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Introduction

This manual contains solutions to selected exercises from Introduction to Modern Eco-
nomic Growth by Daron Acemoglu. This volume is the Instructor Edition of the solutions
manual, which contains a wider range of exercises than the Student Edition. The exercise
selection for both editions is guided by a similar set of principles. First, we have tried to
include the exercises that facilitate the understanding of the material covered in the book, for
example, the ones that contain proofs to propositions or important extensions of the baseline
models. Second, we have included exercises which we have found relatively more useful for
improving economic problem-solving skills or building economic intuition. Third, we made
an e¤ort to include exercises which seemed particularly challenging. Fourth, we also tried to
strike a balance across the chapters. Even with these criteria, making the �nal selection has
not been easy and we had to leave out many exercises which are no doubt important and
interesting. We hope the readers will �nd our selection useful and we apologize up front for
not providing the solution of an exercise which may be of interest.

A word on the organization and the equation numbering of this manual may be helpful.
The exercises are presented in the same chapters they belong to in the book. Our solutions
regularly refer to equations in the book and also to equations de�ned within the manual. To
avoid confusion between the two types of references, we use the pre�x �I�for the labels of the
equations de�ned in the Instructor Edition of the solutions manual. For example Eq. (5.1)
would refer to the �rst labeled equation in Chapter 5 of the book, whereas Eq. (I5.1) would
refer to the �rst labeled equation in Chapter 5 of this edition.

Although this version of the manual went through various stages of proofreading, there are
no doubt remaining errors. To partly make up for the errors, we will post an errata document
on our personal websites which we will commit to updating regularly. In particular we would
appreciate it if readers could e-mail us concerning errors, corrections or alternative solutions,
which we will include in the next update of the errata document. Our present e-mail and
website addresses are as follows:

Michael Peters, mipeters@mit.edu, http://econ-www.mit.edu/grad/mipeters
Alp Simsek, alpstein@mit.edu, http://econ-www.mit.edu/grad/alpstein
An errata document and additional information will also be posted on the companion site

for Introduction to Modern Economic Growth at: http://press.princeton.edu/titles/8764.html

Acknowledgments.
We would like to thank Daron Acemoglu for his help with the exercise selection and for

useful suggestions on multiple solutions. We would also like to thank Camilo Garcia Jimeno,
Suman Basu and Gabriel Carroll for various contributions and suggestions, and to thank
Samuel Pienknagura for providing his own solutions to some of the exercises in Chapter 22.
A number of exercises have also been assigned as homework problems for various economics
classes at MIT and we have bene�ted from the solutions of numerous graduate students in
these classes.

xi





Chapter 2: The Solow Growth Model

Exercise 2.7

Exercise 2.7, Part (a). Assuming C (t) = sY (t) is not very reasonable since it implies
that consumption for a given level of aggregate income would be independent of govern-
ment spending. Since government spending is �nanced by taxes, it is more reasonable to
assume that higher government spending would reduce consumption to some extent. As an
alternative, we may assume that consumers follow the rule of consuming a constant share
of their after tax income, captured by the functional form C (t) = s (Y (t)�G (t)). Using
G (t) = �Y (t), this functional form is also equivalent to C (t) = (s� s�)Y (t). In Part
(b), we assume a more general consumption rule C (t) = (s� ��)Y (t) with the parameter
� 2 [0; 1] controlling the response of consumption to increased taxes. The case � = 0 corre-
sponds to the extreme case of no response, � = s corresponds to a constant after-tax savings
rule, and � 2 [0; 1] correspond to other alternatives.

Exercise 2.7, Part (b). The aggregate capital stock in the economy accumulates ac-
cording to

K (t+ 1) = I (t) + (1� �)K (t)
= Y (t)� C (t)�G (t) + (1� �)K (t)
= (1� s� � (1� �))Y (t) + (1� �)K (t) , (I2.1)

where the last line uses C (t) = (s� ��)Y (t) and G (t) = �Y (t). Let f (k) � Y (t) =L =
F (K; 1; A) and assume, for simplicity, that there is no population growth. Then dividing Eq.
(I2:1) by L, we have

k (t+ 1) = (1� s� � (1� �)) f (k (t)) + (1� �) k (t) :
Given k (0), the preceding equation characterizes the whole equilibrium sequence for the
capital-labor ratio fk� (t)g1t=0 in this model, where we use the subscript � to refer to the
economy with parameter � for government spending.

We claim that with higher government spending and the same initial k (0), the e¤ective
capital-labor ratio would be lower at all t > 0, that is

k� (t) > k�0 (t) for all t, where � < �0. (I2.2)

To prove this claim by induction, note that it is true for t = 1, and suppose it is true for
some t � 1. Then, we have

k� (t+ 1) = (1� s� � (1� �)) f (k� (t)) + (1� �) k� (t)
> (1� s� � (1� �)) f (k�0 (t)) + (1� �) k�0 (t)
>

�
1� s� �0 (1� �)

�
f (k�0 (t)) + (1� �) k�0 (t) = k�0 (t+ 1) ,

where the second line uses the induction hypothesis and the fact that f (k) is increasing in
k, and the third line uses �0 > �. This proves our claim in (I2:2) by induction. Intuitively,

1



2 Solutions Manual for Introduction to Modern Economic Growth

higher government spending reduces net income and savings in the economy and depresses
the equilibrium capital-labor ratio in the Solow growth model.

As in the baseline Solow model, the capital-labor ratio in this economy converges to a
unique positive steady state level k� characterized by

f (k�)

k�
=

�

1� s� � (1� �) . (I2.3)

The unique solution k� is decreasing in � and increasing in � since f (k) =k is a decreasing
function of k. In the economy with higher government spending (higher �), the capital-labor
ratio is lower at all times, and in particular, is also lower at the steady state. Also, the more
individuals reduce their consumption in response to government spending and taxes (higher
�), the more they save, the higher the capital-labor ratio at all times and, in particular, the
higher the steady state capital-labor ratio.

Exercise 2.7, Part (c). In this case, Eq. (I2:3) changes to

f (k�)

k�
=

�

1� s� � (1� �� �) .

Since f (k) =k is decreasing in k, the steady state capital-labor ratio k� is increasing in �.
With respect to �, it can be seen that k� is increasing in � if � > 1 � � and decreasing
in � if � < 1 � �. In words, when the share of public investment in government spending
(i.e. �) is su¢ ciently high, in particular higher than the reduction of individuals� savings
in response to higher taxes, the steady state capital-labor ratio will increase as a result of
increased government spending. This prediction is not too reasonable, since it obtains when
the government has a relatively high propensity to save from the tax receipts (high �) and
when the public consumption falls relatively more in response to taxes (high �), both of which
are not too realistic assumptions.

An alternative is to assume that public investment (such as infrastructure investment) will
increase the productivity of the economy. Let us posit a production function F (K;L; �G;A),
which is increasing in public investment �G, and assume, as an extreme case, that F has
constant returns to scale in K;L and public investment �G. With this assumption doubling
all the capital (e.g. factories) and the labor force in the economy results in two times the
output only if the government also doubles the amount of roads and other necessary public
infrastructure. De�ne f (k; �g) = F (k; 1; �g;A) where g = G=L. Then, the steady state
capital-labor ratio k� and government spending per capita g� are solved by the system of
equations

f (k�; �g�)

k�
=

�

1� s� � (1� �)
g� = �f (k�; �g�) .

The second equation de�nes an implicit function g� (k�) for government spending in terms
of the capital-labor ratio, which can be plugged into the �rst equation from which k� can be
solved for. In this model, k� is increasing in � for some choice of parameters. Since some
infrastructure is necessary for production, output per capita is 0 when public investment per
capita is 0, which implies that k� is increasing in � in a neighborhood of � = 0. Intuitively,
when public infrastructure increases the productivity of the economy, increased government
spending might increase the steady state capital-labor ratio.
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Exercise 2.11

Exercise 2.11, Part (a). Recall that the capital accumulation in the Solow (1956)
model is characterized by the di¤erential equation

_K (t) = sY (t)� �K (t) . (I2.4)

Let k (t) = K (t) =L (t) denote the capital-labor ratio. Using the production function Y (t) =
L (t)�K (t)� Z1���� and the assumption that the population is constant, the evolution of
the capital-labor ratio is given by

_k (t)

k (t)
=

_K (t)

K (t)
= sL�K (t)��1 Z1���� � �

= sk (t)��1 z1���� � �,
where the �rst line uses Eq. (I2:4) and the second line de�nes z � Z=L as the land to labor
ratio. Setting _k (t) = 0 in this equation, the unique positive steady state capital-labor ratio
can be solved as

k� =

�
sz1����

�

�1=(1��)
. (I2.5)

The steady state output per capita is in turn given by

y� = s
�
k
�
��
(z�)1���� (I2.6)

=
�s
�

��=(1��)
z(1����)=(1��)

To prove that the steady state is globally stable, let us de�ne g (k) � sz1����k��1� �. Since
g (k) is a decreasing function of k and since g (k�) = 0, we have

g (k (t)) > 0 for k (t) 2 (0; k�) and
g (k (t)) < 0 for k (t) 2 (k�;1) .

Since _k (t) = k (t) g (k (t)), the previous displayed equation implies that k (t) increases when-
ever 0 < k (t) < k� and decreases whenever k (t) > k�. It follows that starting from any
k (0) > 0, the capital-labor ratio converges to the unique positive steady state level k� given
in Eq. (I2:5). Intuitively, the land to labor ratio remains constant since there is no population
growth. This in turn implies that there is a unique steady state with a positive capital-labor
ratio despite the fact that the production function exhibits diminishing returns to jointly
increasing capital and labor.

Exercise 2.11, Part (b). As Eq. (I2:6) continues to apply, the capital-labor ratio
evolves according to

_k (t) = sz (t)1���� k (t)� � (� + n) k (t) . (I2.7)

In this case the land to labor ratio z (t) = Z=L (t) is decreasing due to population growth,
that is

_z (t)

z (t)
= �n. (I2.8)

The equilibrium is characterized by the system of di¤erential equations (I2:8) and (I2:7) along
with the initial conditions k (0) = K (0) =L (0) and z (0) = Z=L (0).

First, we claim that the only steady state of this system is given by k� = z� = 0. By
Eq. (I2:8), limt!1 z (t) = 0 hence z� = 0 is the only steady state. Plugging z� = 0 in Eq.
(I2:7) and solving for _k (t) = 0, the only steady state capital-labor ratio is k� = 0, proving
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our claim. Next, we claim that starting from any initial condition, the system will converge
to this steady state. Note that Eq. (I2:8) has the solution z (t) = z (0) exp (�nt). Plugging
this expression in Eq. (I2:7), we have the �rst-order nonlinear di¤erential equation

_k (t) = sz (0)1���� exp (�n (1� �� �) t) k (t)� � (� + n) k (t) .

To convert this to a linear di¤erential equation, de�ne x (t) = k (t)1�� and note that the

evolution of x (t) is given by _x(t)
x(t) = (1� �)

_k(t)
k(t) , or equivalently

_x (t) = s (1� �) z (0)1���� exp (�n (1� �� �) t)� (1� �) (� + n)x (t) .
The solution to this linear �rst-order di¤erential equation is given by (see Section B.4)

x (t) = exp (� (1� �) (� + n) t)
�
x (0) +

Z t

0
s (1� �) z (0)1���� exp

�
(n� + (1� �) �) t0

�
dt0
�

=

"
x (0)� s (1� �) z (0)1����

n� + (1� �) �

#
exp (� (1� �) (� + n) t)

+s (1� �) z (0)1���� exp (�n (1� �� �) t)
n� + (1� �) �

Using x (t) = k (t)(1��), the previous equation implies

k (t) =

0@ h
k (0)1�� � s(1��)z(0)1����

n�+(1��)�

i
exp (� (1� �) (� + n) t)

+ s(1��)z(0)1����
n�+(1��)� exp (�n (1� �� �) t)

1A1=(1��) , (I2.9)

which provides an explicit form solution for k (t). Since � + � < 1, this expression also
implies that limt!1 k (t) = 0, proving that the economy will converge to the steady state
capital-labor ratio k� = 0 starting from any initial condition.

Eq. (I2:9) demonstrates a number of points worth emphasizing. First, since 1 � � > 0
the �rst component always limits to zero, hence the initial condition has no impact on the
limiting value of capital-labor ratio in the Solow model. Second, the second component limits
to zero if �+� < 1, but limits to a positive value if �+� = 1 or if n = 0 (which corresponds
to the case studied in Part (a) of this problem). Hence, the assumptions that drive the results
of this exercise are the joint facts that the production function has diminishing returns in
capital and labor and that the population is increasing. Intuitively, as the population grows,
each unit of labor commands less land for production and the output of each worker declines
(and limits to zero) since land is an essential factor of production.

We next claim that the aggregate capital and output limit to in�nity. To see this, note
that limt!1 k (t)L (t) =

lim
t!1

0@ h
k (0)1�� � s(1��)z(0)1����

n�+(1��)�

i
exp (� (1� �) (� + n) t)+

s(1��)z(0)1����
n�+(1��)� exp (�n (1� �� �) t)

1A1=(1��) L (0) exp (nt)
= lim

t!1

0@ h
k (0)1�� � s(1��)z(0)1����

n�+(1��)�

i
exp (� (1� �) �t)+

s(1��)z(0)1����
[n�+(1��)�] exp (n�t)

1A1=(1��) L (0) =1.
Consequently, Y (t) = F (K (t) ; L (t) ; Z) also limits to in�nity, since both K (t) and L (t)
limit to in�nity. The previous displayed equation also shows that the aggregate capital grows
at rate n�= (1� �) < n, that is, the aggregate variables still grow at an exponential rate but
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just not fast enough to compensate for the population growth and sustain a positive level of
capital-labor ratio and output per capita.

We claim that the returns to land also limit to in�nity. Land is priced in the competitive
market, hence returns to land are given by

pz (t) � (1� �� �)L (t)�K (t)� Z���� ,

which limits to in�nity sinceK (t) and L (t) are increasing. Alternatively, one can also see this
by noting that the share of land in aggregate output is constant due to the Cobb-Douglas
form of the production function, that is, pz (t)Z = (1� �� �)Y (t). Since output grows,
returns to land also grow and limit to in�nity. Intuitively, land is the scarce factor in this
economy and as other factors of production (and output) grow, the marginal product of land
increases. We �nally claim that the wage rate limits to zero. The wage rate is given by

w = �L��1K�Z1����

= �k�z1����,

which limits to zero since both k and z limit to zero. Labor complements land and capital in
production, therefore, as capital-labor ratio and land-labor ratio shrink to zero, wages also
shrink to zero. Intuitively, every worker has less machines and less land to work with, hence
has lower productivity and receives lower wages in the competitive equilibrium.

An alternative (simpler and more elegant) analysis. De�ne the normalized vari-
able

~L (t) =
�
L (t)� Z1����

�1=(1��)
,

which grows at the constant rate �n= (1� �) < n. The production function can be rewritten
in terms of this normalized variable as

F
�
K (t) ; ~L (t)

�
= K (t)� ~L (t)1�� .

Then, if we interpret ~L (t) as the labor force in a hypothetical economy, the textbook analysis
of the Solow model shows that this hypothetical economy has a unique steady state capital-

labor ratio ~k� =
�
K (t) =~L (t)

��
, and starting at any K (t) > 0 and ~L (t) > 0, the economy

converges to this level of capital-labor ratio. By construction, the aggregate capital in the
original economy is equal to the aggregate capital in the hypothetical economy. Thus, capital
in the original economy satis�es

lim
t!1

K (t)
~L (t)

= ~k�,

which shows that the aggregate capital K (t) asymptotically grows at rate �n= (1� �) (which
is the growth rate of ~L (t)). Since �n= (1� �) < n, population grows faster than aggregate
capital, hence the capital-labor ratio limits to zero. The remaining results are obtained as in
the above analysis.

Exercise 2.11, Part (c). We would expect both s and n to change. When we endogenize
savings as in Chapter 8, we see that s in general depends on a number of factors including
preferences for intertemporal substitution and factor prices. Nevertheless, the analysis in the
preceding parts applies even when s = 1 (i.e. individuals save all their income), thus the
capital-labor ratio and the output per capita would limit to zero also in the economy with
endogenously determined saving rate. Intuitively, savings cannot provide enough of a force
to overcome diminishing returns and immiseration in this economy.
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The stronger stabilizing force comes from endogenizing the demographics in the model,
that is, endogenizing n. A simple way of doing this is to use the idea proposed by Malthus
(1798), which we can incorporate in our model as:

_L (t)

L (t)
= n (y (t)) , (I2.10)

where n0 (y) > 0, limy!1 n (y) = n > 0 and limy!1 n (y) =n< 0. The intuition behind
Eq. (I2:10) is that when output per capita is higher, people live longer, healthier and they
have more children (abstracting from a lot of considerations such as birth control measures)
which increases the population growth. Note that when the output per capita is very low
population may shrink, and note also that there is a unique value of output per labor, y�,
that satis�es n (y�) = 0, i.e. population remains constant when output per labor is at y�.

The system that describes the equilibrium in this economy constitutes of Eqs. (I2:10),
(I2:8), and (I2:7). This system has a unique steady state, (y�; z�; L�), where y� is the unique
solution to n (y�) = 0, z� is the unique solution to

y� =
�s
�

��=(1��)
(z�)(1����)=(1��) ,

and L� = z�Z. Starting from any value of L (0), the level of population will adjust, that is
limt!1 L (t) = L� = z�Z so that land per labor is z�, the output per labor is y�, and popu-
lation growth is n (y�) = 0. Intuitively, as output per capita limits to 0, population growth
slows down, which increases the amount of land that each person commands, and conse-
quently increases output per capita.1 Hence endogenizing demographics creates a stabilizing
force that sustains positive levels of output per capita. The result of Part (b), in particular
the result that output per capita and the capital-labor ratio limit to zero, are largely artifacts
of taking n and s constant, which suggests that we should be careful in using the Solow model
since the model relies on reduced form assumptions on population dynamics and consumer
behavior.

Exercise 2.12

Exercise 2.12, Part (a). The aggregate return to capital in this economy is given by
R (t)K (t) = FK (K (t) ; L (t) ; A)K (t), which is also the aggregate income of the capitalists.
Then, capital accumulates according to

_K (t) = sKFK (K (t) ; L (t) ; A)K (t)� �K (t) . (I2.11)

1On the other hand, with Assumption (I2:10), sustained increases in output per capita are not possible
either, even with modest amounts of technological progress. An increase in output per capita increases
population which in turn decreases and stabilizes output per capita. This is the so-called Malthusian trap: In
a Malthusian world, modest amounts of technological progress result in higher population but not necessarily
higher output per capita. The Malthusian model roughly matches the evolution of output per capita before
the Industrial Revolution. For example, despite technological progress, the real wages in England in the 17th
century were similar to those in the 13th century (Clark (2004)). Again consistent with this model, measures
of urbanization and population density are good proxies for technological progress of ancient societies (see
Acemoglu, Johnson, Robinson (2002)). However, a su¢ ciently fast technological change might overturn this
result, in particular, once we add labor-augmenting technological change in the model, the Malthusian trap
is less likely the larger the labor-augmenting technological progress and the smaller n (the maximum rate
of population growth). Hence, one can argue that the Industrial Revolution (which increased technological
progress) and the demographic transition (which one may interpret as reducing n) were crucial for the human
societies to get out of the Malthusian trap.
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Let f (k) � F (k; 1; A) and note that we have

_k (t)

k (t)
=

_K (t)

K (t)
� n

= sKf
0 (k (t))� � � n, (I2.12)

where the second line uses Eq. (I2:11) and the fact that f 0 (k (t)) = FK (K (t) ; L (t) ; A).
The equilibrium path of the capital-labor ratio, [k (t)]1t=0, is the solution to Eq. (I2:12)

with the initial condition k (0). In the steady state equilibrium, the capital-labor ratio,
k (t) � k�, is constant for all t. By Eq. (I2:12), the steady state capital-labor ratio solves:

sKf
0 (k�) = � + n (I2.13)

This equation has a unique solution since f 0 (k) is decreasing in k with limk!0 f
0 (k) = 1

and limk!1 f 0 (k) = 0 from Assumption 2. Moreover, we claim that the unique steady state
equilibrium is globally stable, that is, starting from any k (0) > 0, limt!1 k (t) = k�. To see
this, note that the fact that f 0 (k) is decreasing in k implies

sKf
0 (k (t))� � � n

�
> 0 if k (t) < k�

< 0 if k (t) > k�,

which shows that k (t) converges to the unique steady state k�, proving global stability.

Exercise 2.12, Part (b). Recall that the golden rule capital-labor ratio k�gold maximizes
steady state consumption per capita subject to a constant savings rule. Equivalently, k�gold
maximizes the steady state net output, f (k)� (� + n) k; and is found by

f 0
�
k�gold

�
= � + n. (I2.14)

Comparing Eqs. (I2:13) and (I2:14), we see that k� < k�gold since sK < 1 and f 0 (k) is
decreasing in k. In this economy, the steady state capital-labor ratio is always less than the
golden rule capital-labor ratio. To see the intuition, note that the golden rule capital-labor
ratio k�gold obtains in an economy when aggregate savings are equal to aggregate returns to
capital since

sf
�
k�gold

�
= (� + n) k�gold = f 0

�
k�gold

�
k�gold = R�k�gold.

When only capitalists save, it is impossible to save all the of the return to capital since
this would require the capitalists to consume nothing. Hence, in an economy in which only
capitalists save, the capital-labor ratio is always less than the golden rule level.

Exercise 2.14*

Exercise 2.14, Part (a). We will construct an example in which K (t) ; Y (t) and C (t)
asymptotically grow at constant but di¤erent rates. Consider paths for Y (t) ; C (t) given by

Y (t) = Y (0) exp (gt) ; C (t) = C (0) exp
�g
2
t
�

where g > 0 and C (0) < Y (0), and de�ne K (t) as the solution to _K (t) = Y (t) � C (t) �
�K (t). Note that _Y (t) =Y (t) = g and _C (t) =C (t) = g=2 for all t. De�ne � (t) = K (t) =Y (t)
and note that

_� (t)

� (t)
=

_K (t)

K (t)
� g = 1

� (t)
� C (t)

Y (t)

1

� (t)
� � � g (I2.15)

hence

_� (t) = 1� C (0)

Y (0)
exp

�
�g
2
t
�
� (� + g)� (t) .
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As t ! 1, the middle term on the right hand side goes to zero and � (t) = K (t) =Y (t)

converges to the constant 1= (� + g), so we have limt!1 _K (t) =K (t) = g. Hence, in this
example Y (t) and K (t) asymptotically grow at rate g while C (t) asymptotically grows at
rate g=2, proving that Part 1 of Theorem 2.6 is not correct without further conditions.

Note that this example features C (t) growing at a constant rate slower than both K (t)
and Y (t) so in the limit all output is invested and both capital and output grow at the same
constant rates. To rule out such examples, let us assume that

lim
t!1

C (t) =Y (t) = �� 2 (0; 1) (I2.16)

so that gC = gY . Taking the limit of Eq. (I2:15), we have as t!1
_� (t) � 1� �� � (� + g)� (t) .

This equation shows that limt!1 � (t) = (1� ��) = (� + g) 2 (0;1), which in turn shows
that K (t) and Y (t) asymptotically grow at the same constant rates, that is gK = gY . Hence
Condition (I2:16) is su¢ cient to ensure that the limiting growth rates of Y (t) ;K (t) and
C (t) are equal to each other.

Exercise 2.14, Part (b). We assume that Condition (I2:16) is satis�ed so gC = gY =
gK � g. We also assume that both gY (t) and gK (t) converge to g at a rate faster than 1=t,
that is, there exists a sequence f"T g1T=1 with limT!1 "TT = 0 such that, jgY (t)� gY j < "T =2
and jgK (t)� gY j < "T =2 for all T and t � T .

Repeating the steps as in the proof of Theorem 2.6 as suggested in the exercise gives

Y (t) = ~F

�
exp

�Z t

T
(gY (s)� gK (s)) ds

�
K (t) ; exp

�Z t

T
(gY (s)� n) ds

�
L (t) ; ~A (T )

�
.

(I2.17)
For each T , we let A (t) = exp ((gY � n) t) and we de�ne the production function

FT (K (t) ; A (t)L (t)) � ~F

�
K (t) ;

A (t)L (t)

A (T )
; ~A (T )

�
,

and the production function F (K (t) ; A (t)L (t)) as the limit

F (K (t) ; A (t)L (t)) = lim
T!1

FT (K (t) ; A (t)L (t)) .

We claim that F provides an asymptotic representation for ~F , that is

limt!1
~F(K(t);L(t); ~A(t))
F (K(t);A(t)L(t)) = 1. To see this, we �rst claim that

exp (�"T (t� T )) �
~F
�
K (t) ; L (t) ; ~A (t)

�
FT (K (t) ; A (t)L (t))

� exp ("T (t� T )) . (I2.18)

To prove the right hand side, note that

~F

FT
=

~F
h
exp

�R t
T (gY (s)� gK (s)) ds

�
K (t) ; exp

�R t
T (gY (s)� n) ds

�
L (t) ; ~A (T )

i
~F
h
K (t) ; exp

�R t
T (gY � n) ds

�
L (t) ; ~A (T )

i
�

~F
h
K (t) exp ("T (t� T )) ; exp

�R t
T (gY � n) ds

�
L (t) exp ("T (t� T )) ; ~A (T )

i
~F
h
K (t) ; exp

�R t
T (gY � n) ds

�
L (t) ; ~A (T )

i
= exp ("T (t� T )) ,
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where the �rst line uses Eq. (I2:17), the inequality follows since jgY (s)� gY j < "T =2 and
jgK (s)� gY j < "T =2 for s � T , and the last line follows since ~F is constant returns to scale.
The left hand side of Eq. (I2:18) is proved similarly. Letting t = �T for some � > 1 and
taking the limit of Eq. (I2:18) over T , we have

lim
T!1

exp (� (� � 1) "TT ) � lim
T!1

~F
h
K (�T ) ; L (�T ) ; ~A (�T )

i
FT [K (�T ) ; A (�T )L (�T )]

� lim
T!1

exp ((� � 1) "TT ) .

Since limT!1 "TT = 0, the limits on the left and the right hand side of the inequality are
equal to 1, which implies that the middle limit is also equal to 1. Using t = �T , the middle
limit can be rewritten as

lim
t!1

~F
h
K (t) ; L (t) ; ~A (t)

i
FT=�t [K (t) ; A (t)L (t)]

= 1;

which holds for all � > 1. Taking the limit of the above expression over � we have

1 = lim
�!1

lim
t!1

~F
h
K (t) ; L (t) ; ~A (t)

i
FT=�t [K (t) ; A (t)L (t)]

= lim
t!1

~F
h
K (t) ; L (t) ; ~A (t)

i
lim�!1 FT=�t [K (t) ; A (t)L (t)]

= lim
t!1

~F
h
K (t) ; L (t) ; ~A (t)

i
F [K (t) ; A (t)L (t)]

;

where the last line follows from de�nition of F . This proves limt!1 ~F=F = 1, that is, F
provides an asymptotic representation for ~F as desired.

