44,

45
SELECT . .INTO .. 137
self-referencing 89, 91
spreadsheet interfaces 150
SQL

acronym 1
commands 12, 168
definition 1, 2
dialects 5
ending a session 27

174 Index

history 1
standards 6
starting a session 26

SQL/DS 1
statements 12
Structured Query Language 1
subqueries

evaluation order 60
in general 42, 78-82
on single tables 59
on multiple tables 79

SUM function 46
suspending an SQL session 27
syntax of SQL statements 12
system catalog 29, 50

table
alias 41,48, 75
authorisation to use 127
creating 18
definition 10
deleting rows from 20
dropping 38
querying 39
restrictions on names 30
updating 20, 86-90

third generation language 3

UNION 43, 70-72
UNIQUE

concept 34
index 35,89

UPDATE privilege
UPDATE statement 20, 86-90
users

introducing 126
privileges 126
removing 126

V ARCHAR data type 32
variables 136
view

creating 23
deleting 105
limitations on using 106-112
need for having 17, 94, 97
querying 105

virtual table 99

WHERE clause 41, 48
WHERE CURRENT OF 141
wildcards 53-54