Note that our proof relies on the inequality in (I2:18), which does not necessarily hold
when either gK (t) or gY (t) converges to g at a rate slower than 1=t. In this case, ~F does not
necessarily have an asymptotic representation with labor-augmenting technological progress.

Exercise 2.16*

Exercise 2.16, Part (a). Let y0 = dy=dk and rewrite the equation y = � (y � ky0)� as
��1=�dy

y1=� � �1=�y
=
dk

k
.

The right hand side is readily integrable but the left hand side is not. After dividing the
numerator and the denominator on the left hand side with y1=�, and multiplying both sides
by (� � 1) =�, we have

���1
� �1=�y�1=�dy

1� �1=�y(��1)=�
=
� � 1
�

dk

k
.

In this form, the left hand side is equal to d log
�
1� �1=�y(��1)=�

�
=dy so that integrating

both sides gives

log
�
1� �1=�y (k)(��1)=�

�
= log

�
k
��1
�

�
+ C,

where C is a constant of integration. Solving this equation, we have

y (k) =
�
��1=� � ��1=� exp (C) k

��1
�

� �
��1

.

Letting c0 � ���1=� exp (C) gives the desired expression for y (k).
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Exercise 2.16, Part (b). Dividing Eq. (2:38) by L (t) and dropping the time depen-
dence, we have

y (k) =
�
 (AHAK)

��1
� k

��1
� + (1� ) (AHAL)

��1
�

� �
��1

.

Hence, for the two expressions to be identical, we need

c0 =  (AHAK)
��1
�

��1=� = (1� ) (AHAL)
��1
� ,

which can be simpli�ed to

� =
(AHAL)

1��

(1� )� , and c0 = ��1=�


1�  .

If � and c0 satisfy these equations, then we obtain the exact form of the CES function in
(2:38).

Exercise 2.17

Exercise 2.17, Part (a). Let F take the Cobb-Douglas form, that is, assume

F [AKK;ALL] = C (AKK)
� (ALL)

1�� ,

for some constants C and �. Then, F can be rewritten as

F [AKK;ALL] = CK�
�h
ALA

�=(1��)
K

i
L
�1��

.

Note that, when written in this form, the technological change is essentially labor-augmenting.
Then the textbook analysis for the Solow model with technological progress applies in this
case as well. In particular, de�ne A (t) � AL (t)AK (t)

�=(1��) as the labor-augmenting tech-
nological progress and k (t) = K (t) = (A (t)L (t)) as the e¤ective capital-labor ratio, and note
that

_k (t)

k (t)
=

sF [AK (t)K (t) ; AL (t)L (t)]� �K (t)
K (t)

�
_A (t)

A (t)
�
_L (t)

L (t)

= sCk (t)��1 � � � gL �
�

1� �gK .

Solving for _k (t) = 0, there exists a globally stable steady state with e¤ective capital-labor
ratio

k� =

 
sC

� + gL +
�
1��gK

! �1
1��

.

It follows that the economy admits a balanced growth path in which the e¤ective capital-
labor ratio is constant and the capital-labor ratio and output per capita grow at the constant
rate

g � gL +
�

1� �gK .

Starting from any level of e¤ective capital-labor ratio, the economy converges to this e¤ective
capital-labor ratio, that is, if k (0) < k�, then the economy initially grows faster than g and
k (t) " k�, and similarly, if k (0) > k�, then the economy initially grows slower than g and
k (t) # k�.
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Exercise 2.17, Part (b). We �rst prove a general result that will be useful to solve this
exercise. We claim that the e¤ective capital-labor ratio in this economy limits to in�nity,
that is

lim
t!1

k (t) � AK (t)K (t) = (AL (t)L) =1. (I2.19)

The intuition for this result is as follows: the capital stock would asymptotically grow at
rate gL if AK (t) were constant. Hence, with the added technological progress in AK (t), the
economy does not do worse and capital stock continues to grow at least at rate gL. It follows
that the e¤ective capital stock, AK (t)K (t) grows strictly faster than gL, leading to Eq.
(I2:19). The following lemma and the proof formalizes this idea.

Lemma I2.1. Suppose that the production function takes the form Y (t) =
F (AK (t)K (t) ; AL (t)L (t)) and suppose AL (t) grows at the constant rate gL and AK (t) �
AK (0) for all t. Let k̂ (t) = K (t) = (AL (t)L (t)) denote the capital to e¤ective labor ra-
tio in this economy and ~k (t) denote the capital to e¤ective labor ratio in the hypotheti-
cal economy which has the same initial conditions but in which the production function is
given by ~Y (t) = F (AK (0)K (t) ; AL (t)L (t)), that is, the hypothetical economy has labor-
augmenting technological change at the same rate gL but it has no capital-augmenting techno-
logical change. Then, k̂ (t) � ~k (t) for all t. In particular, limt!1 k̂ (t) � ~k�, and moreover,
limt!1 k (t) = limt!1AK (t) k̂ (t) =1 whenever limt!1AK (t) =1.

Proof. Let f
�
k̂
�
= F

�
k̂; 1
�
and note that k̂ accumulates according to

dk̂=dt = sf
�
AK k̂

�
� (� + n) k̂

� sf
�
AK (0) k̂

�
� (� + n) k̂, (I2.20)

where the inequality follows since AK (t) � AK (0). Similarly, capital to e¤ective labor ratio
in the hypothetical economy, ~k, satis�es

d~k=dt = sf
�
AK (0) ~k

�
� (� + n) ~k, (I2.21)

with the same initial condition, that is, ~k (0) = k̂ (0). Suppose, to get a contradiction, that
k̂ (t) � ~k (t) for some t > 0. Since both k̂ and ~k are continuously di¤erentiable in t, and since
k̂ (0) = ~k (0), there exists some t0 2 [0; t] where ~k just gets ahead of k̂, that is k̂ (t0) = ~k (t0)

and dk̂ (t0) =dt < d~k (t0) =dt. Since k̂ (t0) = ~k (t0), this yields a contradiction to Eqs. (I2:20)
and (I2:21), showing that k̂ (t) � ~k (t) for all t. Note that the textbook analysis of the Solow
model with labor-augmenting technological progress shows that limt!1 ~k (t) = ~k� > 0, which
in turn implies limt!1 k̂ (t) � ~k� > 0. Finally, this also implies that Eq. (I2:19) holds when
limt!1AK (t) =1, as desired. �

We next turn to the present problem. We prove the result by contradiction, that is, we
suppose there is a steady state equilibrium and we show that the production function must
have a Cobb-Douglas representation. Consider a BGP equilibrium in which both K and Y
grow at constant rates gK and gY . We use superscripts for these growth rates so that the
growth rates of capital and output are not confused with the productivity growth rates.

We �rst show that K and Y must grow at the same rate, that is gK = gY . To see this,
consider the capital accumulation equation

_K = sY � �K.
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Since K and Y grow at constant rates, we have K (t) = K (0) exp
�
gKt

�
and Y (t) =

Y (0) exp
�
gY t
�
. Plugging these expressions in the previous displayed equation, we have

gKK (0) exp
�
gKt

�
= sY (0) exp

�
gY t
�
� �K (0) exp

�
gY t
�
,

which further implies
gKK (0) + �K (0)

sY (0)
= exp

��
gY � gK

�
t
�
.

The left hand side is constant, hence this equation can only be satis�ed if gY = gK . We refer
to the common growth rate of Y and K as g.

Second, we de�ne f (k) = F (k; 1) and we claim that f (k) = Ck� for some constants C
and � 2 (0; 1). To see this, consider

Y (t)

L
= AL (t)F

�
AK (t)

AL (t)

K (t)

L (t)
; 1

�
= AL (t) f

�
AK (t)

AL (t)

K (t)

L (t)

�
,

Plugging K (t) = K (0) exp (gt) and Y (t) = Y (0) exp (gt), AL (t) = AL (0) exp (gLt) and
AK (t) = AK (0) exp (gKt) in this expression, we have

Y (0)

AL (0)L
exp ((g � gL) t) = f (k (0) exp ((gK � gL + g) t)) . (I2.22)

By Lemma I2.1, k (t) = k (0) exp ((gK � gL + g) t) is growing. Then, considering the
following change of variables between t and k

k (0) exp ((gK � gL + g) t) = k

in Eq. (I2:22), f (k) can be calculated for all k � k (0). In particular, we have

f (k) =
Y (0)

AL (0)L
exp

�
g � gL

gK � gL + g
ln

k

k (0)

�

=
Y (0)

AL (0)L

�
1

k (0)

� g�gL
gK�gL+g

k
g�gL

gK�gL+g

= Ck�

for some constant C, where the last line de�nes � � g�gL
gK�gL+g .

Finally, note that f (k) = Ck� implies

F (AKK;ALL) = ALLf (k) (I2.23)

= C (AKK)
(g�gL)=(gK�gL+g) (ALL)

gL=(gK�gL+g) ,

proving that the production function takes the Cobb-Douglas form.
An alternative proof based on the fact that factor shares are constant. Suppose,

as before, that we are on a BGP on which Y and K grow at constant rates gY and gK . The
same argument as above shows that we must have gY = gK = g. We �rst claim that the
factor shares should also be constant on any such BGP. Let

�K =
RK

Y
=
F1AKK

F
and �L =

wL

F
=
F2ALL

F
,

denote the shares of capital and labor in output. Here, F1 and F2 denote the �rst and second
derivatives of the function F (AKK;ALL).
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We �rst claim that �K (t) is a constant independent of time. Di¤erentiating Y (t) =
F (AK (t)K (t) ; AL (t)L (t)) with respect to t and dividing by F , we have

_Y

Y
=

F1AKK

F

 
_K

K
+ gK

!
+
F2ALL

F

 
_L

L
+ gL

!

= �K (t)

 
_K

K
+ gK

!
+ �L (t)

 
_L

L
+ gL

!

= �K (t)

 
_K

K
+ gK

!
+ (1� �K (t))

 
_L

L
+ gL

!
, (I2.24)

where the last line uses �K (t) + �L (t) = 1. By assumption, we have _Y =Y = g, _K=K = g,
and _L=L = 0. Moreover, Lemma I2.1 shows that g � gL, which also implies gK + g > gL.
Consequently, by Eq. (I2:24), �K (t) can be solved in terms of the growth rates and is given
by

�K (t) = �K �
g � gL

g + gK � gL
. (I2.25)

This expression is independent of t, which proves our claim that �K (t) is constant.
Second, we use Eq. (I2:25) to show that F takes the Cobb-Douglas form. Note that we

have

�K (t) =
F1AKK

F
=
f 0 (k)

f (k)

AKK

ALL
=
f 0 (k) k

f (k)
;

where recall that we have de�ned k = (AKK) = (ALL). Using the fact that �K (t) is constant,
we have

d log f (k)

dk
=
f 0 (k)

f (k)
=
�K
k
.

Note that by Lemma I2.1, we have that k (t) is growing. Then, the previous equation is
satis�ed for all k � k (0), thus we can integrate it to get

log f (k) = �K log k + logC;

where logC is a constant of integration. From the previous expression, we have f (k) =
Ck�K , which again leads to the Cobb-Douglas production function F (AKK;ALL) =

C (AKK)
�K (ALL)

1��K . In view of the expression for �K in Eq. (I2:25), the representa-
tion obtained in the alternative proof is exactly equal to the representation obtained earlier
in Eq. (I2:23).

The second proof brings out the economic intuition better. From the growth accounting
equation (I2:24), when e¤ective factors grow at di¤erent constant rates (in particular, when
e¤ective capital grows faster than e¤ective labor, as implied by Lemma I2.1), output can
grow at a constant rate only if factor shares remain constant. But when e¤ective factors
grow at di¤erent rates, the only production function that keeps factor shares constant is the
Cobb-Douglas production function.

Exercise 2.18*

We �rst note that, by Lemma I2.1, the e¤ective capital-labor ratio in this economy limits
to in�nity, that is

lim
t!1

AK (t)K (t) = (AL (t)L) =1. (I2.26)
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Next, we claim that capital, output, and consumption asymptotically grow at rate gL. To
see this, let k̂ (t) = K (t) = (AL (t)L) denote the capital to e¤ective labor ratio and note that

dk̂ (t) =dt = s

�
K

�
AK (t) k̂ (t)

�(��1)=�
+ L

��=(��1)
� (� + n) k̂ (t) .

Using the limit expression in (I2:26) and the fact that � < 1, this di¤erential equation
approximates

dk̂ (t) =dt � s
�=(��1)
L � (� + n) k̂ (t) :

Hence, we have

lim
t!1

dk̂ (t) =dt = 0 and lim
t!1

k̂ (t) = s
�=(��1)
L = (� + n) .

Since k̂ (t) asymptotes to a constant, we have that K (t) = AL (t)Lk̂ (t) asymptotically grows
at rate gL. Moreover, we have

Y (t) = AL (t)Lf
�
AK (t) k̂ (t)

�
= AL (t)L

�
K

�
AK (t) k̂ (t)

�(��1)=�
+ L

��=(��1)
! 

�=(��1)
L AL (t)L as t!1, (I2.27)

hence asymptotically Y (t) also grows at the constant rate gL. Finally, consumption in the
Solow model is a constant share of output and hence also grows at rate gL, proving our claim.

Finally, we claim that the share of labor in national income tends to 1. Note that the
wages can be solved from

w (t) =
d

dL

�h
K (AK (t)K (t))

(��1)=� + L (AL (t)L)
i(��1)=���=(��1)

= LAL (t)
(��1)=� L�1=�Y (t)1=� .

The share of labor in national income is then given by

w (t)L

Y (t)
=

LAL (t)
(��1)=� L(��1)=�Y (t)1=�

Y (t)

=

h

�=(��1)
L AL (t)L

i(��1)=�
Y (t)(��1)=�

,

which limits to 1 from Eq. (I2:27), proving our claim.
Intuitively, when � < 1, capital and labor are not su¢ ciently substitutable and labor be-

comes the bottleneck in production. Hence, despite deepening of e¤ective capital to e¤ective
labor, capital and output can only grow at the same rate as e¤ective labor. A comple-
mentary intuition comes from considering the approximation in Eq. (I2:27). With � < 1,
capital deepening causes an abundance of e¤ective capital so that the limit production is
essentially determined by how much e¤ective labor the economy has. This exercise provides
a robust counter-example to the general claim sometimes made in the literature that capital-
augmenting technological progress is incompatible with balanced growth. Note, however,
that the share of labor in this economy goes to one which suggests that the claims in the
literature can be remedied by adding the requirement that the shares of both capital and
labor stay bounded away from 0.
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Exercise 2.19*

Exercise 2.19, Part (a). Similar to the construction in the proof of Theorem 2.6, note
that, in this case we have

~F
�
K (t) ; L (t) ; ~A (t)

�
= K (t)

~A(t) L (t)1�
~A(t)

= K (t)
~A(T ) L (t)1�

~A(T ) .

where the second line uses the fact that K (t) = L (t) = exp (nt)K (0). De�ning A (t) = 1
for all t, and

FT (K (t) ; A (t)L (t)) = K (t)
~A(T ) (A (t)L (t))1�

~A(T ) ; (I2.28)

we have ~F
�
K (t) ; L (t) ; ~A (t)

�
= FT (K (t) ; A (t)L (t)), hence the expression in (I2:28) pro-

vides a class of functions (one for each T ) as desired.

Exercise 2.19, Part (b). The derivatives do not agree since

dFT (K (t) ; A (t)L (t))

dK (t)
= ~A (T )

�
K (t)

A (t)L (t)

� ~A(T )�1
= ~A (T ) ,

where we have used A (t) = 1 and K (t) = L (t), while

d ~F
�
K (t) ; L (t) ; ~A (t)

�
dK (t)

= ~A (t)

�
K (t)

L (t)

� ~A(t)�1
= ~A (t) .

Hence, for any �xed T , the derivatives of ~F
�
K (t) ; L (t) ; ~A (t)

�
and FT (K (t) ; A (t)L (t))

will be di¤erent as long as ~A (t) 6= ~A (T ).

Exercise 2.19, Part (c). Note that, in this economy, capital, labor, output, and con-
sumption all grow at rate n. However, the share of capital is given by

~FK

�
K (t) ; L (t) ; ~A (t)

�
K (t)

~F
�
K (t) ; L (t) ; ~A (t)

� =
~A (t)K (t)

K (t)
~A(t) L (t)1�

~A(t)
= ~A (t) ,

where we have used K (t) = L (t). Hence even though all variables grow at a constant
rate, the share of capital will behave in an arbitrary fashion. When, for example, ~A (t) =
(2 + sin (t)) =4, the share of capital will oscillate.

Exercise 2.20

Exercise 2.20, Part (a). Let k (t) = K (t) =L denote the capital-labor ratio in this
economy. Note that w (k) � f (k) � kf 0 (k) is increasing in k. There are two cases to
consider. First, suppose

lim
k!1

w (k) < w,

that is, the minimum wage level is so high that, even with abundant levels of capital-labor
ratio, labor�s productivity would be short of w (this is the case, for example, with the CES
production function with � < 1 when w is su¢ ciently large). In this case, no �rm can a¤ord
to pay wages w regardless of the capital used by each unit of labor, hence the equilibrium
employment is always zero, that is Ld (t) = 0 and equilibrium unemployment is L. The more
interesting case is when limk!1 f (k)� kf 0 (k) > w, so there exists a unique k such that

w
�
k
�
= f

�
k
�
� kf 0

�
k
�
= w.
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In this case, suppose �rst that k (t) < k. As each employed worker commands capital k,
that is K (t) =Ld (t) = k, the employment rate ld (t) is given by

ld (t) � Ld (t)

L
=
K (t)

Lk
=
k (t)

k
.

Then, output per capita is given by

y (t) = ld (t) f
�
k
�

= k (t)
f
�
k
�

k

< k (t)
f (k (t))

k (t)
= f (k (t)) ,

where the inequality follows since f (k) =k is a decreasing function. The second line shows
that the production function is essentially linear when k (t) < k. The inequality shows that
output per capita is depressed by the minimum wage requirement since some laborers in the
economy remain unemployed. Next, suppose that k (t) > k. Then each employed worker
commands capital k (t), all labor is employed, that is ld (t) = 1, and output per capita is
given by y (t) = f (k (t)).

Combining these two cases, capital-labor ratio in this economy evolves according to

_k =

"
smin

 
f
�
k
�

k
;
f (k)

k

!
� �
#
k, (I2.29)

given the initial condition k (0) � K (0) =L. Recall that k� < k, so

min

 
f
�
k
�

k
;
f (k)

k

!
�
f
�
k
�

k
<
f (k�)

k�
=
�

s
.

By Eq. (I2:29), this implies that _k (t) < 0 for any k (t), that is k (t) is always decreasing, and
in particular,

lim
t!1

k (t) = 0:

Hence the capital-labor ratio and output per capita in this economy converges to 0 starting
from any initial condition. Note that the unemployment rate, given by 1 � ld (t) = 1 �
min

�
k (t) =k; 1

�
, is weakly increasing and tends to 1 in the limit.

Intuitively, output per capita and capital accumulation is depressed due to the minimum
wage requirement since not all labor can be competitively employed at the required minimum
wages. Somewhat more surprisingly the dynamic e¤ects of the minimum wage requirement
are so drastic that the capital-labor ratio and output per capita in the economy tend to 0 and
unemployment rate tends to 1. The minimum wage requirement is equivalent to requiring
each employed worker to command a minimum amount of machines, k, regardless of the
capital-labor ratio in this economy. Consequently, as aggregate capital falls, fewer people are
employed which reduces aggregate savings and further reduces aggregate capital, leading to
immiseration in the long run.2

2In contrast with the standard Solow model, marginal productivity of capital does not increase as the
capital-labor ratio falls. By requiring that each labor commands a capital level k, the minimum wage law
e¤ectively shuts down the diminishing returns to capital channel, which would typically ensure an equilibrium
with positive capital-labor ratio.
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Exercise 2.20, Part (b). In this case, the dynamic equilibrium path for capital-labor
ratio is identical to the textbook Solow model. More speci�cally, since all agents in this
economy save a constant share s of their income, the distribution of income between employees
and employers does not change the capital accumulation equation, which is still given by

_k (t) = sf (k (t))� �k (t) .
Hence, starting with any k (0), capital-labor ratio in this economy converges to k� > 0 that
is the unique solution to f (k�) =k� = �=s. However, the distribution of income between
capital owners and workers will be di¤erent since the wages along the equilibrium path are
now given by �f (k (t)) instead of f (k (t))� k (t) f 0 (k (t)). Depending on � and the form of
the production function, the workers could be better or worse o¤ relative to the case with
competitive labor markets.

Exercise 2.21

Exercise 2.21, Part (a). Capital accumulates according to

K (t+ 1) = s (k (t))F (K (t) ; L (t)) + (1� �)K (t) ,
which, after dividing by L (t+ 1) = L (t) (1 + n), implies

k (t+ 1) =
s (k (t)) f (k (t)) + (1� �) k (t)

1 + n

=

�
s0k (t)

�1 � 1
�
Ak (t) + (1� �) k (t)
1 + n

=
s0A

1 + n
+
1� � �A
1 + n

k (t) =
s0A

1 + n
� k (t) ,

where the last equality uses the assumption A + � � n = 2. Then, for any k (0) 2
(0; As0= (1 + n)) we have

k (t) =

�
k (0) ; if t is even

As0= (1 + n)� k (0) ; if t is odd,
hence the capital-labor ratio in this economy �uctuates between two values.

Exercise 2.21, Part (b). De�ne

g (k) =
s (k) f (k) + (1� �) k

1 + n

as the function that determines the next period�s capital-labor ratio given the capital-labor
ratio k. As we have seen in Part (a), there exist production functions f that result in discrete
time cycles, that is, there exist f (:) and values k1 < k2 such that g (k1) = k2 and g (k2) = g1.
Consider the function h (k) � g (k)� k. We have,

h (k1) = g (k1)� k1 = k2 � k1 > 0,
and

h (k2) = g (k2)� k2 = k1 � k2 < 0.
Since the function h is continuous, by the intermediate value theorem, there exists k 2 (k1; k2)
such that h

�
k
�
= 0, that is

g
�
k
�
= k.

This shows that whenever there is a cycle (k1; k2), there exists a steady state k 2 (k1; k2).
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We next turn to the stability of the steady state. Let k be the �rst intersection of h (k)
with the zero line, so h crosses the zero line from above and h0

�
k
�
< 0, which is equivalent

to saying g0
�
k
�
< 1. Even with this choice of k, the steady state is not necessarily stable.

If g0
�
k
�
is smaller than �1, then when the capital-labor ratio starts very close to the steady

state, it will overshoot the steady state value and might diverge away from the steady state.
By Theorem 2.3, a su¢ cient condition for local stability of k is

��g0 �k��� < 1. Since we already
have g0

�
k
�
< 1, we only need to guarantee that g0

�
k
�
> �1. Writing this condition in

terms of s and f , we have g0
�
k
�
=
�
s0
�
k
�
f
�
k
�
+ s

�
k
�
f 0
�
k
�
+ 1� �

�
= (1 + n) > �1, or

equivalently,
s0
�
k
�
f
�
k
�
+ s

�
k
�
f 0
�
k
�
> � � 2� n,

that is, s (k) f (k) is not decreasing too fast at the capital-labor ratio k.3 If this condition is
satis�ed at k, then k is a stable steady state.

Exercise 2.21, Part (c). In continuous time, capital accumulates according to
_k = sf (k)� (n+ �) k. (I2.30)

Since the right hand side is continuous, we have that k is a continuous (in fact, continuously
di¤erentiable) function of t. Suppose that there is a cycle, that is suppose there exists t1 < t2
such that k (t1) = k (t2) = k and k (t0) 6= k for some t0 2 (t1; t2). Without loss of generality,
suppose that k (t0) > k (the other case is identical). Then there exists t 2 [t1; t0) such that
_k
�
t
�
> 0 and k

�
t
�
2 (k; k (t0)). De�ne

~t = inf
�
t 2
�
t0; t2

�
j k (t) = k

�
t
�	
. (I2.31)

The continuous function k (t) must decrease from k (t0) towards k (t2) = k and has to cross
k
�
t
�
2 (k; k (t0)) at least once in the interval [t0; t2], hence the set over which we take the

in�mum in (I2:31) is non-empty and ~t is well de�ned. Moreover, by continuity of k (t), the
in�mum of the set is indeed attained, hence k

�
~t
�
= k

�
t
�
. Since the system in (I2:30) is

autonomous (independent of time), it must be the case that

_k
�
~t
�
= _k

�
t
�
> 0,

that is, k (t) is increasing in a su¢ ciently small neighborhood of ~t. Then, there exists " > 0
su¢ ciently small such that k

�
~t� "

�
< k

�
~t
�
and ~t � " > t0. This implies, by continuity

of k (t) and the fact that k (t0) > k
�
t
�
= k

�
~t
�
, that there exists t00 2

�
t0; ~t� "

�
such that

k (t00) = k
�
t
�
. But since t00 2

�
t0; ~t� "

�
, we have a contradiction in view of the de�nition of ~t

in (I2:31), proving that there cannot be a cycle.
Intuitively, to have a cycle in continuous time, one has to cross a level of capital both

on the way up in the cycle and on the way down in the cycle. But this implies that the
autonomous system in (I2:30) that describes the behavior of k must have a positive and a
negative derivative at the same level of capital, which yields the desired contradiction.

A simpler and more intuitive argument is as follows. Suppose there is a cycle as described
above. Once can then show that there exists t 2 [t1; t2] such that _k

�
t
�
= 0. This implies

k (t) = k
�
t
�
for all t � t, which yields a contradiction to the fact that there is a cycle. How-

ever, this more intuitive argument is not entirely correct, since _k
�
t
�
= 0 does not necessarily

imply that k (t) = k
�
t
�
for all t � t. Even though the path

�
k (t) = k

�
t
�
for all t � t

	
is a

solution to the di¤erential equation starting at t, there may also be other solutions since we

3Note that we need s (k) f (k) to be decreasing- at least for some k�s- to have a cycle, but we also need it
to be decreasing not too fast to have a stable steady state in between.
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have not made strong enough assumptions to guarantee the uniqueness of solutions to the
di¤erential equation in (I2:30).4 If we assume that f is Lipschitz continuous at each k, then
the di¤erential equation in (I2:30) has a unique solution and the more intuitive argument
also applies.5 For example, if we assume that f is continuously di¤erentiable with bounded
�rst derivative, then this implies that f is Lipschitz continuous over the relevant range and
the more intuitive argument applies and shows that there cannot be cycles.

Exercise 2.21, Part (d). This exercise shows that approximations of discrete time
with continuous time are not always without loss of generality since some qualitative results
change after the approximation. In particular, the Solow model in discrete time may have
cycles while cycles cannot exist in the Solow model in continuous time. There are two ways to
interpret this �nding. If one views cycles as pathological cases, then the continuous approxi-
mation is good since it removes the cycles that are artifacts of our modeling choices. On the
other hand, one may also view the cycles in this model as interesting economic phenomena
(even though that view requires extreme assumptions and a really good imagination!). For
example, suppose there are overlapping generations, that each generation�s capital level is
determined by the past generation�s savings, and that each generation�s savings rate responds
strongly (and counter-cyclically) to the capital-labor ratio. Then, the discrete time model of
this exercise suggests that the capital-labor ratio in this economy may cycle over di¤erent
generations, while the continuous time model cannot capture this behavior. However, this
interpretation is somewhat of a stretch. In reality generations are not discretely overlapping
as in this interpretation. Hence the capital-labor ratio would move more smoothly, which is
better modeled in continuous time. Moreover, the assumption that the saving rate is strongly
counter-cyclical, which is necessary to generate the cycles, is not in line with empirical evi-
dence that suggests that investment is pro-cyclical over the business cycle (see, for example,
Stock and Watson (1999)).

Exercise 2.21, Part (e). The cycles in this problem are better viewed as pathological
cases that are artifacts of the discrete time modeling, hence we probably should not take
these cycles too seriously. Business cycles are very important real life phenomena, but the
discrete time cycles of this problem are far from satisfactory in explaining business cycles.

Exercise 2.21, Part (f). Let g (k (t)) = (sf (k (t)) + (1� �) k (t)) = (1 + n) and recall
that the capital accumulation equation is given by k (t+ 1) = g (k (t)). When s is constant
and f is nondecreasing, g (k) is also nondecreasing. Suppose, to reach a contradiction, that
there is a cycle, i.e. suppose that there exists k1 < k2 such that

g (k1) = k2 and g (k2) = k1.

Since g (k) is nondecreasing, we have

k2 = g (k1) � g (k2) = k1,

which contradicts k1 < k2, proving that there are no cycles in the baseline Solow model. To
get the pathological cycles in discrete time, we need to endogenize the saving rate such that
s (k) is decreasing (in some range) over k.

4For example, consider the di¤erential equation _k =
p
k. This has the solution k (t) = 0 but also the

solution k (t) = t2=4 .
5Recall that f is Lipschitz continuous at k if there exists a neighborhood B of k and a constant L > 0

such that for all k1; k2 2 B, jf (k1)� f (k2)j � L jk1 � k2j.
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Exercise 2.22

We consider the continuous time version of the Solow model. Output per capita is given
by f (k) = AKk +AL, and the capital-labor ratio accumulates according to

_k = sf (k)� �k
= (sAK � �) k + sAL. (I2.32)

First consider the degenerate case sAK = �. Eq.(I2:32) implies that k (t) grows and limits to
in�nity. Note also that limt!1 _k (t) =k (t) = limt!1 sAL=k (t) = 0, that is, the asymptotic
growth rate of k (t) is equal to 0. Next suppose sAK 6= �. Given any k (0), the linear
di¤erential equation in (I2:32) is solved as (cf. Section B.4)

k (t) =
sAL

� � sAK
+

�
k (0)� sAL

� � sAK

�
exp ((sAK � �) t) . (I2.33)

There are two cases to consider. If sAK < �, then the second term in Eq. (I2:33) limits to 0
and we have limt!1 k (t) = k� � sAL

��sAK . That is, starting with any k (0) > 0, k (t) converges
to the globally stable steady state k�. In this case, even though Assumption 2 does not hold,
the capital-labor ratio still converges to a constant. In the second case, we have sAK > � and
the capital-labor ratio in the limit grows at rate sAK � � > 0. More formally, Eq. (I2:33)
implies

lim
t!1

k (t)

exp ((sAK � �) t)
= k (0) +

sAL
sAK � �

> 0.

Hence, with su¢ ciently large AK , the Solow/AK model generates sustained growth without
technological progress.

Exercise 2.23

Exercise 2.23, Part (a). We consider the Solow model in continuous time and note
that output per capita is given by the CES production function (�rst introduced by Arrow,
Chenery, Minhas, Solow (1961))

f (k) = AH

h
 (AKk)

��1
� + (1� ) (AL)

��1
�

i �
��1

: (I2.34)

The capital-labor ratio accumulates according to

_k (t) = sf (k (t))� (� + n) k (t) (I2.35)

= sAH

h
 (AKk (t))

��1
� + (1� ) (AL)

��1
�

i �
��1 � (� + n) k (t) .

Since � > 1, we have that f (k) =k = AH

h
 (AK)

��1
� + (1� ) (AL)

��1
� k

1��
�

i �
��1

is decreas-

ing in k with limits

lim
k!0

f (k) =k =1 and lim
k!1

f (k) =k = AHAK
�

��1 .

Then there are two cases to consider.
First, if the following condition holds,

AHAK
�

��1 <
� + n

s
, (I2.36)

then there is a unique k� > 0 that solves f (k�) =k� = (� + n) =s, which is the unique steady
state capital-labor ratio in the economy. Moreover, From Eq. (I2:35), when k (t) > k�, we
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have _k (t) < 0 and when k (t) < k�, we have _k (t) > 0, which implies that the steady state
is globally stable. Hence, this case is very similar to the baseline analysis and the economy
converges to the unique steady state starting from any initial capital-labor ratio.

Second, if Condition (I2:36) fails, that is, if AHAK
�

��1 � (� + n) =s, then Eq. (I2:35)
implies that _k (t) > 0 for any k (t) > 0, hence limt!1 k (t) = 1 starting from any initial
condition. Moreover, we have

lim
k!1

f (k)

AHAK�=(��1)k
= 1: (I2.37)

Then, as t ! 1, the system in Eq. (I2:35) approximates _k (t) =�
sAHAK

�=(��1) � � � n
�
k (t), and the asymptotic growth rate of k (t) is gk �

sAH
�=(��1) � � � n. By Eq. (I2:37), the asymptotic growth rate of output and

consumption is also gk.
Hence, if the productivity and the saving rate are su¢ ciently high, the production function

in the limit resembles the AK production function in Exercise 2.22, the economy behaves
similarly and features sustained growth. Intuitively, when � > 1, part of Assumption 2 fails
and the marginal product of capital remains positive if there is an abundance of capital.
Consequently, when the productivity is su¢ ciently high, sustained growth is possible just
like in the AK economy.

Exercise 2.23, Part (b). Before we start the present exercise, for completeness we also
characterize the equilibrium with the CES production function when � � 1. When � = 1,
the production function is Cobb-Douglas and satis�es Assumptions 1 and 2 in the text, hence
the analysis in the text applies without change, proving that there is a unique steady state
equilibrium with positive capital-labor ratio.

Next consider the same CES production function (I2:34) in Part (a) with � < 1. We have
f (k) =k is decreasing in k with limits

lim
k!0

f (k) =k = AHAK
�

��1 , and lim
k!1

f (k) =k = 0.

There are two cases to consider.
First, if the opposite of Condition (I2:36) holds, that is, if AHAK

�
��1 > (� + n) =s, then

there is a unique k� > 0 that solves f (k�) =k� = (� + n) =s, which is the unique steady state
capital-labor ratio in the economy. Moreover, from Eq. (I2:35), when k (t) > k�, we have
_k (t) < 0 and when k (t) < k�, we have _k (t) > 0, which implies that the steady state is
globally stable. This case is very similar to the baseline analysis and the economy converges
to the unique steady state starting from any initial capital-labor ratio.

Second, if Condition (I2:36) holds as a weak inequality, that is, if AHAK
�

��1 � (� + n) =s,
then Eq. (I2:35) implies that _k (t) < 0 for all k (t) > 0 and there is a unique, globally stable
steady state at k� = 0. In this case, the productivity in the economy and the saving rate
is su¢ ciently low that, even for very low levels of capital-labor ratio, new investment is not
su¢ cient to cover the e¤ective depreciation of the capital and the capital-labor ratio limits
to 0 in the long run.

We next turn to the present exercise with the Leontief production function, f (k) =
min fAKk;ALg, which is the limit of the CES production function (I2:34) as � ! 0.6 In this

6There is a typo in Chapter 2 and the exercise statement. As � ! 0, the correct limit of the CES
production function in Eq. (I2:34) is this expression.
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case, the capital-labor ratio accumulates according to

_k (t) = sAH min fAKk (t) ;ALg � (� + n) k (t) . (I2.38)

There are three cases to consider.
First, since this case is the limit of the case analyzed in Part (b), we conjecture that when

the analogue of the opposite of Condition (I2:36) as � ! 0 holds, i.e. when

AHAK > (� + n) =s; (I2.39)

there is a steady state with positive capital-labor ratio. In this case, we have

AKk
� � AL (I2.40)

(veri�ed below) hence from Eq. (I2:38), the steady state capital-labor ratio can be solved as

k� =
sAHAL
� + n

.

Plugging in the expression for k�, we verify that Eq. (I2:40) holds since Eq. (I2:39) holds,
proving that there is a steady state with positive capital-labor ratio. From Eq. (I2:38), it can
also be seen that, starting from any k (0), the economy converges to the capital-labor ratio
k�. Note that, at this steady state, Eq. (I2:40) holds with strict inequality. Hence there is
idle capital and the price of capital at the steady state is zero, that is R� = 0. The price of
labor at steady state is given by w� = AHAL.

Second, we claim that when the opposite of Condition (I2:39) hold, that is, if AHAK <
(� + n) =s, then the economy converges to a unique steady state in which the capital-labor
ratio is 0. In this case, we claim that _k (t) < 0 for all k (t) > 0. For k (t) > AL=AK , the
capital accumulation equation in Eq. (I2:38) implies

_k (t) = sAHAL � (� + n) k (t) < sAHAL � (� + n)
AL
AK

� 0,

where the �rst inequality follows since k (t) > AL=AK and the second inequality follows since
Condition (I2:39) does not hold. For k (t) � AL=AK , the capital accumulation equation now
implies _k (t) = (sAHAK � � � n) k (t) < 0 since Condition (I2:39) does not hold. This proves
that k (t) is decreasing whenever it is positive. Moreover, k� = 0 is indeed a steady state of
the system in (I2:38), hence starting with any capital-labor ratio, the economy converges to
the globally stable steady state k� = 0. Note that, at this steady state, there is idle labor
hence the steady state wages are equal to zero, that is, w� = 0. The steady state price of
capital is given by R� = AHAK .

Finally, in the degenerate case in which AHAK = (� + n) =s , we have, _k (t) < 0 for
k (t) > AL=AK , and we also have that any value of k� 2 [0; AL=AK ] is a steady state
of the system in Eq. (I2:38). Hence, starting with too high a capital-labor ratio, more
speci�cally when k (0) > AL=AK , the capital-labor ratio declines and settles at k� = AL=AK ,
and at this steady state there is no idle capital or labor. At this steady state, wages and
the price of capital are indeterminate, i.e. the only condition imposed by equilibrium is
w�+R�k� = f (k�). Starting with a lower level of capital-labor ratio, more speci�cally when
k (0) 2 [0; AL=AK ], the economy stays at k� = k (0). At these steady states, there is idle
labor and the factor prices are w� = 0; R� = AHAK . This completes the characterization of
the Leontief economy.

Note that, except for the degenerate case of AHAK = (� + n) =s and su¢ ciently high
capital-labor ratio, the Leontief economy has either idle capital or idle labor at the steady
state. Such equilibria are arguably pathological and we would not expect to observe them
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in practice (there is much unemployment observed in practice, but there are many more
plausible explanations for this phenomenon).

The �rst reason why these equilibria are unrealistic is because, in reality, factors are not
supplied inelastically (as in the case of labor in the Solow model) or mechanically (as in the
case of capital in the Solow model) but adjust to factor returns. Consider, for example a
steady state equilibrium with idle labor, i.e. consider the second case above. The labor is
earning zero wages, hence we would expect individuals not to work and leave the labor force
until there is no idle labor and wages become positive again. Similarly, if capital was idle, the
net return to capital would be lower than 1 and individuals would not invest their savings
in the productive technology (but rather save resources under their pillows!). Hence, the
idle capital and labor equilibria of this model are artifacts of our simplifying assumptions for
factor supplies and do not represent interesting economic phenomena.

The second reason why these equilibria are unrealistic is because, in reality, technology
is not �xed but endogenously supplied and technological progress may be guided by factor
returns. Consider, for example, the steady state equilibrium with idle labor. In this case, re-
search and development activities would be directed towards capital-augmenting technologies
(i.e. towards increasing AK) and the e¤ective capital-labor ratio would increase until labor
is no longer idle. Hence, endogenizing technology and considering the possibility that further
technological progress might be directed towards utilizing the idle factor (i.e. by increas-
ing the e¤ective amount of the complementary factor), we have further reason to doubt the
relevance of the idle factor equilibria of the Solow model with Leontief production function.

Exercise 2.27

Exercise 2.27, Part (a). Let the population grow at rate n. Let k (t) = K (t) =L (t)
and de�ne the function f (k) = F (k; 1). The capital-labor ratio accumulates according to

_k (t) = sq (t) f (k (t))� (� + n) k (t) .

Suppose there is a BGP in which capital-labor ratio grows at rate gk � 0. Then, we can
solve for k (t) and q (t) as k (t) = k (0) exp (gkt) and q (t) = q (0) exp (Kt). Plugging in the
previous equation, we have

gkk (0) exp (gkt) = sq (0) exp (Kt) f (k (0) exp (gkt))� (� + n) k (0) exp (gkt) ,

which can be further simpli�ed to

k (0)

sq (0)
(gk + � + n) exp [(gk � K) t] = f (k (0) exp (gkt)) .

First, consider the possibility that gk = 0. This clearly yields a contradiction, for in this
case, the left hand side goes to zero while the right hand side is constant. Hence, we must have
gk > 0. But then, capital per labor and hence the argument of f (:) on the right hand side
is growing to in�nity. Thus we can solve for f (k) for any k 2 [k (0) ;1). Using a change of
variables between t and k, in particular k = k (0) exp (gkt) (or equivalently t = ln

�
k
k(0)

�
=gk),

we have

f (k) =
k (0)

sq (0)
(gk + � + n)

1

(k (0))(gk�K)=gk
k(gk�K)=gk for all k 2 [k (0) ;1),

which can be rewritten, for some constant C > 0, as

f (k) = Ck(gk�K)=gk , for all k 2 [k (0) ;1).
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For the production function F , we have

F (K;L) = Lf (k) = CK(gk�K)=gkLK=gk .

In other words, a balanced growth path is only possible if F takes the Cobb-Douglas form.
This proves, in particular, that for general production functions this model will not feature a
balanced growth path. Any production function that is not Cobb-Douglas can be provided
as an example in which this model does not feature balanced growth.

To see the intuition, consider a hypothetical economy with production function

~F (K;L) = qF (K;L) .

In this hypothetical economy, the accumulation of capital is identical to the original economy.
Note that q (t) acts as a Hicks neutral technological change in the hypothetical economy.
From Uzawa�s Theorem (cf. Theorem 2.6), balanced growth is only compatible with labor-
augmenting (or Harrod neutral) technological change. The only exception to this is the Cobb-
Douglas production function, which, since the elasticity of substitution between factors is
equal to 1, makes all kinds of technological progress equivalent. It follows that the only
production function that is consistent with balanced growth in the hypothetical economy
(and thus the original economy) is the Cobb-Douglas production function.

Exercise 2.27, Part (b). We suppose that the production function is Cobb-Douglas,
that is, f (k) = k� and we continue to assume that _q (t) =q (t) = K . The capital accumulation
is given by

_k (t)

k (t)
= sqk (t)��1 � (� + n) . (I2.41)

On a BGP, the left hand side is constant, hence the right hand side is also constant. In

particular, q (t) k (t)��1 is not growing, that is,
d(q(t)k(t)��1)=dt

q(t)k(t)��1
= 0, which implies

_q (t)

q (t)
+ (�� 1)

_k (t)

k (t)
= 0.

Hence gk � _k (t) =k (t) = K= (1� �) is the only possible growth rate of capital-labor ratio
that is consistent with balanced growth.

Next, we claim that there exists a BGP over which k (t) grows at rate gk. To see this,
de�ne the normalized capital-labor ratio as

k̂ (t) � k (t)

q (t)1=(1��)
=

k (t)

q (0) exp (K= (1� �) t)
. (I2.42)

Then, using Eq. (I2:41), we have

dk̂=dt

k̂ (t)
=

_k (t)

k (t)
� K
1� �

= sq (t) k (t)��1 � � � n� K
1� �

= sq (t)
h
k̂ (t) q (t)1=(1��)

i��1
� (� + n)� K

1� �
= sk̂ (t)��1 � � � n� K

1� � � g
�
k̂ (t)

�
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where the third line follows by using Eq. (I2:42) and the last line de�nes the function g
�
k̂
�
.

Then, we have that the normalized capital-labor ratio

k̂� =

 
s

� + n+ K
1��

!1=(1��)
,

represents a steady state equilibrium on which k (t) grows at the constant rate gk, proving
our claim.

Next, note that since g
�
k̂
�
is a decreasing function and since g

�
k̂�
�
= 0, we have

g
�
k̂ (t)

�
> 0 if k̂ (t) < k̂�, and g

�
k̂ (t)

�
< 0 if k̂ (t) > k̂�,

so that the steady state normalized capital-labor ratio k̂� is globally stable. Starting with any
k̂ (0), the normalized capital-labor ratio in this economy converges to k̂� and the capital-labor
ratio asymptotically grows at the rate gk.

Finally, we consider the path of output per capita, which is given by y (t) = k (t)� and
hence grows at rate

gy (t) �
_y (t)

y (t)
= �

_k (t)

k (t)
.

It follows that the asymptotic growth rate of output (or its growth rate on a BGP equilibrium)
is given by gy � �gk =

�
(1��)K , proving that output per capita also grows at a constant rate

on BGP.

Exercise 2.27, Part (c). We have that k (t) grows at rate gk = K= (1� �) but output
per capita grows at rate gy = K�= (1� �) < gk. Hence, physical capital grows faster than
output. In particular, on the BGP, we have

K (t)

Y (t)
!1,

which is, strictly speaking, not consistent with the Kaldor facts. Capital in this model grows
faster since the price of capital in terms of the consumption good is constantly decreasing
which enables the economy to accumulate capital at higher rates.

Note that we can interpret q (t) as the inverse of the price of capital in terms of consump-
tion goods. Then, instead of considering capital output ratio, we might instead consider the
relative value of aggregate capital to output, that is, the ratio of K (t) =q (t) to Y (t). For the
growth rate of this ratio, note that

d (K (t) =q (t)) =dt

K (t) =q (t)
=

_K (t)

K (t)
� _q (t)

q (t)
= gk + n� K

=
1

1� �K � K + n

=
�

1� �K + n = gy + n =
_Y (t)

Y (t)
.

Hence, K (t) =q (t) and Y (t) grow at the same rate, and in particular, their ratio is constant
on the BGP. Hence, even though physical capital increases faster than output, the value
of aggregate capital in terms of output remains constant. In practice, we do not measure
the number of machines, but we measure the value of aggregate machines as the level of
capital� in fact, the standard way to calculate aggregate capital is to add up investment
(which includes prices of machines as well as quantities) going back to far enough in the past.
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Hence, if this model were correct, we would still observe constant capital value to output in
practice, thus the model is not necessarily contradicting the Kaldor facts broadly interpreted.



Chapter 3: The Solow Model and the Data

Exercise 3.1

Let y
�
~t
�
= Y

�
~t
�
=L
�
~t
�
and k

�
~t
�
= K

�
~t
�
=L
�
~t
�
respectively denote the output per capita

and the capital-labor ratio at dates ~t 2 ft; t+ Tg, and de�ne

gy (t; t+ T ) � gY (t; t+ T )� gL (t; t+ T ) = ln
�
y (t+ T )

y (t)

�
(I3.1)

and gk (t; t+ T ) � gK (t; t+ T )� gL (t; t+ T ) = ln
�
k (t+ T )

k (t)

�

as their growth between t and t + T . Using �L
�
~t
�
= 1 � �K

�
~t
�
, the TFP estimates using

beginning and end factor shares can be expressed as

x̂b (t; t+ T ) = gy (t; t+ T )� �K (t) gk (t; t+ T ) , (I3.2)

x̂e (t; t+ T ) = gy (t; t+ T )� �K (t+ T ) gk (t; t+ T ) .

Suppose we observe Y
�
~t
�
;K
�
~t
�
; L
�
~t
�
(hence k

�
~t
�
and y

�
~t
�
) along with competitive

prices w
�
~t
�
= FL

�
K
�
~t
�
; L
�
~t
��
at the two dates ~t 2 ft; t+ Tg. From this information, we

can calculate

�L
�
~t
�
=
w
�
~t
�
L
�
~t
�

Y
�
~t
� and �K

�
~t
�
= 1� �L

�
~t
�

at the the two dates. We can also calculate gy (t; t+ T ) and gk (t; t+ T ) from Eq. (I3:1),
obtaining the estimates in (I3:2) for the TFP growth (as �rst suggested by Solow (1957)).

We claim, however, that both estimates x̂b (t; t+ T ) and x̂e (t; t+ T ) that we calculate in
this manner could be arbitrarily di¤erent from the true TFP growth x (t; t+ T ). Suppose that
the production function is given by AF (K;L), where the technology takes the Hicks-neutral
form, and let _A=A = g so that the true TFP growth is

x (t; t+ T ) = ln

�
A (t+ T )

A (t)

�
= gT:

Suppose also that L is constant and K grows at some rate gK . Note that per labor output
function is given by Af (k) where f (k) = F (k; 1), the rental rate of capital is Af 0 (k) and
the share of capital is given as a function of capital-labor ratio as

�K (k) = Af 0 (k) k= (Af (k)) = f 0 (k) k=f (k) :

27
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In this case, the estimate x̂b (t; t+ T ) in Eq. (I3:2) can be rewritten as

x̂b (t; t+ T )

T
=

1

T
ln

�
y (t+ T )

y (t)

�
� k (t) f 0 (k (t))

f (k (t))
gK (I3.3)

=
1

T
ln

�
A (t+ T ) f (k (t+ T ))

A (t) f (k (t))

�
� k (t) f 0 (k (t))

f (k (t))
gK

= g +

"
1

T
ln

 
f
�
k (t) exp

�
gKT

��
f (k (t))

!
� k (t) f 0 (k (t))

f (k (t))
gK

#
.

The estimate x̂b (t; t+ T ) =T for the average growth rate will be wrong whenever the term
in brackets in the last displayed equation is non-zero. This term is typically non-zero for any
function but the Cobb-Douglas production function. To see this, consider, for example a CES

production function f (k) =
�
k("�1)=" + 1

�"=("�1)
. Plugging this in (I3:3), we have

x̂b (t; t+ T )

T
= g +

1

T

"

"� 1 ln
 �

k (t) exp
�
gKT

��("�1)="
+ 1

k (t)("�1)=" + 1

!
� k (t)("�1)="

k (t)("�1)=" + 1
gK . (I3.4)

Let " < 1 and note that

lim
gK!1

x̂b (t; t+ T )

T
= g +

1

T

"

"� 1 ln
 

1

k (t)("�1)=" + 1

!
�1 = �1.

In particular, with " < 1 and su¢ ciently large gK , the estimate x̂b (t; t+ T ) =T will under-
estimate the average TFP growth rate, and this underestimation can be arbitrarily large.
With " < 1 and su¢ ciently fast capital deepening the share of capital will decrease rapidly.
Consequently, using the initial share of capital overestimates the contribution of capital ac-
cumulation to growth and underestimate the TFP growth.

Consider also the case with " > 1 and note that, taking the limit of Eq. (I3:4) in this
case, we have

lim
gK!1

x̂b (t; t+ T )

T
= g + lim

gK!1

(
gK +

1

T

"

"� 1 ln
k (t)("�1)="

k (t)("�1)=" + 1
� k (t)("�1)="

k (t)("�1)=" + 1
gK

)

= g + lim
gK!1

(
1

T

"

"� 1 ln
 

k (t)("�1)="

k (t)("�1)=" + 1

!
+

1

k (t)("�1)=" + 1
gK

)
= +1,

where the �rst uses the fact that the 1 in the numerator can be ignored when evaluating the

limit of 1T
"
"�1 ln

�
[k(t) exp(gKT)]

("�1)="
+1

k(t)("�1)="+1

�
which simpli�es the expression, and the second line

collects the gK terms together. That is, with " > 1 and su¢ ciently large gK , the estimate
x̂b (t; t+ T ) =T will overestimate the average TFP growth rate, and this overestimation can
be arbitrarily large. In this case, the share of capital is increasing and using the initial value
of the share of capital underestimates the contribution of capital accumulation to output
growth and hence overestimates the TFP growth.

A similar analysis also establishes that, in the same example with the CES production
function, the estimate, x̂e (t; t+ T ) =T , that uses the last period share of capital can be arbi-
trarily di¤erent than x (t; t+ T ) =T = g when the rate of capital accumulation, gK , is high.
When " < 1, using the last period underestimates the contribution of capital accumulation
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and overestimates the TFP growth, while when " > 1, using the last period overestimates
the contribution of capital accumulation and underestimates the TFP growth.

The intuition we have provided also explains the role of the di¤erences in factor propor-
tions in these results. If e¤ective factor ratios AKK

ALL
were the same over time, a neoclassical

production function F (AKK;ALL) would have constant factor shares and the approxima-
tion using either beginning or end value for factor shares would yield the correct TFP. When
the e¤ective factor proportions change, factor shares also change for any production function
other than Cobb-Douglas, hence the estimations using the initial or end values for factor
shares might be biased.

Exercise 3.2

In practice, we estimate the respective factor shares from their returns. Hence, we would
estimate

�L (t) =
�Y

Y
= �, and �K (t) = 1� �,

which are not necessarily equal to FLL=F and FKK=F , the values for the shares of labor
and capital when factor markets are competitive. This estimation error of factor shares will
typically result in biased estimates for the TFP growth. Consider, for example, an economy
with a Cobb-Douglas production function F = K1�� (ALL)

� in which population is constant
and K;AL and Y grow at the constant rate g. Then, the fundamental growth accounting
equation gives

x̂ (t) = g (t)� �K (t) gK (t)� �L (t) gL (t)
= g � (1� �) g = �g,

while the true TFP growth in the economy is

x (t) =
d (A�L (t)) =dt

A�L (t)
= gL� = g�.

Hence, unless � 6= �, that is, unless the labor is paid its true share in output, the fundamental
growth equation will be biased. For example, if � > �, that is, if labor is paid more than its
share in output (for example due to unions), then the growth accounting will underestimate
the contribution of capital accumulation to output growth and consequently overestimate
productivity growth. Similarly if � < � (for example, due to bargaining asymmetries between
�rms and worker) then the growth accounting will underestimate productivity growth.

Exercise 3.9

Exercise 3.9, Part (a). Capital accumulates according to

_K (t) = sF (K (t) ;H (t))� �K (t) .

Since F (K;H) =K is decreasing in K, there is a unique steady state K�, found by solving

F (K�;H)

K� =
�

s
. (I3.5)
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Exercise 3.9, Part (b). The steady state return to a unit of human capital is given
by FH (K�;H), hence an individual with human capital hi earns income FH (K�;H)hi. If
she increases her human capital by 10%, that is to 1:1 � hi, then her income will increase
to 1:1 � FH (K

�;H)hi, which is 10% higher than FH (K�;H)hi. Hence, a 10% increase in
individual human capital leads to a a � 10% increase in income.

At the aggregate level, the aggregate human capital increases from H to 1:1�H. Hence,
the new steady state capital stock is found by solving

F (Knew; 1:1�H)
Knew

=
�

s
.

Comparing this equation with Eq. (I3:5) and using the fact that F is constant returns to
scale in K and H, we have Knew = 1:1 � K�, that is, the steady state capital level also
increases by 10%. The new steady state output is given by

F (Knew; 1:1�H) = F (1:1�K�; 1:1�H) = 1:1� F (K�;H) ,

that is, the steady state output also increases by 10%, as desired. Intuitively, since the Solow
model features constant returns to scale, as aggregate human capital increases, the aggregate
capital stock adjusts by the same rate, and consequently output increases by the same rate.

Next we consider the change in output before the capital stock adjusts. The change in
output before the adjustment of the capital stock satis�es the inequality

1 <
F (K�; 1:1�H)
F (K�;H)

<
F (1:1�K�; 1:1�H)

F (K�;H)
= 1:1.

Hence, initially output increases but by less than 10%. Intuitively, this is because there are
diminishing returns to human capital at the aggregate level even though there are constant
returns to scale at the individual level (which is what we measure). At the time of the change,
there is less physical capital per human capital, hence each unit of human capital produces
less than the previous steady state. This in turn implies that the aggregate output increases
by a rate less than the rate of increase in aggregate human capital. Once capital adjusts,
the physical capital to human capital ratio increases to its previous level and the increase in
output matches the increase in aggregate human capital.

Exercise 3.10

We are given that F (Kj ; AjHj) =Kj = F
�
Kj0 ; Aj0Hj0

�
=Kj0 . Since F has constant returns

to scale, this implies

F

�
1;
AjHj

Kj

�
= F

�
1;
Aj0Hj0

Kj0

�
,

which further implies AjHj=Kj = Aj0Hj0=Kj0 , that is the e¤ective labor to capital ratio is
equal in the two countries. The return to capital is given by

Rj = FK (Kj ; AjHj) = FK

�
1;
AjHj

Kj

�
,

where the second equality follows since FK is homogenous of degree 0 (cf. Theorem 2.1).
The last displayed equation proves Rj = Rj0 since AjHj=Kj = Aj0Hj0=Kj0 . Hence, if the two
countries have the same aggregate production function that features only labor-augmenting
technological change, then whenever the capital/output ratios are equal so will be the rental
rates of capital.



Chapter 4: Fundamental Determinants of Di¤erences in
Economic Performance

Exercise 4.3

Exercise 4.3, Part (a). This trivially follows from the mechanical assumption that
L (t) = �Y (t). By assumption, any increase in output translates to a population increase so
output per capita is constant at 1=� throughout.

Exercise 4.3, Part (b). The modi�ed equation,

L (t) = �Y (t)� (I4.1)

with � 2 (0; 1), suggests that the Malthusian channels are present but are weaker. In par-
ticular, an output growth rate of g translates into a population growth rate of �g, which in
turn allows output per capita to grow at rate (1� �) g. This equation may be justi�ed as
follows. The Malthusian channel is typically associated with richer individuals living longer
and having more children, and the children facing a lower probability of death, again thanks
to the riches of their parents. This reasoning does not necessarily imply a linear functional
form between output and population. In fact, since there are natural limits to how long an
individual could live and how many children a couple may have, it is more sensible to assume
that the Malthusian channel implies that population increases in response to increases in
output, but at a diminishing rate. The modi�ed functional form in (I4:1) captures just that.

We next derive the law of motion of technology and income in the �rst scenario, in which
technology evolves according to Eq. (4:1). Using the production function in Eq. (I4:1), we
have the following relationship between population and technology

L (t) = �1=(1���)A (t)�=(1���) . (I4.2)

Plugging this in Eq. (4:1), we obtain the technology evolution equation

_A (t) = ��1=(1���)A (t)
(1��)�
1��� . (I4.3)

Note that this expression can be rearranged into a separable di¤erential equation as

A
� (1��)�

1��� dA = ��1=(1���)dt.

Integrating this expression, we have

A (t)
1� (1��)�

1���

1� (1��)�
1���

= ��1=(1���)t+ C,

where C is a constant of integration. Solving for C using the initial condition A (0), the
previous expression yields

A (t) =

�
��1=(1���)

1� �
1� �� t+A (0)

(1��)=(1���)
�(1���)=(1��)

.
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Hence, as in the baseline case, A (t) limits to in�nity so technology increases as a result of
the accumulation of population and ideas. Note also that, by Eq. (I4:3), we have

_A (t)

A (t)
= ��1=(1���)A (t)

�(1��)
1��� :

Since � (1� �) = (1� ��) < 0 and A (t) is increasing, di¤erent than the baseline case, in this
case technology grows at a decreasing rate. The reason for this result is the assumption that
Malthusian forces are weaker as the economy develops, so population, and hence ideas, grow
at an ever slower rate. Using Eqs. (I4:1) and (I4:2), we can also calculate the income per
capita as

Y (t)

L (t)
= �

� 1��
1���A (t)

1��
1��� , (I4.4)

which grows at rate

gY=L (t) =
1� �
1� ��

_A (t)

A (t)
= ��1=(1���)

1� �
1� ��A (t)

� (1��)
1��� ,

which is decreasing and limits to 0. Hence, di¤erent than the baseline model, income per
capita is increasing in this model, but at ever decreasing rates. This is a slight improvement
over the baseline model, but is still unrealistic in view of the recent emergence of modern
growth and acceleration of income per capita growth.

To make the predictions of the model more realistic, consider the second scenario in which
technology evolves according to

_A (t)

A (t)
= �L (t) :

Using Eq. (I4:2), the technology evolution equation can be rewritten as

_A (t) = �A (t)
(1��)�
1��� +1 �1=(1���).

Similar to above, this expression can be rearranged into a separable di¤erential equation and
integrated to give

A (t) =

0BB@ 1

���1=(1���)
(1��)�
1��� +1

t+A (0)
� (1��)�

1���

1CCA
1���
(1��)�

.

Hence we recover the accelerating pattern as in the baseline analysis: A (t) grows and the
growth rate of A (t) is given by

_A (t)

A (t)
= �A (t)

(1��)�
1��� �1=(1���);

which is increasing since (1��)�
1��� is positive. Moreover, income per capita is still given by Eq.

(I4:4) and its growth rate in this case is given by

gY=L (t) =
1� �
1� ��

_A (t)

A (t)
= ��1=(1���)

1� �
1� ��A (t)

(1��)�
1��� ,

which is increasing and limits to in�nity. Hence income per capita grows at an accelerating
rate. This modi�cation may be viewed as an improvement over the baseline model since it
gets the model�s predictions for income per capita closer to reality.



Chapter 5: Foundations of Neoclassical Growth

Exercise 5.1

Exercise 5.1, Part (a). Suppose, to reach a contradiction, that the solution fx� (t)gTt=0
is not time-consistent, that is, there exists some t0 2 f1; ::; Tg such that fx� (t)gTt=t0 is not a
solution to the dynamic optimization problem starting at time t0. Then there exists f~x (t)gTt=t0
which satis�es the constraints starting at time t0,

~x (t) 2 [0; �x] for all t 2
�
t0; T

�
(I5.1)

G
�
x� (0) ; :::; x�

�
t0 � 1

�
; ~x
�
t0
�
; :::; ~x (T )

�
� 0;

and which attains a higher value than fx� (t)gTt=t0 for the problem starting at t0,

TX
t=t0

�tu (~x (t)) >

TX
t=t0

�tu (x� (t)) .

Adding
Pt0�1

t=0 �
tu (x� (t)) to both sides of this inequality, we have

t0�1X
t=0

�tu (x� (t)) +
TX
t=t0

�tu (~x (t)) >
TX
t=0

�tu (x� (t)) . (I5.2)

Consider the plan fx̂ (t)gTt=0 where x̂ (t) = x� (t) for t < t0 and x̂ (t) = ~x (t) for t � t0. Eq.
(I5:1) shows that the plan fx̂ (t)gTt=0 is in the constraint set of the problem starting at time 0,
and Eq. (I5:2) shows that it attains a higher objective value than fx� (t)gTt=0, contradicting
the fact that fx� (t)gTt=0 is a solution starting at time t = 0. This completes the proof by
contradiction. In essence, the objective function does not change over time hence an optimal
plan today remains optimal also tomorrow.

Exercise 5.1, Part (b). To interpret the utility function, suppose the individual is
endowed with a constant stream of consumption, that is, x (t) = x� for all t. Given this
consumption stream, for any t � 1 the individual�s marginal rate of substitution of con-
sumption at t + 1 for consumption at t is equal to �, while the MRS of consumption at 1
for consumption at 0 is equal to �� < �. That is, the individual has a particular preference
for immediate bene�ts relative to all future bene�ts. Moreover, the individual�s preferences
change as time passes and hence are not time consistent. For example, at time t = 1, the
MRS between periods 2 and 1 becomes ��, while it was equal to � from the time t = 0
perspective. Intuitively, the objective function changes over time since today the individual
does not have a particularly strong preference for consumption tomorrow, but come tomor-
row, she will have a strong preference for immediate consumption. There is some biological
and experimental evidence that individuals might be acting in this way (see Ainslee (1990),
Loewenstein and Prelec (1992)). The functional form in this example features a tractable
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type of hyperbolic discounting, �rst introduced by Phelps and Pollack (1968) and recently
popularized by Laibson (1997).

Exercise 5.1, Part (c). The objective function at t = 1 is given by

u (x (1)) + �
TX
t=2

�t�1u (x (t)) ,

which is di¤erent than the objective function at t = 1 viewed from the time t = 0 perspective,

�

"
u (x (1)) +

TX
t=2

�t�1u (x (t))

#
.

Hence, in general, a plan made at time t = 0, fx� (t)gTt=1, will not be optimal from the time
t = 1 perspective. At t = 1, the individual would typically like to tilt her choice towards
immediate bene�ts, that is, x�� (1) is likely to be greater than x� (1).

We next construct an example to demonstrate this point. Consider the following problem

max
fx(t)g1t=0

log (x (0)) + �
1X
t=1

�t log (x (t))

s.t. x (t) 2 [0; 1] and
1X
t=0

x (t) = 1.

Note that the problem �ts into the general framework of the exercise with T = 1 and
particular functional forms for u and G. This problem is sometimes referred to as the cake-
eating problem since the individual must decide how to optimally consume a �xed resource.
The �rst-order conditions for the problem are

1

x (0)
=

��t

x (t)
for all t � 1.

Solving these equations along with the budget constraint, we have

x� (0) =
1� �

1� � (1� �) , and x
� (t) =

��t (1� �)
1� � (1� �) for all t � 1.

Starting at t = 1, the individual will solve an analogous problem, but the budget constraint
will be given by

1X
t=1

x (t) = 1� x� (0) = ��

1� � + �� .

Hence, by the same analysis, starting at time t = 1, the individual�s optimal plan will be

x�� (1) =
1� �

1� � (1� �)

�
��

1� � (1� �)

�
,

and x� (t) =
��t (1� �)
1� � (1� �)

�
��

1� � (1� �)

�
for all t � 2.

Hence, we have

x�� (1) =
(1� �) ��

(1� � (1� �))2
>

�� (1� �)
1� � (1� �) = x� (1) ,

where the inequality follows since 1�� (1� �) < 1. Hence, this example illustrates the point
we made above: at time t = 1, the individual deviates from the plan she made at t = 0 by
tilting her choices towards more immediate consumption.
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Exercise 5.1, Part (d). Viewed from a certain point of time, the preferences do sat-
isfy the assumptions of standard (Arrow-Debreu) general equilibrium theory. However, the
preferences do not remain constant as time progresses, which leads to time-inconsistency
and violates the weak axiom of revealed preferences. At time t = 0, the individual chooses
fx� (t)g1t=1 for time t = 1 onwards while fx�� (t)g

1
t=1 is also in the budget set, so fx� (t)g

1
t=1

is revealed preferred to fx�� (t)g1t=1. At time t = 1, the individuals chooses fx�� (t)g
1
t=1 even

though fx� (t)g1t=1 is in the budget set, thus fx�� (t)g
1
t=1 is revealed preferred to fx� (t)g

1
t=1,

violating the weak axiom of revealed preference.

Exercise 5.2

Exercise 5.2, Part (a). Let ui (ci) =
�
c1��i � 1

�
= (1� �) for i 2 f1; 2g denote the

utility at each period and U (c1; c2) =
h
u1 (c1)

(��1)=� + �u2 (c2)
(��1)=�

i�=(��1)
the lifetime

utility given the consumption levels. The �rst-order condition is given by

c��1 u1 (c1)
�1=� U (c1; c2)

1=� = � (1 + r) c��2 u2 (c2)
�1=� U (c1; c2)

1=� .

From the budget constraint, we have c2 = (W0 � c1) (1 + r), and plugging this expression in
the �rst-order condition, we have

c��1

h
c1��1 � 1

i�1=�
= � (1 + r)1�� (W0 � c1)

h
[(W0 � c1) (1 + r)]1�� � 1

i�1=�
. (I5.3)

This equation characterizes c1 (W0) and c2 (W0) = (W0 � c1 (W0)) (1 + r) as a function of
W0.

Exercise 5.2, Part (b). The �rst-order condition in this case is

c��1 u1 (c1)
�1=�E

h
U (c1; c2)

1=�
i
= � (1 + r)E

h
c��2 u2 (c2)

�1=� U (c1; c2)
1=�
i

Plugging in c2 (W ) = (W � c1) (1 + r) from the budget constraint and using G (W ), we get

c��1

h
c1��1 � 1

i�1=� Z W

W
U (c1; (W � c1) (1 + r))1=� dG (W ) = (I5.4)

� (1 + r)1��
Z W

W
(W � c1)��

h
[(W � c1) (1 + r)]1�� � 1

i�1=�
U (c1; (W � c1) (1 + r))1=� dG (W ) .

This equation characterizes the utility maximizing choice of c1 and c2 (W ) = (W � c1) (1 + r).
We next de�ne and calculate the coe¢ cient of relative risk aversion. Let v (W ) =

U (c1; c2 (W )) denote the utility of the individual for the realization of wealth W . We are in-
terested in the Arrow-Pratt coe¢ cient of relative risk aversion for the indirect utility function,
v (W ). Note that

v0 (W ) =
@U (c1; c2 (W ))

@c2

@c2 (W )

@W

=
1

1 + r

@U (c1; c2 (W ))

@c2

=
1

1 + r
�c2 (W )

��
�
U (c1; c2 (W ))

u2 (c2 (W ))

�1=�

=
1

1 + r
��=(��1)c2 (W )

��

0@ 1
�

 
c1��1 � 1

c2 (W )
1�� � 1

!(��1)=�
+ 1

1A1=(��1) . (I5.5)
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The second derivative, v00 (W ), can be calculated analogously and the Arrow-Pratt coe¢ cient

of risk aversion can be obtained as �
�
v
00
(W )W

�
=v0 (W ). Note that, in general, the Arrow-

Pratt coe¢ cient of risk aversion depends on the choice of c1 and the function c2 (W ) found
as the solution to Eq. (I5:4).

To calculate the intertemporal elasticity of substitution, suppose for simplicity that W is
constant at someW0. In this case, the intertemporal elasticity of substitution is the elasticity
of substitution between c1 and c2 with respect to the relative price level p � p1

p2 � 1+ r, that
is

�@ [c1 (W0) =c2 (W0)]

@ (1 + r)

(1 + r)

c1 (W0) =c2 (W0)
, (I5.6)

where c1 (W0) and c2 (W0) are the functions calculated in Part (a) from Eq. (I5:3).
Note that, in general, there is no reason for the coe¢ cient of relative risk aversion derived

from (I5:5) and the intertemporal elasticity of substitution in (I5:6) to be the same. In fact,
they are conceptually di¤erent objects and they are functions of di¤erent variables. The
coe¢ cient of risk aversion potentially depends on the distribution G (W ), which induces the
initial choice of c1 and the function c2 (W ). On the other hand, the intertemporal elasticity of
substitution is typically de�ned when the consumption sequence is deterministic and depends
on the non-stochastic level of wealth, W0. These two objects will be generally di¤erent.

Exercise 5.9

First, we formally state the optimization problem that an individual solves to choose time
0 bond trades and time t commodity trades, (x��;b��), given prices (q��;p��). We invoke
the result we have obtained in Exercise 5.1, that is, since the individual�s preferences are
time-consistent, at time t she follows exactly the plan that she had made at time 0. At time
0 (before time 0 endowments are allocated) she solves

max
fbht gt;fxhj;tgj;t

TX
t=0

�
�h
�t
uh
�
xh1;t; :::; x

h
N;t

�
; (I5.7)

s.t.
NX
j=1

p��j;tx
h
j;t �

NX
j=1

p��j;t!
h
j;t + b

h
t for t 2 f0; 1; :::; Tg , (I5.8)

TX
t=0

q��t b
h
t � 0. (I5.9)

Here, to simplify notation and without loss of generality, we treat time 0 symmetrically as
any time t � 1 and allow the individual to hold bonds also for time 0. The individual engages
in all bond trades before time 0 endowments are allocated leading to constraint (I5:9) which
states that the individual�s intertemporal bond trades should break even.

The crux of the argument is to observe that the constraints (I5:8) and (I5:9) are essentially
equivalent to a lifetime budget constraint. In particular, substituting the constraints (I5:8)
in the constraint (I5:9) to eliminate the bht terms, we get the lifetime budget constraint

TX
t=0

NX
j=1

q��t p
��
j;tx

h
j;t �

TX
t=0

NX
j=1

q��t p
��
j;t!

h
j;t. (I5.10)
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Conversely, for any xh that satis�es Eq. (I5:10), one can construct

bht =
NX
j=1

p��j;t

�
(x��)hj;t � w

h
j;t

�
(I5.11)

so that the resulting pair
�
xh;bh

�
satis�es both of the constraints (I5:8) and (I5:9). Conse-

quently, we have that the individual�s problem is essentially identical in the Arrow-Debreu
and the sequential equilibria, which in turn will show that there is a one-to-one mapping
between the two equilibria. Next, we prove Theorem 5.8 by formalizing this argument.

To prove the �rst part of the theorem, let (p�;x�) be an Arrow-Debreu equilibrium. As in
the theorem statement, construct the bundle (p��;q��;x��) such that x��= x�, p��j;t = p�j;t=p

�
1;t

for all j and t and q��t = p�1;t for all t > 0. Also construct b
�� as in Eq. (I5:11), so that the

bond payo¤s at time t are just enough for the individual to purchase
n
(x�)hj;t

oN
j=1

at time

t. We claim that (p��;q��;x��;b��) corresponds to a sequential trading equilibrium. The
commodity markets clear since x��= x� and x� is part of an Arrow-Debreu equilibrium. The
bond markets clear sinceX

h2H
(b��)ht =

X
h2H

NX
j=1

p��j;t

�
(x�)hj;t � w

h
j;t

�

=

NX
j=1

p�j;t
p�j;1

X
h2H

�
(x�)hj;t � w

h
j;t

�
� 0,

where the inequality follows since
P

h2H

�
(x�)hj;t � whj;t

�
� 0 for each j; t due to the market

clearing constraints in the Arrow-Debreu economy. Hence, the only thing left to check is

that each individual�s bond and commodity trades,
�
(x��)h ; (b��)h

�
solve Problem (I5:7).

To see this, consider any
�
(~x��)h ;

�
~b��
�h�

which satis�es Constraints (I5:8) and (I5:9),

which implies by our earlier analysis that it satis�es the budget constraint (I5:10). Using

q��t p
��
j;t = p�j;t,

�
(~x��)h ;

�
~b��
�h�

also satis�es the lifetime budget constraint

TX
t=0

NX
j=1

p�j;t~x
h
j;t �

TX
t=0

NX
j=1

p�j;t!
h
j;t, (I5.12)

that is (~x��)h is in the budget set for household h in the Arrow-Debreu economy. Since
(x��)h is an Arrow-Debreu equilibrium allocation, it attains a higher utility than (~x��)h.

Since
�
(~x��)h ;

�
~b��
�h�

is an arbitrary allocation that satis�es the constraints of Problem

(I5:7), it follows that
�
(x��)h ; (b��)h

�
solve this problem, proving that (p��;q��;x��;b��) is

a sequential trading equilibrium.
To prove the second part of the theorem, we let (p��;q��;x��;b��) be a sequential trading

equilibrium and we claim that0@p� � (p�j;t = p��j;t
p��1;t

q��t

)
j;t

;x� � x��
1A
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is an Arrow-Debreu equilibrium. Since commodity markets clear in the sequential equilibrium
and since x� � x��, commodity markets also clear in the Arrow-Debreu equilibrium. The
only thing left to check is that each individual�s commodity choices (x�)h maximize her util-
ity subject to the lifetime budget constraint (I5:12). Suppose, to reach a contradiction, that
there exists an individual h 2 H and a vector (~x�)h which satis�es Eq. (I5:12) and attains

higher utility for individual h than (x�)h. First, observe that since p�j;t =
p��j;t
p��1;t

q��t for each j,

the lifetime budget constraints (I5:12) and (I5:10) are equivalent and (~x�)h also satis�es the

latter. Next, construct
�
~b��
�h

as in Eq. (I5:11) given (~x�)h, and let (~x��)h � (~x�)h. By

the observation we have made earlier, since (~x�)h satis�es (I5:10), the pair
�
(~x��)h ;

�
~b��
�h�

satis�es Constraints (I5:8) and (I5:9). Since
�
(~x��)h = (~x�)h ;

�
~b��
�h�

attains a higher util-

ity for individual h than the pair
�
(x��)h = (x�)h ; (b��)h

�
, we have a contradiction to the

fact that
�
(x��)h ; (b��)h

�
solves Problem (I5:7). This completes the proof of the theorem.

Exercise 5.10

Exercise 5.10, Part (a). We denote the bond holdings by
n
bht;t0
o
t;t0;h

. Household h at

time t has the budget constraint

NX
j=1

p��j;tx
h
j;t �

NX
j=1

p��j;t!
h
j;t +

X
t0<t

bht0;t �
X
t0>t

qt;t0b
h
t;t0 , (I5.13)

that is, the household�s time t income re�ects the returns from the bonds purchased at some
past t0 < t that mature at t, and potential purchase of new bonds that deliver one unit at
some future t0 > t.

Exercise 5.10, Part (b). We �rst formally state the theorem.

Theorem I5.1. Consider the sequential trading equilibrium in which individuals can
also trade bonds at time t, that is, at each time t 2 f0; 1:::; Tg they maximize utility sub-
ject to the budget constraint given by (I5:13). If (p�;x�) is an Arrow-Debreu equilibrium,
then there exists a sequential bond trading equilibrium (p��;q��;x��;b��), such that x�= x��,
p��j;t = p�j;t=p

�
1;t for all j and t and q��t;t0 = p�1;t0=p

�
1;t for all t � 0; t0 � t. Conversely, if

(p��;q��;x��;b��) is a sequential bond trading equilibrium, then there exists an Arrow-Debreu
equilibrium (p�;x�) with x�= x��, p�j;t = p��j;tq

�
0;t for all j and t.

The proof is similar to the proof of Theorem 5.8, hence we highlight the di¤erences and
refer to the proof we have provided in Exercise 5.9 for the steps that are identical. The
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individual�s optimization problem in the sequential bond trading equilibrium is given by1

maxn
bh
t;t0

o
t;t0>t

;fxhj;tgj;t

TX
t=0

�
�h
�t
uh
�
xh1;t; :::; x

h
N;t

�
; (I5.14)

s.t.
NX
j=1

p��j;tx
h
j;t �

NX
j=1

p��j;t!
h
j;t +

X
t0<t

bht0;t �
X
t0>t

qt;t0b
h
t;t0 , for t 2 f0; 1; :::; Tg . (I5.15)

First, we claim that in any sequential bond trading equilibrium, bond prices satisfy the
following no-arbitrage condition

qt;t00 = qt;t0qt0;t00 for all t � t0 � t00. (I5.16)

Suppose qt;t00 > qt;t0qt0;t00 . Consider the following strategy: the individual sells a unit of time
t00 bonds, invests the proceeds in time t0 bonds, and plans to rollover her investment at time
t0 by reinvesting in time t00 bonds. With this strategy, at time t00 the individual receives
qt0;t00
qt;t0

1
q
t0;t00

> 1 units on her investment and she owes 1 unit on the time t00 bond that she

sold. Thus she makes a net pro�t without spending any resources, which is an arbitrage.
Hence, due to non-satiation, the individual will take an in�nite amount these positions and
the bond market clearing condition will be violated. The case qt;t00 < qt;t0qt0;t00 can be ruled
out similarly, proving the no-arbitrage condition (I5:16).

Next, we claim, as in the proof of Theorem 5.8, that the constraint (I5:15) is essentially
identical to the lifetime budget constraint

TX
t=0

NX
j=1

q0;tp
��
j;tx

h
j;t �

TX
t=0

NX
j=1

q0;tp
��
j;t!

h
j;t. (I5.17)

More formally, our �rst claim is that if
�
xh;bh

�
satis�es the constraint (I5:15) and the no-

arbitrage condition (I5:16) holds, then xh also satis�es the lifetime budget constraint (I5:17).
Our second claim is the converse, that, if xh satis�es the constraint (I5:17), then there exists
some bond trades bh such that

�
xh;bh

�
satis�es the constraint (I5:15). To prove our �rst

claim, multiply the budget constraint at time t by q0;t and add all budget constraints to get

TX
t=0

NX
j=1

q0;tp
��
j;tx

h
j;t �

TX
t=0

NX
j=1

p��j;t!
h
j;t +

TX
t=0

X
t0<t

q0;tb
h
t0;t �

TX
t=0

X
t0>t

q0;tqt;t0b
h
t;t0

(we let bt;t0 = 0 when t0 < t or when t0 > T , to simplify notation). Using the no-arbitrage
condition (I5:16) for t = 0, we have q0;tqt;t0 = q0;t0 . Next observe that

PT
t=0

P
t0<t q0;tb

h
t0;t =PT

t=0

P
t0>t q0;t0b

h
t;t0 since both sides sum the same expression q0;tbht0;t over all pairs (t; t

0) such
that t < t0. The left hand side sums the value of the individual�s debt by indexing with
respect to the smaller date (bond purchase date), while the right hand side calculates the
same sum by indexing with respect to the larger date (bond maturity date). Combining these
observations, the last displayed equation is equivalent to (I5:17), proving our �rst claim. To

1In contrast with Problem (I5:7), in this case we can combine the analogues of Constraints (I5:8) and
(I5:9) in a single constraint since bond trading is allowed at all times and we can treat time 0 and times t > 0
uniformly.
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prove the second claim, consider any xh that satis�es the constraint (I5:10) and let bh be
given by

bh0;t0 =
NX
j=1

p��j;t0
�
xhj;t0 � whj;t0

�
for all t0 > 0, and (I5.18)

bht;t0 = 0 for all t > 0 and t0 > t,

so that all bond trades are done at time 0. Our second claim is that
�
xh;bh

�
satis�es the

constraint (I5:15). The constraint is satis�ed at all t > 0 by construction. At time t = 0, the
constraint is

NX
j=1

p��j;0x
h
j;0 �

NX
j=1

p��j;0!
h
j;0 �

X
t0>0

q0;t0b
h
0;t0

=
NX
j=1

p��j;0!
h
j;0 �

X
t0>0

q0;t0
NX
j=1

p��j;t0
�
xhj;t0 � whj;t0

�
,

which is equivalent to (I5:17) after rearranging the terms, proving the second claim.
The rest of the proof is identical to the proof of Theorem 5.8 in Exercise 5.9. In particular,

given an Arrow-Debreu equilibrium (p�;x�), consider the bundle (p��;q��;x��;b��) such that
x�� is equal to x�, the bond trades (b��)h of each individual h 2 H are constructed as in
(I5:18) given (x��)h, the prices are constructed with p��j;t = p�j;t=p

�
1;t for all j and t and

q��t;t0 = p�1;t0=p
�
1;t for all t � 0 and t0 > t. It can be seen that the bundle (p��;q��;x��;b��)

satis�es market clearing in both commodities and bonds, satis�es the no-arbitrage condition
(I5:16) and solves each individual�s optimization problem (I5:14). Hence it corresponds to a
sequential bond trading equilibrium. Conversely, given a sequential bond trading equilibrium
(p��;q��;x��;b��), consider the bundle (p�;x�) such that x� = x��, p�j;t = p��j;tq

��
0;t for all

j; t. It can be seen that (p�;x�) clears the commodity markets and solves the individual�s
optimization problem and hence is an Arrow-Debreu equilibrium, as desired.

Exercise 5.11

Assume that u is strictly concave and strictly increasing with u0 (0) =1. We claim that
for any such u, this economy does not feature a representative consumer. First, note that
the consumption of household h in group j 2 fA;Bg solves

max
(ch1 ;ch2)�0

u
�
ch1

�
+ �ju

�
ch2

�
s.t. ch1 + c

h
2=R � yj .

With our assumptions on u, for any yj > 0 this problem has a unique interior solution
characterized by the Euler equation

u0
�
cj1

�
= �jRu

0
�
R
�
yj � cj1

��
(I5.19)

We denote the unique solution by the function cj1 (yj ; R) and we also de�ne c
j
2 (yj ; R) �

R
�
yj � cj1 (yj ; R)

�
.

We next claim that
cA1 (y;R) < cB1 (y;R) (I5.20)
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for any y > 0 and R, that is, given the same income and prices the more patient group
consumes strictly less today than the less patient group. To see this, de�ne the function

f (c) = u0 (c)� �BRu0 (R (y � c)) , for c < y,

and note that this function is strictly decreasing in c. We then have

f
�
cA1 (y;R)

�
= u0

�
cA1 (y;R)

�
� �BRu0

�
R
�
y � cA1 (y;R)

��
> u0

�
cA1 (y;R)

�
� �ARu0

�
R
�
y � cA1 (y;R)

��
= 0,

where the second line follows since �B < �A, and the last line follows by the Euler equation
(I5:19) for cA1 (y;R). The Euler equation for c

B
1 (y;R) is equivalent to f

�
cB1 (y;R)

�
= 0. Since

f
�
cA1 (y;R)

�
> 0 = f

�
cB1 (y;R)

�
and since f is strictly decreasing in c, the claim in (I5:20)

follows.
Finally, we claim that there exists no representative consumer. Let C1 (yA; yB; R) denote

the aggregate demand function for consumption today given a wealth distribution (yA; yB)
and price R, that is, let

c1 (yA; yB; R) = NAc
A
1 (yA; R) +NBc

B
1 (yB; R) ,

and let C2 (yA; yB; R) be de�ned likewise. A representative consumer exists only if the aggre-
gate consumption demand is independent from the way wealth is distributed in the economy,
that is, only if the aggregate demand remains constant as we redistribute the aggregate wealth
Y � NAyA+NByB in the economy. To simplify the algebra, we assume that we can actually
target individuals within groups when we redistribute wealth.2 Let hA; hB denote two individ-
uals, one from each group. We consider two income distributions that leave everybody else�s
income the same except for these two individuals. Distribution A, represented by function
yA (h), favors household hA, that is, yA

�
hA
�
= yA + yB, yA

�
hB
�
= 0, while the distribution

B, represented by yB (h), favors household hB, that is yB
�
hA
�
= 0, yA

�
hB
�
= yA+ yB. The

di¤erence in aggregate demand for distributions A and B is given by

C1
��
yA (h)

	
h
; R
�
� C1

��
yB (h)

	
h
; R
�

= cA1 (yA + yB; R) + c
B
1 (0; R)� cA1 (0; R)� cB1 (yA + yB; R)

= cA1 (yA + yB; R)� cB1 (yA + yB; R) < 0
where the second equality follows since consumption is 0 with 0 wealth and the inequality
follows by Claim (I5:20). Hence the aggregate demand does not remain constant for arbitrary
distributions of income, proving that there exists no representative consumer. More specif-
ically, we have shown that, the more of the income is held by the more patient consumers,
the less today�s consumption will be.

An alternative solution using example utility functions. We consider the log
utility, u (c) = log c, as a simple example to demonstrate the e¤ects of the distribution of
income. With log utility, the Euler equation (I5:19) has the solution

cj1 (yj ; R) =
1

1 + �j
yj .

Aggregate demand is given by

C1 (yA; yB; R) =
NAyA
1 + �A

+
NByB
1 + �B

.

2The result holds also in the case we cannot target an individual from each group and we must provide
all group members with the same wealth.
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Clearly, this expression is not independent of how we distribute aggregate wealth Y � NAyA+
NByB. In particular, the larger yA relative to yB keeping Y constant (that is, the more of
the wealth is held by the patient group), the less current consumption C1 (yA; yB; R) will be.
Consequently, there exists no representative consumer.

Exercise 5.12

Exercise 5.12, Part (a). An Arrow-Debreu commodity in this economy is the �nal
good at di¤erent times t 2 f0; 1; ::;1g. We denote the price of the Arrow-Debreu commodity
for time t as pt. Note that there are countably in�nite Arrow-Debreu commodities. Note also
that, even though there is no production technology in this economy, we can essentially view
saving as a production technology (in the Arrow-Debreu sense) hence the production sets in
the Arrow-Debreu economy can be represented by

Y t = f(y0 = �y; yt = y) j y 2 R+g , for each t 2 f1; 2::g (I5.21)

that is, we can suppose that there are competitive time t �rms that convert time 0 goods
to time t goods. Other representations for the production set are also possible, for example,
instead, we could have introduced production technologies that convert time t goods to time
t+ 1 goods. These other representations would capture the same economic environment and
yield the same equilibria and Pareto optimal allocations, hence for simplicity we consider the
representation in (I5:21).

Exercise 5.12, Part (b). A Pareto optimal allocation in this economy is a set of con-
sumption paths

�
ch (t)

	1
t=1;h2f1;::;Ng that satis�es the resource constraints,

1X
t=0

NX
h=1

ch (t) � y, and ch (t) � 0 for each h and t, (I5.22)

such that there is no other set of consumption paths,
�
~ch (t)

	1
t=1;h2f1;::;Ng, that satis�es the

resource constraints, makes one household strictly better o¤ and makes everyone else at least
as well o¤. Under standard assumptions (when u is strictly increasing and strictly concave),
the set of Pareto optimal allocations can be found by solving the following Pareto problem:

P

�n
�h
oN
h=1

; � � 0; � 6= 0
�

: max
fch(t)g

h;t
�0

NX
h=1

�h
1X
t=0

�tu
�
ch (t)

�
(I5.23)

s.t.
NX
h=1

1X
t=0

ch (t) � y.

That is, every Pareto optimal allocation maximizes a weighted-sum of household utilities
subject to economy-wide resource constraints, where the weight of an household �h, loosely
speaking, denotes the importance of the household h in this Pareto allocation.3

We next characterize the Pareto set by solving Problem (I5:23) for arbitrary set of Pareto

weights
�
�h
	N
h=1

; � � 0; � 6= 0. First note that, households with zero Pareto weights will
always be given 0 consumption, that is

ch (t) = 0 for all h s.t. �h = 0.

3MasColell, Whinston and Green (1995), Section 16.E provides the exact conditions under which solving
this problem (with di¤erent weights) gives all Pareto optimal allocations.
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Next, let the Lagrange multiplier on the resource constraint be , then the �rst-order condi-
tions for ch (t) where �h > 0 are

�h�tu0
�
ch (t)

�
�  with equality if ch (t) > 0. (I5.24)

Then given , the consumption of household h at time t is given by

ch (t) = max

�
0; u0�1

�


�h�t

��
for all h where �h > 0, (I5.25)

which is weakly increasing in . The Lagrange multiplier  can then be uniquely solved from
the aggregate budget constraint

NX
h=1

1X
t=0

ch (t) =
X

h2f1;::;Ng j �h>0

1X
t=0

max

�
0; u0�1

�


�h�t

��
= y. (I5.26)

Hence, for any given set of Pareto weights,
��
�h
	N
h=1

; � � 0; � 6= 0
�
, there is a unique solution

characterized by Eqs. (I5:25) and (I5:26), characterizing the set of Pareto optima.
We next note a number of interesting properties of the Pareto optima. First, consider-

ing the �rst-order condition (I5:24) for ch (t) and ch (t+ 1) shows that the following Euler
equation holds for any Pareto optimal allocation

u0
�
ch (t)

�
� �u0

�
ch (t+ 1)

�
with equality if ch (t+ 1) > 0. (I5.27)

This is the relevant Euler equation since interest rate in any equilibrium is equal to 1 as
we explain below. Intuitively, there are no externalities in the economy and distorting the
intertemporal substitution of a household only hurts that household without any bene�ts for
the remaining households. Hence the social planner does not want to distort the intertemporal
substitution of any household, as shown in Eq. (I5:27). This equation also shows that each
household in each Pareto optimum has a decreasing consumption pro�le due to discounting.
Second, for two households with �h > �h

0
> 0, we have

ch (t) = max

�
0; u0�1

�


�h�t

��
� ch

0
(t) = max

�
0; u0�1

�


�h
0
�t

��
since u0�1 is a decreasing function, showing that a household with the higher Pareto weight
will consume more at all times than a household with lower Pareto weight.

Exercise 5.12, Part (c). The Second Welfare Theorem applies if we make the stan-
dard assumptions on preferences that u is strictly increasing, concave, and continuous. Under
these assumptions for u, we claim that the assumptions of Theorem 5.7 are satis�ed. The
most important assumptions to check are the convexity assumptions for the consumption
and production sets and concavity of the utility functions, since this allows for a separation
argument (separation of the better than set and the production set with a hyperplane) that
is at the heart of the Second Welfare Theorem. There are also a number of technical assump-
tions, most importantly, the tail assumption, which we need to check to ensure that the linear
functional that we get from the separating hyperplane corresponds to a valid price function
and not to some ill behaved linear functional that puts all weight at in�nity. We check these
assumptions in turn.

First, we claim that the consumption and production sets are convex and the production
set is a cone. Production sets de�ned in (I5:21) are both convex and cones. The consumption
set of a household is R1+ , which is convex, proving our claim. Second, we claim that the
utility function U (fc (t)g1t=0) =

P1
t=0 �

tu (c (t)) is continuous, concave, and satis�es local
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non-satiation. Continuity in R1+ (in the sup norm) follows from continuity of u. The fact
that U is concave follows since u is concave. Finally, local non-satiation of U follows since u
is strictly increasing, proving our claim. Third, we note that

P
h2H c

h
j;t � y from the resource

constraints hence the boundedness requirement of Theorem 5.7 is satis�ed with � = y.
Fourth, we claim that the tail assumptions of Theorem 5.7 hold. In particular, for

any pair of c = fc (t)g1t=0 ; c0 = fc0 (t)g1t=0 2 R1+ such that U (c) > U (c0), we claim
that there exists �T such that for all T > �T , U (c [T ]) > U (c0), where recall that c [T ] =
(c (0) ; c (1) ; ::; c (T ) ; 0; 0; ::). This assumption essentially holds due to discounting and the
fact that utility is bounded over the interval [0; y]. To prove formally, let T be su¢ ciently
large that

�T

1� �u (y) < U (c)� U
�
c0
�
. (I5.28)

Then, for any T > T

U (c [T ]) = U (c) +

1X
t=T+1

�t (u (0)� u (c (t)))

� U (c)�
1X

t=T+1

�tu (y)

= U (c)� �T

1� �u (y) > U
�
c0
�
;

where the �rst inequality follows since u (0) = 0 and u (c (t)) � u (y), and the last inequality
follows from the choice of T in (I5:28). Hence, the tail assumption for consumption se-
quences holds. The corresponding assumption for production sequences trivially hold, since
any production vector in (I5:21) has only two non-zero elements.

It then follows that the assumptions of Theorem 5.7 are satis�ed and the Second Welfare
Theorem applies to this economy.

Exercise 5.12, Part (d). An equilibrium is a set of allocations
�
ch (t)

	1
t=0;h2f1;::;Ng,

prices fp0; p1::; g, and production vectors4 such that:
� Firms maximize given prices fp0; p1::; g over the sets in (I5:21). This implies that,
prices must satisfy

p0 � pt, with equality if yt =
NX
h=1

ch (t) > 0.

That is, if there is positive consumption at a period, then the price of the good in
that period is equal to p0. The prices could, in principle, be declining, but this is
only possible if there is consumption at period t. The intuition for this is as follows.
If pt > p0, then the period t �rm would produce in�nite amount of the period t good
and the market clearing condition (condition 3 below) would be violated. If p0 > pt,
then, �rm t must shut down, otherwise it would lose money. But this means that
�rm t is not producing hence there is no period t good in equilibrium, which is only
possible if consumption demand at t is 0.

4We subsume the notation for production vectors for simplicity: these vectors convert time 0 goods to
time t goods, hence once we are given the aggregate consumption vector in the economy, we can easily solve
for the production vectors implied by that consumption vector.
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In the case in which demand for the period t good is 0, it is in principle possible
to have pt < p0. But if this is the case, then p0t = p0 is also always an equilibrium.
If a consumer demands 0 consumption at time t, then she will continue to demand
0 if the price at time t is raised from pt < p0 to p0t = p0. Consequently, we can
take pt = p0 (or equivalently, Rt+1 = 1 for the interest rate) for all t without loss of
generality.5We normalize p0 = 1 and have pt = 1 for all t for the rest of the analysis.

� The second equilibrium condition is that each household h solves

max
fch(t)g1

t=0

1X
t=0

�tu (c (t)) (I5.29)

s.t.
1X
t=0

ptc
h (t) � p0y

h.

� The last equilibrium condition is market clearing, which after netting out production
vectors for the �rms in (I5:21), is given by

NX
h=1

1X
t=0

ch (t) =
NX
h=1

yh = y.

We next characterize the equilibrium allocations. From the �rst-order conditions for
Problem (I5:29), each individual�s consumption path

�
ch (t)

	1
t=0

satis�es the same Euler
equation as the Pareto optimal allocations (I5:27). Using the Euler equation and the budget
constraint

P1
t=0 c

h (t) = yh, the consumption path
�
ch (t)

	1
t=0

of each household is uniquely
solved as a function of yh. Hence, the equilibrium is characterized by these allocations along
with the essentially unique prices, pt = 1 for all t.

Exercise 5.12, Part (e). The competitive equilibria are Pareto optimal since the stan-
dard proof of Pareto optimality apply to this problem in view of the fact that the relevant
sums are �nite. To see this, consider a competitive equilibrium allocation

�
ch (t)

	1
t=0;h2f1;::;Ng

(with corresponding prices fpt = 1g1t=0). Suppose, to reach a contradiction, that there ex-
ists another allocation

�
~ch (t)

	1
t=0;h2f1;::;Ng for which resource constraints (I5:22) hold, one

5We provide a complementary intuition for why we can take the interest rates between periods equal
to 1 (which correspond to all Arrow-Debreu prices being equal), by considering a household that chooses
consumption, trades bonds, and has access to a saving technology can convert one unit at period t to one unit
at period t+1. Suppose Rt+1 < 1 for some t, that is, there are bonds traded at period t that return Rt+1 < 1
next period. Then, the household would sell bonds, buy time t goods in the market, save these goods until
period t+ 1, pay his debtors and end up with net pro�ts. This is an arbitrage opportunity and any rational
household would do this at in�nite amounts, which would violate market clearing. Consider now the case
in which Rt+1 > 1. Suppose that some household is consuming a positive amount at t + 1. Then at least
one household must be saving resources until period t + 1. Then that household has the following arbitrage
opportunity: she should save less to period t+1 and use those resources instead to buy bonds at period t. The
bonds yield her more at period t+ 1 than what she would have had by saving, hence the household ends up
with net pro�ts at period t+ 1. This is an arbitrage opportunity that would continue until the consumption
at period t+ 1 falls to zero.

The case in which Rt+1 > 1 and all households consuming nothing at period t+ 1 is in principle possible
(corresponds to the pt < p0 and no consumption case that we have noted above). But if this is the case, then
allocations do not change if we instead set R

0
t+1 = 1. Since households were not buying any bonds at the

higher rate Rt+1 > 1, they will continue not buying bonds at the lower rate Rt+1 = 1. It follows that we can
take R0t+1 = 1 without loss of generality.
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household is strictly better o¤, that is
1X
t=0

�tu
�
~c
~h (t)

�
>

1X
t=0

�tu
�
c
~h (t)

�
(I5.30)

for some ~h, and all other households are at least as well o¤, that is
1X
t=0

�tu
�
~ch (t)

�
�

1X
t=0

�tu
�
ch (t)

�
for all h. (I5.31)

By Eq. (I5:30), we have
1X
t=0

~c
~h (t) >

1X
t=0

c
~h (t)

since, otherwise,
n
~c
~h (t)

o1
t=0

would be in household ~h�s budget set and she would rather

consume this allocation in equilibrium. Similarly, we claim that Eq. (I5:31) implies
1X
t=0

~ch (t) �
1X
t=0

ch (t) , for all h.

Suppose this does not hold. Then by consuming
�
~ch (t)

	1
t=0

instead of
�
ch (t)

	1
t=0

household
h would attain at least the same utility and save some money. By non-satiation (which
in turn follows since we assume u is strictly increasing), she can use these extra funds to
further increase utility, hence she would not choose

�
ch (t)

	1
t=0

in equilibrium. This yields
a contradiction and proves the previous displayed equation. Summing over the last two
displayed equations, and using the fact that

�
~ch
	
t;h
satis�es the resource constraints (I5:22),

we have

y �
NX
h=1

1X
t=0

~ch (t) >
NX
h=1

1X
t=0

ch (t) = y,

which yields a contradiction since y is �nite. This proves our claim that the First Welfare
Theorem applies to this economy and every competitive equilibrium is Pareto optimal. The
last step, in particular, the fact that y is �nite, is critical to apply the First Welfare Theorem.
The sum over all household of all commodities (which is consumption at di¤erent dates in
this model) should be �nite, otherwise that step does not necessarily go through and the
First Welfare Theorem does not necessarily apply.

Exercise 5.12, Part (f). We have already seen in Part (b) that the social planner does
not want to distort the intertemporal decision of the consumers, since the Pareto optimal
allocations and the equilibrium allocation satisfy the same Euler equation (I5:27). Hence,
given a Pareto optimal allocation

�
chp (t)

	1
t=0;h2f1;::;Ng, we can decentralize it by giving each

household the endowment

yh �
1X
t=0

chp (t) . (I5.32)

That is, the social planner gives each household an endowment just enough to consume what
he wants her to consume, and the household ends up consuming the same allocation since
the incentives of the planner and the household are lined up for intertemporal substitution.

We claim, more formally, that for the endowments de�ned as in (I5:32), we have cheq (t) =

chp (t) for all t and h
0. Suppose, to reach a contradiction, that

n
ch

0
eq (t)

o1
t=0

6=
n
ch

0
p (t)

o
for one
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household h0. Then, since the household h0s Problem (I5:29) is a strictly concave problem

and since
n
ch

0
p (t)

o
is also in the feasible set for the household (by choice of yh in (I5:32)), it

must be the case that
1X
t=0

�tu
�
ch

0
eq (t)

�
>

1X
t=0

�tu
�
ch

0
p (t)

�
.

But then
�
chp (t)

	1
t=0;h2f1;::;Ng cannot be a Pareto optimal allocation, since the social plan-

ner could change household h0s allocation to
�
cheq (t)

	1
t=0

while leaving all other allocations
unchanged. This change would satisfy the resource constraints, it would strictly improve
household h0s utility and leave all other households as well o¤, yielding a contradiction. This
proves our claim that the equilibrium coincides with the Pareto optimal allocation given the
endowments in (I5:32).

Exercise 5.13

Exercise 5.13, Part (a). Let vhmax = maxx2X
��vh (x)�� which exists since X is compact

and vh is continuous. Given xh; �xh 2 Xh with Uh
�
xh
�
> Uh

�
�xh
�
, let T be su¢ ciently large

that the following inequality holds

�T+12vhmax
1� � < Uh

�
xh
�
� Uh

�
�xh
�
. (I5.33)

Then, for any T � T , we have

Uh
�
xh [T ]

�
=

1X
t=0

�tvh
�
xh (t)

�
+

1X
t=T+1

�t
h
vh (0)� vh

�
xh (t)

�i
� Uh

�
xh
�
+

1X
t=T+1

�t
h
�vhmax � vhmax

i
= Uh

�
xh
�
� �T+12vhmax

1� � > Uh
�
xh
�
,

where the �rst inequality uses the de�nition of vhmax and the last inequality uses (I5:33),
completing the proof.

Exercise 5.13, Part (b). Let X (t) = (l (t) ; k (t) ; c (t)), that is, at each time t there are
three commodities, labor, capital, and the consumption good. The neoclassical production
technology described in the exercise can be represented with constraints

c (t) + k (t) � F (k (t� 1) ; l (t)) , and c (t) ; k (t) � 0,
that is, production at time t uses inputs (labor) at time t and the capital stock chosen at
time t� 1, and output at time t is split between consumption and capital next period. This
production technology can be described by a union of production sets,

Y f (t) =

�
(:::; (0; 0; 0) ; (0;�k (t� 1) ; 0) ; (�l (t) ; x; y) ; (0; 0; 0) ; :::) j

x+ y � F (k (t� 1) ; l (t)) ; x; y � 0

�
for t 2 f0; 1; :::;1g. Then for any given Y f (t) and any yf (t) 2 Y f (t), all entries of the
vector for times t0 > t are 0, that is, the production vector at time t has no inputs or outputs
in terms of commodities at times t0 > t. Consequently, given yf (t) 2 Y f (t) we can take
~T � t+ 1 and we have that yf [T ] = yf (t) 2 Y f

t for all T � ~T , as desired.
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Exercise 5.14*

Exercise 5.14, Part (a). Note that we have limc!0 u (c) = �1 for � � 1. Then, no
matter how large T is, xh [T ] =

�
xh (0) ; xh (1) ; :::; xh (T ) ; 0; 0; ::

�
gives the individual a utility

�1, which is potentially very di¤erent than Uh
�
xh
�
. More speci�cally, let Xh = X be a

compact set, � < 1, and consider some xh; xh 2 X such that xh (t) ; xh (t) � " > 0 for all t
and Uh

�
xh
�
> Uh

�
�xh
�
. Then, for any T <1, we have

Uh
�
xh
�
T
��

=
TX
t=0

�tu
�
xh (t)

�
+

1X
t=T+1

�tu (0)

=
TX
t=0

�tu (c)�1

< Uh
�
xh
�
,

where the last inequality follows since
PT

t=0 �
tu
�
xh (t)

�
and Uh

�
xh
�
are �nite due to the

assumptions that X is compact, � < 1, and xh; xh � " > 0. Regardless of how large T
is chosen, an individual that prefers xht to x

h
t will prefer x

h
t to x

h
t

�
T
�
and the individual�s

choices will be overturned by truncating her consumption. Consequently, the truncation
(tail) assumption of Theorem 5.7 is not satis�ed and the theorem does not apply. Intuitively,
truncations even very far in the future a¤ects the agent�s choices since the agent extremely
dislikes zero consumption.

Exercise 5.14, Part (b). We will provide a more general theorem which does not
require Xh to be restricted but instead slightly weakens the requirement for the preferences
Uh (see assumption (iii) below) so that we can accommodate economies as in Part (a). For a
given vector xh 2 Xh and for " � 0, let xh" [T ] =

�
xh (0) ; ::; xh (T ) ; "; "; ::

�
denote the vector

in which the entries after T are truncated to " and let "= ("; "; ::) denote the vector with all
elements equal to ".

Theorem I5.2. (Second Welfare Theorem II) Consider a Pareto optimal allocation
(x�;y�) in an economy with endowment vector !, production sets

�
Y f
	
f2F , consumption

sets
�
Xh
	
h2H, and utility functions

�
Uh (�)

	
h2H. Suppose that all production and consump-

tion sets are convex, all production sets are cones, and all utility functions
�
Uh (�)

	
h2H are

continuous and quasi-concave and satisfy local non-satiation. Moreover, suppose also that (i)
there exists � < 1 such that

P
h2H x

h
j;t < � for all j and t; (ii) 02 Xh for each h; (iii)

For any h and xh; �xh 2 Xh such that Uh
�
xh
�
> Uh

�
�xh
�
and for any " > 0, there exists �T

(possibly as a function of h; xh; �xh and ") such that Uh
�
xh" [T ]

�
> Uh

�
�xh
�
for all T � �T ;

and (iv) for any f and yf 2 Y f , there exists ~T such that yf [T ] 2 Y f for all T � ~T . Then,
there exist a price vector p� and endowment and share allocations (!�;��) such that in the
economy E � (H;F ;U;!�;Y;X;��),

(a) the endowment allocation !� satis�es ! =
P

h2H !
h�;

(b) for all f 2 F ,
p� � yf� � p� � yf for any yf 2 Y f ;

(c) for all h 2 H,

if Uh
�
xh
�
> Uh

�
xh�
�
for some xh 2 Xh, then p� � xh � p� � wh�;
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where wh� � !h� +
P

f2F �
h�
f y

f�.

Moreover, if p� �wh� > 0 for each h 2 H, then the economy E has a competitive equilibrium
(x�;y�;p�).

Proof. Part 1 of the proof of Theorem 5.7 applies to this case without any changes and
shows that there exists a non-zero continuous linear functional � that separates the sets Y 0

and P , that is

� (y) � � (x�) � � (x) for all y 2 Y 0 and x 2 P , (I5.34)

where recall that Y 0 is the sum of the �more preferred�sets for households and P is the sum
of the production sets shifted by the endowment vector. To prove the analogue of Part 2 in
this case, de�ne �� (x) the same way as in the text with �� (x) = limT!1 � (x0 [T ]). The same
steps as in the main text show that � is a continuous linear functional and that there exists
a price vector p�� such that �� (x) = limt!1 p�� � x. We claim that �� can be used instead of
� as the separating function also in this case. This result will follow from establishing steps
(a)-(d) as in the proof of Theorem 5.7. Moreover, steps (b), (c) and (d) go through without
change. So all we need to check is step (a), that is,

� (x�) � �� (x) for all x 2 P:

Suppose, to reach a contradiction, that there exists x 2 P such that �� (x) < � (x�). By
linearity of �� and �, there exists h such that ��

�
xh
�
< �

�
xh�
�
. Since � and �� are both

continuous functionals at 0 with � (0) = �� (0) = 0, there exists su¢ ciently small " > 0 such
that ��� (")� �� (")�� < �

�
xh�
�
� ��

�
xh
�
: (I5.35)

Since xh 2 P h, we have Uh
�
xh
�
> Uh

�
xh�
�
. Applying assumption (iii) for this choice of ",

there exists �T su¢ ciently large so that Uh
�
xh" [T ]

�
> Uh

�
xh�
�
for all T > �T . This implies

xh" [T ] 2 P h, which, by Eq. (I5:34), implies

�
�
xh" [T ]

�
� �

�
xh�
�
for all T > �T : (I5.36)

Note also that

�
�
xh" [T ]

�
= � (") + �

�
xh" [T ]� "

�
= � (") + ��

�
xh" [T ]� "

�
= � (")� �� (") + ��

�
xh" [T ]

�
, (I5.37)

where the second line follows since xh" [T ]�" is a vector with 0�s after the T th element and
the functionals � and �� agree for such vectors, and the last line follows since �� is linear.
Combining Eqs. (I5:36), (I5:37) and taking the limit over T , we have

�
�
xh�
�

� � (")� �� (") + lim
T!1

��
�
xh" [T ]

�
= � (")� �� (") + ��

�
xh
�
, (I5.38)

where the second line follows from the de�nition of ��. The inequalities in (I5:35) and (I5:38)
provide a contradiction, proving step (a) and completing the proof of the theorem. �
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Exercise 5.14, Part (c). Consider the neoclassical optimal growth economy with no
population growth and no technological progress. An equilibrium in this economy can be
represented as a path of per capita allocations and prices [c (t) ; k (t) ; R (t) ; w (t)]t such that
the representative household maximizes her utility given initial asset holdings K (0) > 0,
�rms maximize pro�ts taking the time path of factor prices [w (t) ; R (t)]1t=0 as given, and
factor prices [w (t) ; R (t)]1t=0 are such that all markets clear (cf. De�nitions 8.1 and 8.2). The
social planner�s problem can be described as the optimal growth problem of maximizing the
utility of the representative household subject to the resource constraints (cr. Section 8.3).

Denote the optimal growth solution by [c (t) ; k (t)]1t=0. Our goal is to use the Second
Welfare Theorem II of Part (b) to show that [c (t) ; k (t)]1t=0 corresponds to an equilibrium
allocation. Note that all continuity and convexity assumptions are satis�ed, and that the
preferences in (8:3) are non-satiated. Moreover, let ymax = maxk F (k; 1)� �k and note that
output in any period in this economy cannot be larger than ymax, therefore we can take
� = ymax so that

P
h2H c

h
t < � for all t. We need to check our new assumption (iii). Let

[c (t)]1t=0 and [�c (t)]
1
t=0 be such that U

h ([c (t)]1t=0) > Uh ([�c (t)]1t=0) and consider some " > 0.
Note that, di¤erent than u (0) used in Part (a), u (") is a �nite number, even though it can
be very small. Moreover, u (c (t)) is also bounded above by u (ymax) < 1. Therefore, there
exists �T su¢ ciently large that

�
�T+1

1� � (u (y
max)� u (")) < Uh ([c (t)]1t=0)� U

h ([�c (t)]1t=0) : (I5.39)

Note that, for any T > �T , we have

Uh (c" [T ]) =

1X
t=0

�tu (c (t)) +

1X
t=T+1

�t (u (")� u (c (t)))

� Uh ([c (t)]1t=0)�
�T+1

1� � (u (y
max)� u ("))

> Uh ([�c (t)]1t=0) ,

where the �rst inequality follows since c (t) � ymax for all t, and the last line inequality
follows from Eq. (I5:39) since T > �T . This proves that Uh (c" [T ]) > Uh ([�c (t)]1t=0) for all
T > �T and assumption (iii) is also satis�ed. Assumption (iv) is satis�ed as shown in Part (b)
of Exercise 5.13. Consequently, the Second Welfare Theorem II from Part (b) applies and
shows that there exists prices p� � [R (t) ; w (t)]1t=0 such that statements (a)-(c) hold for this
economy. In particular, there exist prices [R (t) ; w (t)]1t=0 such that

F (k (t)L (t) ; L (t))�R (t) k (t)L (t)� w (t)L (t)

� F
�
~K (t) ; ~L (t)

�
�R (t) ~K (t)� w (t) ~L (t) for all ~K (t) � 0, ~L (t) � 0 and all t.

Since F satis�es Assumptions 1 and 2 in Section 2, the previous equation implies R (t) ; w (t) 2
(0;1) for each t. Since the prices are positive and there is a single representative house-
hold that holds the entire endowment in the economy, we have p� � !h� > 0 for h 2 H.
Consequently, the last part of the Second Welfare Theorem II also applies and shows that
[c (t) ; k (t) ; R (t) ; w (t)]1t=0 corresponds to an equilibrium of the neoclassical economy, as de-
sired.



Chapter 6: In�nite-Horizon Optimization and Dynamic
Programming

Exercise 6.2*

To prove this claim, let us de�ne the operator W = Tn. By construction W is a contrac-
tion, so that all the results derived in Section 6.4 apply. In particular we know that W has
a unique �xed point, i.e. there exists a unique ẑ 2 S such that

Wẑ = ẑ:

Using this, we can now prove that T has a unique �xed point by contradiction. We �rst show
that ẑ is a �xed point of the operator T . Then we show that it is the unique one. So suppose
that ẑ was not a �xed point of T , i.e.

T ẑ = ~z 6= ẑ: (I6.1)

As ẑ is the unique �xed point of the operator W = Tn, we get

ẑ =Wẑ = Tnẑ = Tn�1T ẑ = Tn�1~z:

But this implies that
T ẑ = TTn�1~z = Tn~z: (I6.2)

Together with T ẑ = ~z (from (I6.1)), (I6.2) reads

~z = Tn~z =W ~z;

i.e. ~z is a �xed point of W . But this is a contradiction, as ẑ is the unique �xed point of the
operator W and ~z 6= ẑ. This shows that ẑ is also a �xed point of the operator T .

To prove uniqueness, suppose that T would have another �xed point z0 6= ẑ. This would
imply that

Wz0 = Tnz0 = Tn�1Tz0 = Tn�1z0 = Tn�2Tz0 = ::: = Tz0 = z0;

i.e. z0 would also be a �xed point of W . Again this contradicts the fact that W has a unique
�xed point. Hence, T has a unique �xed point, which is ẑ. This concludes the proof.

Exercise 6.3*

Note �rst that there is a small typo in the original exercise. What we have to show is,
that for any z; z0 2 S and n 2 N, we have

d
�
Tnz; Tnz0

�
� �nd

�
z; z0

�
: (I6.3)

We can prove (I6.3) by repeatedly applying the operator. In particular note that T satis�es

d
�
Tz; Tz0

�
� �d

�
z; z0

�
:

Hence we get

d
�
Tnz; Tnz0

�
� �d

�
Tn�1z; Tn�1z0

�
� �2d

�
Tn�2z; Tn�2z0

�
� ::: � �nd

�
z; z0

�
:

51
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To see how this result can be helpful in numerical applications, note that when z0 is a �xed
point, (I6.3) implies that

d
�
Tnz; Tnz0

�
= d

�
Tnz; z0

�
� �nd

�
z; z0

�
:

In that case, starting with some guess z, repeatedly applying the operator T will take you to
the �xed point z0 and will do so at an exponential rate. One important application of this
procedure is the following: as we saw in Chapter 6, especially in the second version of the
proof of Theorem 6.3, the operator T de�ned by

TV (x) = max
y2G(x)

fU(x; y) + �V (y)g (I6.4)

is a contraction and the value function V = TV a solution to Problem A2. In order to solve
for the value function V we can therefore simply apply the operator T as given in (I6.4)
to any initial guess of the value function V0 and �nd the value function numerically. The
contraction mapping theorem provides the basic reason why such a numerical solution will
work: as T de�ned in (I6.4) is a contraction, there exists a unique function V which solves the
functional equation displayed in (I6.4) and irrespective of the initial guess V0, the sequence
fVng1n=0 de�ned by Vn = T (Vn�1) will converge to V . The result in this exercise furthermore
provides us with a bound on the speed of convergence: irrespective of the initial guess V0,
we know that after n iterations the current distance to the solution d (TnV0; V ) is at most a
fraction �n of the distance we started with d (V0; V ).

Exercise 6.7

Exercise 6.7, Part (a). Recall that the law of motion for the capital stock is given in
(6.37) as

k (t+ 1) = ��k (t)� : (I6.5)
This implies that there is a unique steady state capital stock k�, as there is a unique k > 0
solving the equation k = ��k�.1 This steady state level is given by

k� = (��)1=(1��): (I6.6)

Let us now show that convergence is monotone. Suppose that 0 < k(t) < k�. Then we get
that

k (t+ 1)� k (t)
k (t)

= ��k(t)��1 � 1 > ��(k�)��1 � 1 = 0;

where the inequality follows from the fact that k(t) < k� and the last equality follows from
the de�nition k� given in (I6.6). This shows that k (t+ 1) > k (t) whenever k(t) < k�.
Furthermore we need to show that there is no overshooting, i.e. k(t + 1) � k�. To see this,
note that whenever k(t) � k�, we have

k(t+ 1) = ��k (t)� � �� (k�)� = k�:

Hence there exists a unique steady state and convergence is monotone, i.e. whenever
k(0) < k�, the sequence of capital stocks fk(t)g1t=0 de�ned by (I6.5) is strictly increasing
and converges to k�. The proof for the case of k(t) > k� is analogous.

The behavior of consumption mimics the behavior of the capital stock. This is directly
seen from the consumption function (see the derivation in Example 6.4)

c (t) = (1� �a) k (t)� ;
which is strictly increasing in k(t).

1We do not consider the case of k = 0 as we assumed in the exercise statement that k0 > 0:
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Exercise 6.7, Part (b). Let us now consider the guess

� (x) = ax� + bx+ c (I6.7)

for the policy function. The derivation in Example 6.4. showed that the policy function �(x)
has to satisfy the equation

1

x� � � (x) = �
�� (x)��1

� (x)� � � (� (x)) .

Substituting (I6.7) yields

1

x� � (ax� + bx+ c) = �
�(ax� + bx+ c)��1

(ax� + bx+ c)� � a(ax� + bx+ c)� � b(ax� + bx+ c)� c ;

which we can also write as

x� � (ax� + bx+ c) =
(1� a)(ax� + bx+ c)� b(ax� + bx+ c)2�� � c(ax� + bx+ c)1��

��

=
(ax� + bx+ c)

��

�
1� a� b(ax� + bx+ c)1�� � c(ax� + bx+ c)��

�
;

so that

x� =
(ax� + bx+ c)

��

�
1� a+ ��� (ax� + bx+ c)�� [b(ax� + bx+ c) + c]

�
: (I6.8)

Dividing (I6.8) by x� and rearranging terms yields

1 =
(a+ bx1�� + x��c)

��

�
1� a+ ��� b(ax� + bx+ c)1�� � c

(ax� + bx+ c)�

�
; (I6.9)

which has to hold for all x. Now suppose that b 6= 0. Taking the limit where x ! 1 shows
that the RHS of (I6.9) goes to �1 regardless of a and c. This however is a contradiction as
(I6.9) has to hold for all x. Hence, b = 0. Substituting this in (I6.9) yields

1 =
(a+ x��c)

��

�
1� a+ ��� c

(ax� + c)�

�
: (I6.10)

Note �rst that (I6.10) implies that a 6= 0, because if a = 0, (I6.10) reduces to

1 =
x��c

��

�
1 + ��� c1��

�
;

which cannot be satis�ed for all x. Hence suppose that c 6= 0. Taking the limit x! 0, shows
that the RHS of (I6.10) converges to1 if a < 0 and to �1 if a > 0, both of which contradict
(I6.10) being satis�ed for all x. Hence, c = 0 as required. (I6.10) therefore shows that

1 =
a

��
[1� a+ ��] ;

which can be solved for
a = ��:

This shows that starting with the more general guess

� (x) = ax� + bx+ c

will yield exactly the same result b = c = 0 and a = �� so that

� (x) = ��x�:
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Exercise 6.7, Part (c). By conjecturing a functional form of the value function we can
solve both the Envelope Condition (6.26) and the Euler Equation (6.25) explicitly. Using our
conjecture V (x) = A log x, these two equations yield

1

x� � y = �V 0(y) = �A
1

y
(I6.11)

A
1

x
= V 0(x) =

�x��1

x� � y ; (I6.12)

where (I6.11) is the Euler Equation and (I6.12) is the Envelope Equation. Let us again denote
the policy function by y = �(x). From (I6.11) we get that

y = �(x) =
�A

1 + �A
x�: (I6.13)

The value function V has to satisfy the functional equation

V (x) = max
y�0

flog(xa � y) + �V (y)g :

Using (I6.13) and our guess for V we get that

A log x = log(xa � �(x)) + �A log �(x)

= log

�
1

1 + �A
x�
�
+ �A log

�
�A

1 + �A
x�
�
;

which can be simpli�ed to

(A� �� ��A) log x = �A log

�
�A

1 + �A

�
� log (1 + �A) :

As this equation has to hold for all x, the LHS cannot depend on x so that

A =
�

1� �� ; (I6.14)

which implied that the explicit solution of the value function is given by

V (x) =
�

1� �� log x:

Note that by substituting (I6.14) into (I6.13) we also recover the policy function from above
as

�(x) =
�A

1 + �A
x� = �(x) =

� �
1���

1 + � �
1���

x� = ��x�:

Exercise 6.8

Exercise 6.8, Part (a). To set up the dynamic programming version of the maximiza-
tion problem, it is again helpful to �rst eliminate the control variable c(t). Speci�cally we
can use the constraint to express consumption as

c(t) = Ak(t)� k(t+ 1):
Using this in the utility function, the recursive formulation of the problem results in

V (k) = max
k02[0;Ak]

fAk � k0 � a

2
(Ak � k0)2 + �V (k0)g

where the constraint k0 � Ak stems from the fact that consumption must not be negative.
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Exercise 6.8, Part (b). To make some progress in determining if a solution (both in
terms of the value function and the policy function) exists, let us go back to the results which
were derived in Chapter 6. Speci�cally recall Theorem 6.3, which showed that a unique value
function and some policy function exist, if Assumptions 6.1 and 6.2 hold true. Hence, let us
verify those assumptions for our problem.

Let us start with Assumption 6.1. We have to check that the value function of the
sequence problem is well-de�ned in the sense that limn!1

Pn
t=0 �

tU(x (t) ; x (t+ 1)) exists
and is �nite. To check this condition, let us rewrite the sequence version of the maximization
problem as

V �(k(0)) = sup
fk(t+1)g10

1X
t=0

�t[Ak(t)� k(t+ 1)� a

2
(Ak(t)� k(t+ 1))2]

s.t. k(t) 2 [0; �k]:

Now note that we can bound the value of V �(k(0)) by recognizing that each of the terms

Ak(t)� k(t+ 1)� a

2
(Ak(t)� k(t+ 1))2

is bounded by

Ak(t)� k(t+ 1)� a

2
(Ak(t)� k(t+ 1))2 < Ak(t) < A�k;

as k(t) 2 [0; �k]. Hence it is clear that

V �(k(0)) � V �(�k) <
1X
t=o

�tA�k = A�k
1

1� � <1:

The fact that V �(k(0)) � V �(�k) is immediate, as starting with a capital stock �k � k(0),
the optimal consumption plan when starting with k(0) can be replicated and consumption
can be increased in the �rst period. Recall that we assumed �k to be such that utility is
increasing in consumption. Hence, starting with a higher level of capital will increase the
value of the program. This proves that the limit exists and is �nite. We also have to show
that the constraint correspondence is non-empty. But the constraint correspondence in this
problem is just given by G(k) = [0; Ak], which is non-empty. This veri�es the conditions of
Assumption 6.1.

Now consider Assumption 6.2. That the instantaneous utility function U is continuous
is obvious. By assumption we have that k(t) 2 [0; �k], which is clearly a compact subset. To
�nally show that the constraint correspondence is continuous and compact-valued, recall that
G(k) = [0; Ak] which satis�es these requirements. Hence, the requirements for Assumption
2 are also satis�ed, so that Theorem 6.3 is applicable. This proves the existence of both
a unique value function and some optimal plan. However, we can apply Theorem 6.4 to
strengthen those results as G is convex and the utility function is strictly concave. Hence,
there is a unique optimal plan and the policy function is in fact a function, i.e. single-valued.
Using those results let us now characterize this solution.

Exercise 6.8, Part (c). Following the analysis in Chapter 6, the policy function can
be characterized by the �rst-order condition and the Envelope Condition The optimality
condition for tomorrow�s capital stock k0 = �(k) is given by

�1 + a(Ak � �(k)) + �V 0(�(k)) = 0; (I6.15)
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where � denotes the policy function. The Envelope Condition is given by

V 0(k) = A� a(Ak � �(k))A = A(1� aAk + a�(k)): (I6.16)

Substituting (I6.16) into (I6.15) yields

1 = a(Ak � �(k)) + �A(1� aA�(k) + a�(�(k)))
= �A+ aAk � a(1 +A2�)�(k) + �Aa�(�(k)): (I6.17)

By looking at (I6.17) we can already get a feeling for the form of the solution. Note �rst
that (I6.17) has to hold for all levels of the state variable k. As there is already a constant
(�A� 1) and a linear term (aAk) it is natural to conjecture that the policy function is linear
and has an intercept. Hence let us conjecture that

�(k) = 'k + ;

where ' and  are coe¢ cients to be determined. As this implies that

�(�(k)) = '('k + ) +  = '2k + (1 + ');

(I6.17) requires that

1 = �A� a(1 +A2�) + �Aa(1 + ') + (aA� a(1 +A2�)'+ �Aa'2)k: (I6.18)

As (I6.18) has to hold for all k; the RHS cannot depend on k, i.e.

(aA� a(1 +A2�)'+ �Aa'2) = 0:
Conveniently, this expression does not involve  so that we can simply solve for '. Factoring
out the a we get that

0 = A� (1 +A2�)'+ �A'2 = A� '�A2�'+ �A'2 = (A� ')(1�A�'): (I6.19)

From (I6.19) it is clear that there are two potential solutions for '. But did we not argue
that the policy function was unique (by the strict concavity of the utility function)? This
is indeed the case, i.e. only one of the solutions to Eq. (I6:19) corresponds to the optimal
policy. In particular, ' = A solves Eq. (I6:19) but does not correspond to the optimal policy.
To see this, recall that (by Theorem 6.5) the value function is strictly increasing in the state
variable k.2 So suppose ' = A would be solution. Using (I6.18), the corresponding solution
for  has to solve the equation

1 = �A� a[1 +A2� � �A� �A'];
i.e.  = � 1

a . But going back to the Envelope Condition in (I6.16), this would imply that

V 0(k) = A(1� aAk + a�(k)) = A(1� aAk + a(Ak � 1
a
)) = 0;

which would violate the strict monotonicity of the value function. Hence, let us focus on the
other solution ' = 1

A� . Some algebra shows that (I6.18) implies  = �
1��A

�A�(A�1) so that the
policy function is given by

�(k) =
1

A�
k � 1� �A

aA�(A� 1) : (I6.20)

Consequently, the consumption level is given by

c(t) = Ak(t)� �(k(t)) = A2� � 1
A�

k +
1� �A

aA�(A� 1) : (I6.21)

2Recall that we assumed that a < �k�1 so that the objective function (here the utility function) is increasing
in consumption in the relevant range.
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Using again the Envelope Condition (I6.16), we see that now

V 0(k) = A(1� aAk + a�(k)) = A(1� aAk + a

A�
k � 1� �A

A�(A� 1))

=
A2� � 1
�(A� 1) + a

1�A2�
�

k

=
A2� � 1

�
(
1

A� 1 � ak): (I6.22)

Hence, the value function is quadratic (as the derivative is linear in k), i.e. takes the form

V (k) =  2k
2 +  1k +  0:

In order to solve for V we only have to �nd the coe¢ cients  0;  1;and  2. The two coe¢ cients
 1 and  2 are already determined by (I6.22) and given by

 2 = �1
2

A2� � 1
�

a (I6.23)

 1 =
A2� � 1

�

1

A� 1 : (I6.24)

To determine  0; recall that the value function V is recursively de�ned as

V (k) = U(k; �(k)) + �V (�(k))

= c(t)� a

2
c(t)2 + �( 2�(k)

2 +  1�(k) +  0); (I6.25)

where the second line already imposed that V is a quadratic. The policy function was given
in (I6.20) as

�(k) =
1

A�
k � 1� �A

aA�(A� 1) �
1

A�
k � �;

where we de�ned � = 1��A
aA�(A�1) to save on notation. Substituting this into the expression for

consumption (I6.21), we get that

c(t) =
A� 1
A

 1k +
1� �A

aA�(A� 1) =
A� 1
A

 1k + �:

Hence we can express (I6.25) as

V (k) =
A� 1
A

 1k + ��
a

2
((
A� 1
A

 1k)
2 + �2 + 2

A� 1
A

 1k�) (I6.26)

+�( 2((
1

A�
)2k2 � 2( 1

A�
k�) + �2) +  1(

1

A�
k � �) +  0):

Now recall that we needed the recursive formulation only to determine the constant term  0
in the value function. Hence we do not have to consider the terms that depend on k. Using
(I6.26) we therefore �nd that

 0 = �� a

2
�2 + � 2�

2 � � 1�+ � 0:

so that  0 is given by

(1� �) 0 = (1�
a

2
�+ � 2�� � 1)�: (I6.27)
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Upon substituting  1 and  2 from (I6.23) and (I6.24) and after some algebra, (I6.27) reduces
to

(1� �) 0 =
1

2

A(1�A�)
(A� 1) �;

so that

 0 =
1

2

1

(1� �)�
A(1�A�)
(A� 1) =

1

2

1

a�(1� �)

�
1�A�
A� 1

�2
: (I6.28)

Hence the �nal value function is given by

V (k) =  0 +  1k +  2k
2;

with the coe¢ cients given in (I6.23), (I6.24) and (I6.28).

Exercise 6.9

Using Theorem 6.4 and Theorem 6.6 we can immediately conclude that the unique value
function is strictly concave and di¤erentiable with its derivative (as x is a scalar in our
example) given by

V 0(x) =
@

@x
U(x; �(x)):

Assuming that V is twice di¤erentiable (we will come back to this assumption below) the
desired result follows directly from the Euler equations (6.25)

@

@y
U(x; �(x)) + �V 0(�(x)) = 0: (I6.29)

To see this, recall that (I6.29) has to hold for all x. Di¤erentiating this condition with respect
to the state variable x and rearranging terms yields

�0(x) = �
@2

@y@xU(x; �(x))

@2

@x@xU(x; �(x)) + �V
00(�(x))

� 0;

as the denominator is strictly negative due to the strict concavity of the value and the utility
function. Note however that V is an endogenous object and we did not establish that V 00

would even exist. Hence let us also show this result without this assumption. Consider
x2 > x1 and suppose by contradiction that �(x2) < �(x1). As (I6.29) has to hold for all x,
i.e. particularly for x2 and x1, we can combine the two equations to get

@

@y
U(x2; �(x2))�

@

@y
U(x1; �(x1)) + �(V

0(�(x2))� V 0(�(x1))) = 0: (I6.30)

As the value function is strictly concave by Theorem 6.4, it is clear that V 0(�(x2)) >
V 0(�(x1)) (under the hypothesis that �(x2) < �(x1)). Expanding (I6.30) by @

@yU(x1; �(x2))

we get that

@

@y
U(x2; �(x2))�

@

@y
U(x1; �(x2)) +

@

@y
U(x1; �(x2))�

@

@y
U(x1; �(x1)) < 0:

Again we have from concavity of U that @
@yU(x1; �(x2)) >

@
@yU(x1; �(x1)) so that the above

implies that
@
@yU(x2; �(x2))�

@
@yU(x1; �(x2))

x2 � x1
< 0:
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Taking the limit x2 ! x1 yields

lim
x2!x1

@
@yU(x2; �(x2))�

@
@yU(x1; �(x2))

x2 � x1
=
@2U (x; y)

@x@y

����
y=�(x)

< 0:

This however contradicts our assumption that @2U (x; y) =@x@y � 0. Hence, �(x2) � �(x1)
whenever x2 > x1. This shows that the policy function is nondecreasing.

Exercise 6.12

Exercise 6.12, Part (a). Our aim is to show that the consumer�s assets belong to a
compact set, i.e. we have to show that there exist numbers a and �a such that a (t) 2 [a; �a] for
all t. Note however the asymmetry between those bounds. Whereas the upper bound might
or might not (see the second part of this exercise) arise out of the economic environment, the
lower bound is given by the natural borrowing limit, which follows directly from the necessity
to satisfy the budget constraint. In Example 6.5 it is shown that the natural borrowing limit
is given by

a(t) � �w
r
for all t.

Intuitively, if at some point in time t the consumer had a level of debt higher than w=r, she
would violate the budget constraint with certainty, because even if she would not consume
at all for the rest of her life, she could not pay back her debt. This establishes that asset
holdings are bounded from below by �w

r . As the natural borrowing limit does not depend
on �, this lower bound is the same for both part of this exercise.

Let us now show the existence of the upper bound. The most important thing we need
is of course the consumer�s consumption rule. It is given in (6.40) and reproduced here for
convenience (recall that we denoted the future level of consumption by c0)

if r = ��1 � 1; c = c0 and consumption is constant over time
if r > ��1 � 1; c < c0 and consumption increases over time
if r < ��1 � 1; c > c0 and consumption decreases over time.

To analyze the behavior of the level of assets we also have to know the level of consumption.
In this example this is relatively easy as wages and interest rates are constant over time. By
iterating the �ow budget constraint a (t+ 1) = (1 + r) a (t) +w � c (t) forwards, we get that

(1 + r)a(0) +
TX
t=0

�
1

1 + r

�t
w(t) =

TX
t=0

�
1

1 + r

�t
c(t) +

a(T + 1)

(1 + r)T
: (I6.31)

Consider �rst the case r = ��1� 1 where consumption is constant over time, i.e. c(t) = c for
all t. Taking the limit of (I6.31) where T tends to in�nity yields

(1 + r)a(0) +

�
1 + r

r

�
w =

�
1 + r

r

�
c+ lim

T!1

a(T + 1)

(1 + r)T
: (I6.32)

But as r = ��1� 1 it is clear that 1
1+r = �; so that the limiting term on the RHS is given by

lim
T!1

a(T + 1)

(1 + r)T
= lim

T!1
�Ta(T + 1):

But this term is equal to zero by the transversality condition given in (6.32) as the marginal
utility is constant over time (given that consumption is constant). Hence (I6.32) implies that

c = w + ra(0); (I6.33)
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i.e. per period consumption is equal to per period wage income and the interest income
from initial assets. From here we can go back to the �ow budget constraint to determine the
evolution of assets. Using (I6.33) we get that

a (1) = (1 + r) a (0) + w � c (0) = (1 + r) a (0) + w � w � ra(0) = a(0):

Intuitively, if each period the wage income and the interest paid is consumed (see (I6.33)),
there will never be any accumulation or decumulation of assets. Hence, in this case we have
that a(t) = a(0) for all t. This veri�es that assets do belong to a compact set.

Next consider the case of r < ��1� 1, i.e. the case where consumption is decreasing over
time. As the present value of the consumer�s resources is still given by (1 + r) a(0) + 1+r

r w

(see (I6.32)), we need to have c(0) � (1 + r) a(0) + 1+r
r w. As consumption decreases over

time, this implies that

c(t) � (1 + r) a(0) + 1 + r
r

w for all t.

Now suppose assets do not belong to a compact set. Then there is T such that a(T ) �
(1+r)a(0)+ 1+r

r
w

r . Now consider the alternative consumption path f~c(t)g1t=T starting at T ,
where

~c(T ) = ~c(T + 1) = ~c(T + 2) = :: = ~c = (1 + r) a(0) +
1 + r

r
w > c(0): (I6.34)

To see that this consumption path is feasible, suppose that a(t) � (1+r)a(0)+ 1+r
r
w

r . Then,

a(t+ 1) = (1 + r)a(t) + w � ~c � a(t) + w + (1 + r) a(0) +
1 + r

r
w � ~c > a(t);

i.e. the consumer accumulates assets when consuming the amount ~c given in (I6.34). As we

constructed T so that a(T ) � (1+r)a(0)+ 1+r
r
w

r , f~c(t)g1t=T is feasible.
This however is a contradiction, as the optimal plan had

c(0) > c(T ) > c(T + 1) > :::;

i.e. the proposed deviation yields unambiguously higher utility starting at T , violating the
time consistency of the optimal plan. This shows that assets have to be bounded from above
and hence are contained in a compact set.

Exercise 6.12, Part (b). Let us now consider the case r > ��1�1; where consumption
steadily increases over time. To arrive at a contradiction, suppose that there is an upper
bound on asset holdings �a <1. Then,

a(t+ 1) = (1 + r)a(t) + w � c(t) � (1 + r)�a+ w � c(t):
Hence, for c(t) su¢ ciently large, �a will be arbitrarily small. But as consumption increases
over time, this implies that

9�t : a(�t+ 1) < a = �w
r
,

which is a contradiction. Hence, there does not exist an upper bound on asset holdings so
that assets do not belong to a compact set if r > ��1 � 1.

The intuition is the following: a steadily increasing consumption pro�le can only be
attained if assets are also steadily accumulated (recall that wages are constant). Hence, such
a consumption pro�le will imply a pro�le of asset holdings which has assets go to in�nity.
This example simply shows that restricting consumers�assets to a compact set is in some
sense equivalent to assume that consumers are impatient enough (compared to the prevailing
interest rate). Whether we want to make that assumption depends on the context.



Solutions Manual for Introduction to Modern Economic Growth 61

Exercise 6.18*

To show the �rst part, suppose the claim was not true, i.e. there exist some " > 0 such
that

8T;8t0 2 [0; T ] : jkT (t0)� k�j > ": (I6.35)
Let us denote the optimal capital-labor ratio in the in�nite horizon economy by fk1 (t)g1t=0.
Now note that

jkT (t0)� k�j = jkT (t0) + k1(t0)� k1(t0)� k�j � jkT (t0)� k1(t0)j+ jk1(t0)� k�j:
As the capital-labor ratio in the in�nite horizon economy converges monotonically to the
steady state k�, there exits some �t such that jk1(t0)� k�j < 1

2" for all t
0 > �t . Together with

(I6.35) this implies that

9�t : 8T > �t;8t0 2 [�t; T ] : jkT (t0)� k1(t0)j > 1

2
"; (I6.36)

i.e. for any time horizon T; the capital-labor ratio in this �nite (but potentially arbitrarily
long) horizon economy will be bounded away from its in�nite horizon economy counterpart.
To see that this cannot be true, let

�
cT (t)

	T
t=0

be the consumption sequence generated by�
kT (t)

	T
t=0
. As this is the solution to the T -period problem, we get that

V T (k(0)) =
TX
t=0

U(cT (t));

where

V T (k(0)) = max
fc(t)gTt=0

TX
t=0

U(c(t)) (I6.37)

s.t: k(t+ 1) = f(k(t)) + (1� �)k(t)� c(t)
k(t) � 0

k(0) = k0:

Similarly we have that

V1(k(0)) =
TX
t=0

U(c1(t));

where V1(k(0)) is the in�nite horizon counterpart of the problem in (I6.37). Hence,

lim
T!1

V T (k(0)) = V1(k(0)): (I6.38)

But starting from k(0), (I6.36), i.e. the fact that the optimal capital-labor ratios di¤er be-
tween the in�nite and T�horizon economy, implies that the induced consumption sequences�
cT (t)

	T
t=0

and fc1 (t)g1t=0 will also di¤er, even in the limit when T tends to in�nity. This
however is a contradiction as together with (I6.38) it would imply that there exist two con-
sumption sequences which would lead to the same value. But the results derived in Chapter
6 imply that the policy function is unique. This proves the claim that for every " > 0, there
exists T <1 and t0 < T such that

��kT (t0)� k��� < ":

To show that kT (T + 1) = 03 for all T; we show that if we had kT (T + 1) > 0 there was
a pro�table deviation so that kT (T + 1) > 0 could not have been optimal. To construct such

3Note that I take kT (T + 1) to denote the capital stock that is saved in T to be available at T + 1. This
notation is a bit more in line with our usual convention that k(t) was decided upon in t� 1.
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a deviation, consider the alternative plan
n
~kT (t)

oT
t=0

de�ned by ~kT (t) = kT (t) for all t � T

and ~kT (T + 1) = 0. Using the capital accumulation equation

k(t+ 1) = f(k(t)) + (1� �)k(t)� c(t)
it is clear that ~cT (t) = cT (t) for all t < T . But ~cT (T ) > cT (T ) as

f(kT (T )) + (1� �)kT (T ) = f(~kT (T )) + (1� �)~kT (T ) = ~c(T ) = c(T ) + kT (T + 1) > c(T ):

Hence, the plan
n
~kT (t)

oT
t=0

is also feasible and gives a strictly higher utility level. This

contradicts
�
kT (t)

	T
t=0

being a solution to the problem and shows that kT (T + 1) = 0 for
all T:

To �nally show that the behavior of the optimal capital-labor sequence
�
kT (t)

	T
t=0

re-
sembles the one depicted in Figure 6.1 (provided that kT (0) is small enough) consider �rst
the capital-labor ratio of the in�nite horizon economy fk1 (t)g1t=0. By standard arguments,
this sequence will converge to the steady state k� and convergence will be monotone. Now �x
some time period S. Above we showed that fk1 (t)g1t=0 and

�
kT (t)

	T
t=0

will be arbitrarily

close for T su¢ ciently large. Hence, the �rst S elements
�
kT (t)

	S
t=0

will also be arbitrarily

close to fk1 (t)gSt=0 once we allow T to be large enough. This shows that
�
kT (t)

	T
t=0

will
be increasing towards k� and convergence will also be monotone. That the capital-labor
ratio has to drop at the end of the time horizon was shown above, where we have seen that
kT (T +1) = 0. Hence, the capital-labor sequence takes the "Turnpike" form as in Figure 6.1.



Chapter 7: An Introduction to the Theory of Optimal Control

Exercise 7.1

Similar to the analysis in Section 7.1, we de�ne the variation of the function ŷ (t) with

y (t; ") = ŷ (t) + "� (t) (I7.1)

for all t 2 [0; t1] and we de�ne x (t; ") as the solution to

_x (t; ") = g (t; x (t; ") ; y (t; ")) for all t 2 [0; t1] with x (0; ") = x0. (I7.2)

The same steps as in Section 7.1 give us

0 � W 0 (0) =

Z t1

0

h
fx (t; x̂ (t) ; ŷ (t)) + � (t) gx (t; x̂ (t) ; ŷ (t)) + _� (t)

i
x" (t; 0) dt (I7.3)

+

Z t1

0
[fy (t; x̂ (t) ; ŷ (t)) + � (t) gy (t; x̂ (t) ; ŷ (t))] � (t) dt

�� (t1)x" (t1; 0) ,

which has to hold for all choices of continuous � (t) and continuously di¤erentiable � (t).
Unlike in Section 7.1, we choose � (t) so that the second integral in Eq. (I7:3) is zero, that is
we de�ne

� (t) � �fy (t; x̂ (t) ; ŷ (t)) =gy (t; x̂ (t) ; ŷ (t)) :
We claim that if the condition

_� (t) = � [fx (t; x̂ (t) ; ŷ (t)) + � (t) gx (t; x̂ (t) ; ŷ (t))] for all t 2
�
t0; t00

�
(I7.4)

is violated over an interval (t0; t00), then we can indirectly control x" (t; 0) (through controlling
� (t)) in a way to violate Eq. (I7:3). To see this, we �rst claim that we can induce any
continuously di¤erentiable x" (t; 0) through Eq. (I7:2) by controlling � (t).

Claim 1. For any given continuously di¤erentiable function  (t) : [0; t1] such that  (0) =
0, there exists a unique continuous � (t) such that

x" (t; 0) =  (t) for all t 2 [0; t1] .

Proof. First note that, by integrating Eq. (I7:2), x (t; ") satis�es

x (t; ") = x0 +

Z t

0
g
�
t0; x

�
t0; "
�
; ŷ
�
t0
�
+ "�

�
t0
��
dt0.

Hence, the derivative x" evaluated at " = 0 satis�es the following (implicit) equation for all
t 2 [0; t1]

x" (t; 0) =

Z t

0

�
gx
�
t0; x̂

�
t0
�
; ŷ
�
t0
��
x"
�
t0; 0
�
+ gy

�
t0; x̂

�
t0
�
; ŷ
�
t0
��
�
�
t0
��
dt0,

63
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which also implies x" (0; 0) = 0. By Leibniz�rule, x" (t; 0), when viewed as a function of t,
satis�es the di¤erential equation

_x" (t; 0) = gx (t; x̂ (t) ; ŷ (t))x" (t; 0) + gy (t; x̂ (t) ; ŷ (t)) � (t) , with x" (0; 0) = 0: (I7.5)

Next, consider any continuously di¤erentiable function  (t) with  (0) = 0. De�ne � (t)
as

� (t) =
_ (t)� gx (t; x̂ (t) ; ŷ (t)) (t)

gy (t; x̂ (t) ; ŷ (t))
, for all t 2 [0; t1] ,

which is well de�ned since we are given gy 6= 0. Under regularity conditions (i.e. when gx and
gy are Lipschitz continuous), the di¤erential equation in Eq. (I7:5) has a unique solution for
the given initial value x" (0; 0) = 0. Since, by de�nition,  (t) solves the di¤erential equation,
it must be the unique solution, that is x" (t; 0) =  (t), as desired. �

The rest of the argument is now straightforward. Recall that, we have made the second
integral in Problem (I7:3) zero by our choice of � (t). Now, suppose Eq. (I7:4) is violated
over (t0; t00) and de�ne the continuous function

h (t) � _� (t) + fx (t; x̂ (t) ; ŷ (t)) + � (t) gx (t; x̂ (t) ; ŷ (t)) .

By construction h (t) never hits 0 over t 2 (t0; t00), i.e. it is either positive or negative over
all of this interval. Without loss of generality suppose it is positive everywhere. Let  (t) be
a continuously di¤erentiable function that is positive over (t0; t00) and is zero at t = t1. By
Claim (1), there exists some � (t) such that with the choice of � (t), we have x" (t; 0) =  (t).
Then, with this choice of � (t), we have that the �rst integral in (I7:3) is positive, the second
integral is zero by our choice of � (t), and the last term is zero as x" (t1; 0) =  (t1) = 0.
Hence Eq. (I7:3) is violated, providing the desired contradiction. Similarly, � (t1) = 0 is
a necessary condition since otherwise we can choose � (t) that leads to x" (t1; 0) = �� (t1),
violating Eq. (I7:3).

A simpler and correct solution that looks like cheating. As in Section 7.1, let us
de�ne ~� (t) so that the �rst and the third terms in (I7:3) are zero, that is let ~� : [0; t1] ! R
be the solution to

d~� (t)

dt
= �fx (t; x̂ (t) ; ŷ (t))� ~� (t) gx (t; x̂ (t) ; ŷ (t)) and ~� (t1) = 0. (I7.6)

Eq. (I7:3) then implies

fy (t; x̂ (t) ; ŷ (t)) + ~� (t) gy (t; x̂ (t) ; ŷ (t)) = 0,

since otherwise we would get a contradiction to Eq. (I7:3) in view of the fact that � (t) can
be chosen freely. But, since gy > 0, the last displayed equation implies

~� (t) =
�fy (t; x̂ (t) ; ŷ (t))
gy (t; x̂ (t) ; ŷ (t))

= � (t) ;

that is, the ~� (t) we have constructed must almost everywhere agree with � (t) de�ned by Eq.
(7.12) in the problem statement. Since ~� (t) satis�es Eq. (I7:6) but � (t) violates that same
di¤erential equation over (t0; t00) [cf. Eq. (I7:4)], this yields a contradiction hence (x̂ (t) ; ŷ (t))
cannot be an interior continuous solution attaining the optimum.

The reason this argument looks like cheating is because it de�es the whole point of the
problem. The purpose of the problem was to get us to think about an alternative way
of proving the necessary conditions, that is, by getting a contradiction through controlling
x" (t; ") indirectly, rather than � (t) directly. But this proof gets around that alternative
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approach by providing the same exact argument as in Section 7.1 and noting that the �
de�ned by the two approaches must be equivalent.

Exercise 7.2*

Let (x̂ (t) ; ŷ (t)) be a solution to (7.2). Prove that the maximized Hamiltonian de-
�ned in (7.20) and evaluated at x̂ (t), M (t; x̂ (t) ; � (t)), is di¤erentiable in x and satis�es
_� (t) = �Mx (t; x̂ (t) ; � (t)) for all t 2 [0; t1]. [Hint: recall that the solution is assumed to be
continuous].

Recall that the maximized Hamiltonian is de�ned as

M (t; x; � (t)) = max
y2Y

H (t; x; y; � (t)) .

When the solution ŷ (t j x) is a continuous function of x in a neighborhood of x̂ (t), the
Envelope Theorem applies and shows

Mx (t; x̂ (t) ; � (t)) = Hx (t; x̂ (t) ; ŷ (t) ; � (t)) for all t 2 [0; t1] .
From the Maximum Principle (cf. Theorem 7.9), we also have Hx (t; x̂ (t) ; ŷ (t) ; � (t)) =

� _� (t). Combining this with the previous displayed equation proves _� (t) =
�Mx (t; x̂ (t) ; � (t)) for all t 2 [0; t1] as desired.

Exercise 7.5

We refer to the problem of maximizing (7.13) subject to (7.3) and (7.4) as Problem P ,
and we let [x̂ (t) ; ŷ (t)]t denote a solution to Problem P . We will prove the theorem using a
Lagrangian method. In particular, for each � > 0, de�ne a penalty function

p (t; x (t) ; �) = �� exp (�� (t1 � t))
1� exp (��t1)

(x (t)� x1)2 � for t 2 [0; t1] .

The weight � exp(�(t1�t))
1�exp(��(t1�t)) in front of (x (t)� x1)

2 is a probability distribution function on
[0; t1] which, as � !1, converges to the Dirac measure at t = t1. Intuitively, as � !1, the
function p (t; x (t) ; �) penalizes deviations of x (t1) from x1, and the � following (x (t)� x1)2
ensures that the measure of the penalty limits to 1. Given this penalty function, consider
the unconstrained optimization problem

P (�) = max
[x(t);y(t)]

Z t1

0
(f (t; x (t; �) ; y (t; �)) + p (t; x (t; �) ; �)) dt

s.t. _x (t; �) = g (t; x (t; �) ; y (t; �)) , x (0; �) = x0.

Suppose, for simplicity, that P (�) has a unique solution for su¢ ciently large � > 0, which
we denote by [x̂ (t; �) ; ŷ (t; �)]t. From the construction of the penalty function, we have
lim�!1 x̂ (t1; �) = x1, since otherwise the objective value for su¢ ciently large � would
limit to �1. Hence, the limit of the solution [x̂ (t; �) ; ŷ (t; �)]t satis�es the feasibility con-
straints of Problem P , including the end-value constraint x (t1) = x1. Moreover, given
lim�!1 x̂ (t1; �) = x̂ (t1), the penalty function p (t; x (t; �) ; �) converges to 0 for each t, and
the objective function of Problem P (�) pointwise converges to the objective function of P . It
follows that the solution to the penalized problem P (�) pointwise converges to the solution
to P , that is

lim
�!1

(x̂ (t; �) ; ŷ (t; �)) = (x̂ (t) ; ŷ (t)) for each t < t1.

Next note that Problem P (�) does not have the end-value requirement and thus Theorem
7.1 applies to this problem. In particular, for any solution [x̂ (t; �) ; ŷ (t; �)]t1t=0 there exists
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a continuously di¤erentiable co-state function [� (t; �)]t1t=0 such that the following �rst order
conditions are satis�ed:

fy (t; x̂ (t; �) ; ŷ (t; �)) + � (t; �) gy (t; x̂ (t; �) ; ŷ (t; �)) = 0 (I7.7)

fx (t; x̂ (t; �) ; ŷ (t; �)) + � (t)

 
gx (t; x̂ (t; �) ; ŷ (t; �))

�2�
2 exp(��(t1�t))
1�exp(��t1) (x̂ (t; �)� x1)

!
= � _� (t; �) ;

where the second line evaluates px (t; x (t) ; �). We next make a regularity assumption.

Assumption 1. For each t 2 [0; t1], lim�!1 � (t; �) exists and is �nite.

Under this assumption, taking the limit of Eq. (I7:7) as � !1 implies

fy (t; x̂ (t) ; ŷ (t)) + � (t) gy (t; x̂ (t) ; ŷ (t)) = 0

fx (t; x̂ (t) ; ŷ (t)) + � (t) gx (t; x̂ (t) ; ŷ (t)) = � _� (t) ;

where we have used that lim�!1
�2 exp(��(t1�t))
1�exp(��t1) = 0 for each t < t1. The last two equations

are equivalent to Eqs. (7.11) and (7.12). Since [x̂ (t) ; ŷ (t)]t is feasible, it also satis�es the
di¤erential equation (7.3), completing the proof of Theorem 7.2.

A regularity assumption along the lines of Assumption 1 is necessary to ensure that there
are feasible variations with x (t1) = x1. Without this assumption, the result may not go
through, as demonstrated by Exercise 7.23. To see this, denote the optimization problem in
Exercise 7.23 with P and let P (�) represent the penalized problem. It can be seen that, as
� ! 1, � (t; �) ! 1 for all t < t1. Intuitively, the marginal unit of the stock variable at
any time t becomes extremely valuable as � ! 1, since each unit of the stock variable is
necessary to satisfy the end-value constraint. In other words, if one unit of the stock variable
were not there, there would be no feasible path for Problem P , and Problem P (�) would
penalize the violation, leading to a value of �1. Assumption 1 rules out these situations,
ensuring that each unit of the stock variable is not necessary to satisfy the constraint, and
that there are feasible variations satisfying the end-value constraint.

In contrast with Theorem 7.1, we do not get a restriction on � (t1), that is, � (t1) is a
free variable. Instead we have the constraint x (t1) = x1 hence the solution is still typically
uniquely pinned down. Eqs. (7.3), (7.11) and (7.12) can be reduced to a system of 2 di¤er-
ential equations over � (t) ; x (t) with two beginning/end value constraints, one for x (0) and
one for x (t1), which typically has a unique solution.

Exercise 7.19

Exercise 7.19, Part (a). The problem actually does not satisfy the concavity require-
ment of Theorem 7.14 so the theorem cannot be applied. To show this, note that the current-
value Hamiltonian is given by

Ĥ (x; y; �) = 2y1=2 + log (x)� ��xy, (I7.8)

and the maximized Hamiltonian is given by

M (t; x) = exp (��t)max
y

Ĥ (t; x; y; � (t))

= exp (��t)
�

1

� (t) px
+ log x

�
,

which is not concave for all x whenever � (t) > 0. From the necessary conditions in Part
(b), we have that � (t) > 0 holds for all candidate paths hence Theorem 7.14 cannot be used
for any candidate path that satis�es the necessary conditions. Intuitively, even though the
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objective function is concave in y and x, the constraint for _x has a cross term in x (t) y (t)
which breaks the concavity of the maximized Hamiltonian.

Exercise 7.19, Part (b). Using the expression for the current-value Hamiltonian in
(I7:8), the �rst-order conditions for an interior solution are

Ĥy = 0 =) 1

y1=2
� ��x = 0 (I7.9)

Ĥx = 0 =) 1

x
� ��y = ��� _�. (I7.10)

These �rst-order conditions along with the constraint

_x = ��xy (I7.11)

and the initial condition x (0) are the necessary conditions for this problem.
We next characterize the di¤erential equation system for (x (t) ; y (t)) implied by Eqs.

(I7:9)� (I7:11). First, we have by Eq. (I7:9),
_�

�
+
_x

x
+
1

2

_y

y
= 0.

Using this equation, Eq. (I7:9) and Eq. (I7:11), Eq. (I7:10) can be simpli�ed to

_y

y
= 2� (

p
y � 1) .

Hence, the necessary conditions can be reduced to the system of di¤erential equations

_x = ��xy (I7.12)
_y

y
= 2� (

p
y � 1) ,

where x (0) is given, but y (0) is indeterminate. Only one choice of y (0) will lead to the
optimal path. For general problems, the choice of y (0) is determined by the transversality
condition, but that approach cannot be used for this problem since the strong form of the
transversality condition is neither su¢ cient nor necessary for this problem. The transversality
condition is not su¢ cient since Theorem 7.14 does not apply as we have seen in Part (a). It
is also not necessary since parts (ii) and (iii) of Assumption 7.1 are not satis�ed.

Exercise 7.19, Part (c). Since Theorem 7.14 cannot be applied, it is not a trivial
matter to verify that the suggested path is optimal. The suggested path does satisfy the
necessary conditions in Eq. (I7:12), but there is a continuum of paths that satisfy these
conditions and we need to argue that the suggested path is optimal among all those paths.
We �rst solve the di¤erential equation (I7:12) for a given choice of y (0). Rearranging the
second equation in (I7:12), we have the separable di¤erential equation

dy

y
�
y1=2 � 1

� = 2�dt.
Introducing z = y1=2 so that dy

y = 2
dz
z , the previous equation can be written as

dz

z (z � 1) =
dz

z � 1 �
dz

z
= �dt,

which can be integrated and gives

log (z (t)� 1)� log z (t) = �t+ C.
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Solving for z (t), using y (t) = z (t)2, and solving for C using the initial condition y (0), we
obtain the solution

y (t) =

0BB@ 1

1�
�
1� 1p

y(0)

�
exp (�t)

1CCA
2

, (I7.13)

which applies for all t 2 (0;1) if y (0) � 1 and for t 2
�
0;� log

�
1� 1p

y(0)

�
=�

�
if y (0) > 1.

Eq. (I7:13) shows that if y (0) > 1, then the only y (t) that satis�es the �rst-order conditions
(I7:12) limits to 1 in �nite time. Hence, without loss of generality, we restrict attention to
initial conditions y (0) � 1. In this case, y (t) is given by Eq. (I7:13) for all t 2 (0;1) and
x (t) can be solved from Eq. (I7:12) as

x (t) =
1

�
exp

�
��
Z t

0
y (s) ds

�
. (I7.14)

The equations (I7:13) and (I7:14) jointly characterize the path of (x (t) ; y (t)).
Note that if we start with y (0) = 1, we exactly get the path that is the candidate optimal

path suggested in the problem statement. We next rule out paths that start with y (0) < 1.
For any y (0) � 1, Eq. (I7:13) implies that y (t) � 1 for all t. This implies

lim
T!1

exp (��T )
Z T

0
y (t) dt = 0. (I7.15)

Next note that by substituting for x (t) from Eq. (I7:14), we can rewrite the maximization
problem as one of choosing the function [y (t)]1t=0 that solves

max
[y(t)]1t=0�0

Z 1

0
exp (��t)

�
2y (t)1=2 � log �� �

Z t

0
y (s) ds

�
dt

() max
[y(t)]1t=0�0

lim
T!1

Z T

0
exp (��t)

�
2y (t)1=2 � �

Z t

0
y (s) ds

�
dt

() max
[y(t)]1t=0�0

lim
T!1

Z T

0
exp (��t) 2y (t)1=2 dt� �

Z T

0

Z t

0
exp (��t) y (s) dsdt,

where in the second line we have dropped the constant term log � since it does not a¤ect the
maximization. Switching the order of integration in the double integral, we have

max
[y(t)]1t=0�0

lim
T!1

Z T

0
exp (��t) 2y (t)1=2 dt� �

Z T

0

Z T

s
exp (��t) y (s) dtds

() max
[y(t)]1t=0�0

lim
T!1

Z T

0
exp (��t) 2y (t)1=2 dt� �

Z T

0

1

�
[exp (��s)� exp (��T )] y (s) ds

() max
[y(t)]1t=0�0

lim
T!1

Z T

0

h
exp (��t) 2y (t)1=2 � exp (��t) y (t) + exp (��T ) y (t)

i
dt

() max
[y(t)]1t=0�0

Z 1

0
exp (��t)

h
2y (t)1=2 � y (t)

i
dt, (I7.16)

where the last equality uses Eq. (I7:15). Note that maximizing the integral in Eq. (I7:16)
over functions [y (t)]1t=0 is essentially a pointwise maximization problem: for each t, we want



Solutions Manual for Introduction to Modern Economic Growth 69

to choose y (t) so that the term in the integral is maximized. In particular the integral is
maximized for

y (t) = argmax
y�0

2y1=2 � y,

which is a strictly concave problem with solution y (t) = 1. This rules out all the paths with
y (0) < 1 and proves that y (t) = y (0) = 1 is the optimal path. We can then solve for x (t)
from Eq. (I7:14) as

x (t) =
1

�
exp (��t) .

Moreover, we can also solve for � (t) from Eq. (I7:9) which gives

� (t) = exp (�t) ,

proving that the desired path of [x (t) ; y (t) ; � (t)]1t=0 is indeed optimal.

Exercise 7.19, Part (d). The naive transversality condition is violated since

lim
t!1

exp (��t)� (t) = 1 6= 0:

But note that the more typical (strong) form of the transversality condition is satis�ed, that
is:

lim
t!1

exp (��t)� (t)x (t) = lim
t!1

exp (��t) 1
�
exp (��t) exp (�t) = 0.

Moreover, the weak form of the transversality condition of Michel (1982) is also satis�ed,
that is

lim
t!1

H (t; x (t) ; y (t) ; � (t)) = lim
t!1

exp (��t)
�
2y (t)1=2 + log x (t)� � (t) �x (t) y (t)

�
= lim

t!1
exp (��t) (2� log �� �t� 1)

= 0.

Therefore, this problem satis�es the transversality conditions analyzed in Chapter 7, but it
does not satisfy a naive transversality condition which requires that the shadow value of the
stock variable must limit to zero. On the one hand the shadow value of the stock variable (in
time 0 units, i.e. exp (��t)� (t)) remains bounded away from zero, but on the other hand
the stock variable itself limits to zero. Since the stock variable shrinks to 0, we cannot take
advantage of the fact that one unit of the stock variable is valuable since we do not have
one unit available as t ! 1. The appropriate transversality condition considers the value
of the total stock available for consumption, exp (��t)� (t)x (t), which limits to zero in this
problem.

Exercise 7.10

The proof is similar to the proof of Theorem 7.1 in Section 7.1. We construct the variation
policy y (t; ") and the corresponding x (t; ") as in Eqs. (I7:1) and (I7:2), but with the added
requirement that � (t) � 0 holds for all t 2 [0; t1]. The same steps as in the proof of Theorem
7.1 lead to Eq. (I7:3). We construct � (t) as the solution to the di¤erential equation (7:11)
with the boundary condition � (t1) = 0. With this choice of � (t), the �rst and the third
terms in Eq. (I7:3) vanish and the equation reduces toZ t1

0
[fy (t; x̂ (t) ; ŷ (t)) + � (t) gy (t; x̂ (t) ; ŷ (t))] � (t) dt = 0, (I7.17)

which must hold for all continuous deviation functions � (t) such that � (t) � 0. We claim that
Hy (t; x̂ (t) ; ŷ (t) ; � (t)) � 0 for all t 2 [0; t1]. Suppose the contrary. Since Hy is continuous,
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this implies that there is some � > 0 and an interval [t0; t00] such that Hy (t; x̂ (t) ; ŷ (t) ; � (t)) �
� for all t 2 [t0; t00]. Consider a continuous function � (t) such that � (t) = 0 for all t =2 [t0; t00],
� (t) � 0 for t 2 [t0; t00], and � (t) � 1 for t 2 [t0 + "; t00 � "] for " = (t00 � t0) =4. Then, � (t)
is a feasible variation and the integral in Eq. (I7:17) is at least as large as (t00 � t0) �=2 > 0,
which yields a contradiction, proving our claim. Eq. (7:11) holds by construction of � (t),
and the fact that _x (t) = H� (t; x̂ (t) ; ŷ (t) ; � (t)) for all t 2 [0; t1] holds since (x̂ (t) ; ŷ (t)) is a
feasible path, competing the proof.

Our proof shows that the necessary condition Hy (t; x̂ (t) ; ŷ (t) ; � (t)) � 0 can actually be
strengthened to a complementary slackness condition, Hy (t; x̂ (t) ; ŷ (t) ; � (t)) ŷ (t) = 0 with
Hy (t; x̂ (t) ; ŷ (t) ; � (t)) � 0 and ŷ (t) � 0. To prove this stronger condition, we only need to
show that Hy (t; x̂ (t) ; ŷ (t) ; � (t)) = 0 for all t such that ŷ (t) > 0. Consider such t 2 [0; t1].
Then, in a neighborhood of t, the variation � (t) is essentially unconstrained since, for a
su¢ ciently small neighborhood (t� �; t+ �) and su¢ ciently small ", y

�
~t
�
+ "�

�
~t
�
> 0 for all

~t 2 (t� �; t+ �) due to continuity of ŷ (t) and � (t).1 Then, the same argument above implies
Hy (t; x̂ (t) ; ŷ (t) ; � (t)) = 0, proving the stronger complementarity condition.

Exercise 7.17*

We claim that the generalized version of the transversality condition

lim
t!1

� (t) x̂ (t) = 0 (I7.18)

holds for non-discounted problems that satisfy the stronger version of Assumption 7.1 in the
exercise statement. Theorem 7.12 also applies to non-discounted problems and shows that
the following weaker form of the transversality condition holds

lim
t!1

f (t; x̂ (t) ; ŷ (t)) + � (t) g (t; x̂ (t) ; ŷ (t)) = 0.

Since limt!1 V (t; x̂ (t)) = limt!1
R1
t f (t; x̂ (t) ; ŷ (t)) exists and is �nite, we have that

limt!1 f (t; x̂ (t) ; ŷ (t)) = 0, hence the weaker form of the transversality condition implies

lim
t!1

� (t) g (t; x̂ (t) ; ŷ (t)) = lim
t!1

� (t) _x (t) = 0.

Let us de�ne � (t) � � (t) exp (�t) for each t, then the previous equation can be written as

lim� (t) exp (��t) _x (t) = 0. (I7.19)

Moreover, the generalized transversality condition (I7:18) can be written in terms of � (t) as

lim
t!1

exp (��t)� (t) x̂ (t) = 0. (I7.20)

We claim that � (t) is bounded, that is, there exists B > 0 such that j� (t)j < B for all t.
Suppose, to reach a contradiction, that there exists a subnet f� (t)gt2T which limits to +1
or �1. By the Maximum Principle (cf. Theorem 7.12), we have

fy (t; x̂ (t) ; ŷ (t)) + � (t) gy (t; x̂ (t) ; ŷ (t)) = 0, or equivalently

exp (�t) fy (t; x̂ (t) ; ŷ (t)) + � (t) gy (t; x̂ (t) ; ŷ (t)) = 0.

Since � (t) limits to �1, and since jgy (t; x̂ (t) ; ŷ (t))j > m > 0 by part (ii) of Assumption 7.1,
the previous displayed equation implies that limt!1 exp (�t) jfy (t; x̂ (t) ; ŷ (t))j = 1, which
contradicts part (iii) of Assumption 7.1, proving our claim.

1In general, ŷ (t) may be discontinuous, but the conditions are necessary only at points of continuity, so
there is no loss of generality in assuming that ŷ (t) is continuous.
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As in the proof of Theorem 7.13, we analyze two cases in turn. First, suppose
limt!1 x̂ (t) = x̂� 2 R. Note that we have limt!1 exp (��t)� (t) = 0 since j� (t)j < B.
Then,

lim
t!1

exp (��t)� (t) x̂ (t) = lim
t!1

exp (��t)� (t) lim
t!1

x̂ (t) = 0,

proving Eq. (I7:20) for this case.
Second, suppose that limt!1 _x (t) =x̂ (t) = � > 0. Then, for each " 2 (0; �), there exists

T <1 such that j _x (t)j � j�� "j jx̂ (t)j for all t > T . Multiplying both sides of this inequality
with jexp (��t)� (t)j and taking limits, we have

lim
t!1

jexp (��t)� (t)j j _x (t)j � j�� "j lim
t!1

jexp (��t)� (t)j jx̂ (t)j � 0.

The left hand side is 0 from Eq. (I7:19), which shows that the middle term is also 0, proving
Eq. (I7:20) for this case and completing the proof.

Exercise 7.18

Exercise 7.18, Part (a). Part (iii) of Assumption 7.1 is not satis�ed since jfy (x; 0)j =
1 > M and y = 0 is a feasible choice variable.

Exercise 7.18, Part (b). The current value Hamiltonian is

Ĥ (x (t) ; y (t) ; � (t)) = log y (t)� � (t) y (t) ,

and the Maximum Principle implies that the following �rst-order conditions are necessary:

Ĥy (x (t) ; y (t) ; � (t)) = 0 =) 1

y (t)
= � (t)

Ĥx (x (t) ; y (t) ; � (t)) = �� (t)� _� (t) =) _� (t)

� (t)
= �.

Solving the second equation, we have � (t) = � (0) exp (�t). Plugging this in the �rst equation,
we have

y (t) =
1

� (0)
exp (��t) , (I7.21)

as desired.
At this point of the analysis, we typically use the strong version of the transversality

condition to solve for � (0). However, as we will see in Part (d), the typical transversality
condition does not apply in this problem. Another line of attack is to solve for the plan
(x (t) ; y (t)) for each � (0) and pick the plan (i) that satis�es the constraints, in particular,
the constraint that limt!1 x (t) � x1, (ii) that results in the highest value for the objective
function. The solution that satis�es (i) and (ii) must be the optimal solution, since it is
feasible, satis�es the necessary conditions and yields the agent the highest utility among all
feasible solutions that satisfy the necessary conditions. To operationalize this approach, we
plug Eq. (I7:21) in the di¤erential equation _x (t) = �y (t) and solve for x (t) as

x (t) = x0 �
1

� (0) �
(1� exp (��t)) .

The objective function can also be written in terms of � (0) asZ 1

0
exp (��t) log

�
1

� (0)
exp (��t)

�
dt.
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From the last two displayed equations, we would like to choose � (0) as small as pos-
sible to maximize the objective function, but not too small so as to violate the con-
straint limt!1 x (t) � x1. This reasoning implies that � (0) should be chosen so that
limt!1 x (t) � x1 is satis�ed with equality, that is

lim
t!1

x0 �
1

� (0) �
(1� exp (��t)) = x0 �

1

� (0) �
= x1,

which gives

� (0) =
1

� (x0 � x1)
.

The optimal solution is then given by

y (t) = (x0 � x1) � exp (��t) and
x (t) = x0 � (x0 � x1) (1� exp (��t)) = x1 + (x0 � x1) exp (��t) .

Intuitively, the optimal solution is to deplete the remaining stock x (t)�x1 at a constant rate
(that matches the discount rate �) so that the limit stock is exactly x1, the constraint value.

Exercise 7.18, Part (c). Note that the solution we have found in the previous part
satis�es

lim
t!1

exp (��t) Ĥ (x (t) ; y (t) ; � (t)) = lim
t!1

exp (��t) log (y (t))� exp (��t)� (t) y (t)

= lim
t!1

exp (��t) log
�

1

� (0)
exp (��t)

�
� exp (��t)

= lim
t!1

exp (��t) [� log� (0)� �t� 1] = 0,

where the second equality uses the �rst-order condition � (t) y (t) = 1 and Eq. (I7:21), and
the last equality uses the fact that � (0) = 1=� (x0 � x1) > 0 (so log� (0) is �nite) and the
fact that limt!1 exp (��t) t = 0. Hence, consistent with Theorem 7.12, the solution satis�es
the weak form of the transversality condition.

Exercise 7.18, Part (d). The solution we have found in Part (b) satis�es

lim
t!1

[exp (��t)� (t)x (t)] = lim
t!1

�
exp (��t) 1

� (x0 � x1)
exp (�t) [x1 + (x0 � x1) exp (��t)]

�
=

x1
� (x0 � x1)

6= 0,

in particular, the strong form of the transversality condition is not satis�ed. This does not
contradict Theorem 7.13 since this problem does not satisfy Assumption 7.1 as we have shown
in Part (a).

Exercise 7.18, Part (e). The fact that transversality condition is not satis�ed in this
problem can be explained both from a mathematics and an economics perspective. From
the mathematics point of view, the failure of the transversality condition is possible since
the optimization problem does not satisfy Assumption 7.1 due to the logarithmic objective
function. From an economics point of view, the typical economic argument for the strong
transversality condition does not apply to this problem. The typical argument goes like
this: since � (t) = exp (��t)� (t) measures the marginal time 0 value of an additional stock
variable, limt!1 exp (��t)� (t)x (t) should be zero since it should be optimal to deplete all
the stock available, that is, it cannot be optimal to plan to leave some stock unused. But
the typical reasoning does not apply to this problem since there is an exogenous constraint,
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limt!1 x (t) � x1, which prevents the full depletion of the stock. Applying the same economic
rationale to this problem, we would expect instead the following transversality condition to
hold

lim
t!1

[exp (��t)� (t) (x (t)� x1)] = 0,

which in fact holds since the limit is equal to [� (x0 � x1)]�1 (x1 � x1) = 0.
This exercise then suggests a cautionary note for using the transversality condition. The

transversality condition typically holds and is often useful in characterizing the optimal so-
lution. However, it is important to bear in mind the economic rationale behind the transver-
sality condition, which might imply di¤erent versions of the condition for di¤erent problems
(see Michel (1982, 1990) for generalizations and further clari�cations of the transversality
condition).

Exercise 7.23

Note that _x (t) = y (t)2 implies

x (1) = x (0) +

Z 1

0
y (t)2 dt:

Plugging in x (1) = x (0) = 0, we have
R 1
0 y (t)

2 dt = 0, which holds only if y (t) = 0 for all
t 2 [0; 1] except possibly for a set of measure 0. This further implies x (t) = 0 for all t 2 [0; 1].

Suppose that the �rst-order conditions implied by Theorem 7.2 holds. Then there exists
[� (t)]1t=0 such that

fy (x (t) ; y (t)) + 2� (t) y (t) = 0 for all t,

fx (x (t) ; y (t)) = � _� (t) , for all t.
Plugging in x (t) = 0 and y (t) = 0 in the �rst equation, we have fy (0; 0) = 0. It follows that
the necessary conditions in Theorem 7.2 do not apply when fy (0; 0) 6= 0.

Theorem 7.2 does not apply to this problem since the problem violates Assumption 1
that we have stated in Exercise 7.5. In particular, if we consider the corresponding penalized
Problem P (�) and the co-state variable � (t; �), we have limt!1 � (t; �) =1 for each t < t1.
Intuitively, each unit of the stock variable is essential to satisfy the end-value constraint (and
to avoid the penalty), hence the shadow value of the stock variable � (t; �) limits to 1 as �
(and the penalty) limits to 1. In essence, the constraints in this problem are so tight that
we are not free to choose any variations in y (t), which makes a variational analysis along the
lines of Section 7.1 inapplicable.

Exercise 7.21

Exercise 7.21, Part (a). The Hamiltonian is

H (t; k (t) ; c (t) ; � (t)) = u (c (t))� u (c�) + � (t) [f (k (t))� c (t)� �k (t)] :

Exercise 7.21, Part (b). The �rst-order optimality conditions are

Hc = 0 =) u0 (c (t)) = � (t) ;

Hk = � _� (t) =) _� (t) + � (t)
�
f 0 (k (t))� �

�
= 0:

Combining these conditions, we obtain the Euler equation without discounting

_c (t)

c (t)
=
�c (t)u0 (c (t))
u00 (c (t))

�
f 0 (k (t))� �

�
. (I7.22)
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The solution also satis�es the capital accumulation equation

_k (t) = f (k (t))� c (t)� �k (t) ; (I7.23)

with the initial condition k (0).
Note that Eqs. (I7:22) and (I7:23) constitute two di¤erential equations in two variables

and only one initial condition. Therefore we are one condition short of calculating the optimal
path. We will pin down the optimal path by considering all possible paths of k (t) and c (t)
that satisfy these conditions and eliminating sub-optimal ones. Note that for each choice of
the initial consumption, c (0), the whole path [k (t) ; c (t)]1t=0 is uniquely determined, hence
we go through possible choices for c (0) and eliminate the sub-optimal ones.

(1) If c (0) is above the stable arm, then using the standard phase diagram for the
di¤erential equations (I7:22) and (I7:23), we have that k (t) becomes 0 at some �nite
time �t and c (t) is 0 after this time. Since limT!1

R T
�t [u (0)� u (c

�)] dt = �1, this
path yields an objective value of �1 and is not optimal.

(2) If c (0) is below the stable arm, then it can be seen from the phase diagram that
c (t) limits to 0, which implies that there exists some " > 0 and �t > 0 such that
c (t) < c� � " for all t > �t. This further implies

lim
T!1

Z T

�t
[u (c (t))� u (c�)] dt � lim

T!1

Z T

�t
[u (c� � ")� u (c�)] dt = �1,

that is, this path also yields a value of �1 and is not optimal.
(3) If c (0) is on the stable arm, then, c (t) ! c� and k (t) ! k� along the saddle path,

where c� = f (k�) � �k� and k� is the solution to f 0 (k�) = �. This path yields a
�nite value and thus is the optimal path, characterizing the solution to the optimal
growth problem.

Exercise 7.21, Part (c). Note that � (t) = u0 (c (t))! u0 (c�) 6= 0 hence

lim
t!1

� (t) k (t) = k�u0 (c�) 6= 0.

The optimal path does not satisfy the strong form of the transversality condition, that is,
the value of the capital stock does not limit to 0. The reason for this is the absence of
discounting. Depleting the capital stock at periods far in the future is not pro�table since
this would cause a utility loss for all of the remaining periods, and without discounting these
periods are still signi�cant from the time 0 point of view. Hence, the capital stock always
yields future bene�ts and the value of holding additional capital stock is always positive.
Note that the weaker form of the transversality condition (of Michel (1982)) is satis�ed, that
is

lim
t!1

H (t; k (t) ; c (t) ; � (t)) = lim
t!1

u (c�)� u (c�) + u0 (c�) [f (k�)� c� � �k�]
= 0,

where the last line follows from the fact that _k (t) = 0 at steady state.
This exercise further provides a cautionary note for using the strong version of the

transversality condition. We always need to keep in mind the economic rationale behind
this condition and use the condition only when the rationale applies to the problem. This
exercise suggests that the economic rationale of this condition may not apply to problems in
which the objective value has no discounting (see also Part (e) of Exercise 7.18).
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Exercise 7.26

Exercise 7.26, Part (a). The current-value Hamiltonian is

Ĥ (c (t) ; x (t) ; � (t)) = u (c (t)) + � (t) (g (x (t))� c (t))

The �rst-order conditions are

Ĥc (c (t) ; x (t) ; � (t)) = 0 =) u0 (c (t)) = � (t)

Ĥx (c (t) ; x (t) ; � (t)) = �� (t)� _� (t) =) _� (t)

� (t)
= �

�
g0 (x (t))� �

�
.

Plugging the �rst condition in the second one, we obtain the Euler equation

_c (t)

c (t)
=

�u0 (c (t))
u00 (c (t)) c (t)

�
g0 (x (t))� �

�
. (I7.24)

Note also that x (t) follows the law of motion

_x (t) = g (x (t))� c (t) , (I7.25)

given the initial condition x (0) > 0.

Exercise 7.26, Part (b). We claim that there exists a path (c (t) ; x (t)) that satis�es
Eqs. (I7:24) and (I7:25), along with the initial condition x (0) and the strong form of the
transversality condition

lim
t!1

exp (��t)� (t)x (t) = 0. (I7.26)

Intuitively, this solution exists since we are considering two di¤erential equations with two
end-value constraints (one initial value condition and one transversality condition). More
formally, consider the standard phase diagram in the (c; x) space for the di¤erential equations
(I7:24) and (I7:25). Note that since g (:) satis�es the Inada conditions limx!1 g0 (x) = 0 and
limx!0 g0 (x) =1, there exists a unique steady state (c�; x�) found by solving

g0 (x�) = � and c� = g (x�) . (I7.27)

Note also that there is a saddle path that goes through (c�; x�) as shown in Figure 8.1. Then,
for any x (0) there exists a unique plan (c (t) ; x (t)) that is on the saddle path for all t and
converges to (c�; x�). This path satis�es the initial condition for x (0) as well as Eqs. (I7:24)
and (I7:25) by construction. Moreover, it also satis�es the transversality condition (I7:26)
since limt!1 exp (��t)� (t)x (t) = limt!1 exp (��t)u0 (c�)x� = 0, proving our claim.

We next claim that this path is optimal. Since � (t) = u0 (c (t)) > 0, the current value
Hamiltonian is jointly concave in c and x for all � (t) over this path and the maximized
Hamiltonian is strictly concave in x. Moreover, for any feasible path (ĉ (t) ; x̂ (t)), we have
limt!1 exp (��t)� (t) x̂ (t) = limt!1 exp (��t)u0 (c (t)) x̂ (t) � 0. Hence Theorem 7.14 ap-
plies to this problem and shows that the saddle path we have constructed is the unique
solution to the problem. Since Theorem 7.14 implies that the path is the unique solution, it
follows that every solution must satisfy Eqs. (I7:24)�(I7:26), showing that the Euler equation
and the strong form of the transversality condition are also necessary for this problem.

Exercise 7.26, Part (c). We have shown that the unique optimal plan is characterized
by (I7:24) � (I7:26), is saddle path stable and converges to the unique steady state (c�; x�)
given as the solution to Eq. (I7:27) starting from any initial condition x (0).



76 Solutions Manual for Introduction to Modern Economic Growth

Exercise 7.24*

First, we consider the unconstrained problem2

max
[k(t)�0;c(t)]t

Z 1

0
exp (��t) c (t) dt (I7.28)

s.t. _k (t) = f (k (t))� �k (t)� c (t) , k (0) = k�.

It follows by Theorem 7.14 that k (t) = k� and c (t) = c� � f (k�)� �k� is the unique solution
to this problem.

Second we note that the path [k (t) = k�]t is not a solution in the constrained problem
of this exercise since it is not feasible. Suppose, to reach a contradiction, that it is feasible.
Then there must be investment just enough to replenish the depreciated capital otherwise
capital would either increase or depreciate, that is

f (k (t))� c (t) = �k (t) = �k�.

But since �k� < k, this level of investment violates the minimum size requirement hence we
must have _k = ��k, which is a contradiction to the fact that k (t) remains constant.

Third, we get a minor issue out of the way. We note that a path [k (t) ; c (t)]1t=0 that is
feasible for the constrained problem is not necessarily feasible for the unconstrained problem,

but it can always be improved by a path
h
~k (t) ; ~c (t)

i1
t=0

that is feasible for both problems.

The issue is that there are paths [k (t) ; c (t)]1t=0 feasible for the constrained problem that
sometimes satisfy f (k (t))�c (t) 2 (0; k), that is, at some periods there is positive investment
even though this investment does not meet the minimum investment requirement (so the
positive investment does not contribute to output and goes to waste). Such paths do not
satisfy the law of motion of the unconstrained problem (I7:28). But these paths are clearly
sub-optimal since the household is better o¤ by consuming the investment that goes to waste
without a¤ecting the accumulation of capital. It follows that we can ignore these paths
without loss of generality, and any remaining paths feasible for the constrained problem are
also feasible for the unconstrained problem. This also implies that the optimal value of the
constrained problem is weakly lower than the optimal value of the unconstrained problem.

Fourth, as the crux of the argument, we claim that there are feasible paths [k (t) ; c (t)]1t=0
for the constrained problem that yield value arbitrarily close to the value

R1
0 exp (��t) c�dt =

c�=� of the unconstrained problem. The idea is to construct a path that alternates very
frequently between not investing and investing at the minimum size requirement so as to
keep average capital close to k� at all points in time. Since the �rm operates close to optimal
scale at all points in time, average consumption will also be close to c� (but it will not be
smooth, in fact it will be very jumpy). Since we assume that the period utility is linear, the
intertemporal substitution is perfectly elastic and an alternating policy of this kind will yield
a utility arbitrarily close to c�=�.

To formalize this argument, we de�ne the investment i (t) � f (k (t)) � c (t) and for
convenience we construct the path using the investment variable rather than consumption.
We �x some �1 > 0 and we consider a path along which there is no investment for a period
of length �1 and the investment is at the minimum required level k for a period of length

2Note that there is a typo in the problem statement. The intertemporal substitution should be perfectly
elastic, that is, the utility function should be given by

R1
0
exp (��t) c (t) dt instead of the more general formR1

0
exp (��t)u (c (t)) dt. For strictly concave utility functions, the alternating policy suggested in the hint

would result in �rst order utility losses and would not approximate the unconstrained optimum policy.
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�2 � �1 for an appropriately chosen �2 > �1. More speci�cally, we consider the path
[i (t)]�1+�2t=0 given by

i (t) =

�
0, for t 2 [0;�1]
k, for t 2 [�1;�2]

: (I7.29)

Given this investment plan, the capital accumulation equation is given by

_k =

�
��k, for t 2 [0;�1]

k � �k, for t 2 [�1;�2]
: (I7.30)

We next claim that there exists �2 2
h
�1;�1

k
k��k�

i
such that

k (�2) = k (0) = k�. (I7.31)

To prove this claim, suppose the contrary, that k (t) < k� for all t 2
h
�1;�1

k
k��k�

i
in the

system described in Eq. (I7:30). Upon integrating Eq. (I7:30), we have

k (t) = k (0) + (t��1) k �
Z t

0
�k
�
t0
�
dt0

> k� + (t��1) k � t�k�, (I7.32)

where the second line follows since k (0) = k� and k (t) < k� for all t 2 (0;�1
k

k��k� ] by

assumption. For t = �1
k

k��k� , we have

t��1
t

=
�k�

k
:

Eq. (I7:32) therefore implies that k
�
t = �1

k
k��k�

�
> k�, providing a contradiction. Hence,

there exists �2 2
h
�1;�1

k
k��k�

i
satisfying Eq. (I7:31) as claimed. Let

�2 (�1) � inf
�
t0 2

�
�1;�1

k

k � �k�

�
j k
�
t0
�
= k�

�
be the �rst time at which capital comes back up to k� and note that lim�1!0�2 (�1) = 0.
Intuitively, the capital stock gets depreciated for a period �1, but we are �over-investing�
(since k> �k�) after that, hence, if we over-invest for su¢ ciently long, then we will get the
capital level back at exactly k�. Moreover, the amount of time necessary to replenish the
capital back to k� is going to 0 as �1 goes to 0. For the rest of the analysis, we use �2 to
represent �2 (�1) for notational simplicity.

We next extend the investment plan over [0;�2] given in Eq. (I7:29) to R+ by repeating
it periodically as follows

i (t) =

8<: 0; for t 2 [0;�1)
k, for t 2 [�1;�2)

i (t��2) for all t � �2.
Note that this investment plan and the resulting path for the capital stock is well de�ned for
any given �1 > 0. We next claim that

lim
�1!0

k (t) = k�, for all t (I7.33)

that is, the capital stock limits pointwise to k�. To see this, note that using (I7:30) and
i (t) = 0 for t 2 [0;�1], we have

k (�1) = k� (1� exp (���1)) . (I7.34)
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Note also that, by construction, k (�1) is the lower bound of capital, that is, k (t) 2
[k (�1) ; k

�] for all t. Since, lim�1!0 k (�1) = k� by Eq. (I7:34), it follows that Eq. (I7:33)
holds.

Next, we claim that average consumption over [0;�2] limits to c�, that is

lim
�1!0

R �2
0 c (t) dt

�2
= c�. (I7.35)

To see this, rewrite consumption as the residual of output net of investment, that isR �2
0 c (t) dt

�2
=

R �2
0 (f (k (t))� i (t)) dt

�2
. (I7.36)

By Eq. (I7:30), we have

k (�2) = k (0) +

Z �2

0
i (t) dt�

Z �2

0
�k (t) dt,

and since k (�2) = k (0) = k�, this implies
R �2
0 i (t) dt =

R �2
0 �k (t) dt, that is, total investment

over [0;�2] is just enough to replenish the depreciated capital. Using this in Eq. (I7:36), we
have R �2

0 c (t) dt

�2
=

R �2
0 [f (k (t))� �k (t)] dt

�2

Since k (t) pointwise limits to k� (as �1 ! 0) , the right hand side limits to f (k�)� �k� = c�

as �1 ! 0, proving Eq. (I7:35).
We next claim that the utility implied by this path limits (but never attains) the uncon-

strained optimum as �1 ! 0, that is

lim
�1!1

Z 1

0
exp (��t) c (t) dt =

Z 1

0
exp (��t) c�dt = c�=�. (I7.37)

To see this, note that [k (t) ; c (t)]1t=0 constructed here is feasible in the unconstrained problem.
Hence it always attains a weakly lower value than the unconstrained optimum (k�; c�), that
is Z 1

0
exp (��t) c (t) dt �

Z 1

0
exp (��t) c�dt = c�=�. (I7.38)

On the other hand, we haveZ 1

0
exp (��t) c (t) dt =

1X
n=0

Z (n+1)�2

n�2

exp (��t) c (t) dt

=

1X
n=0

exp (��n�2)
Z �2

0
exp (��t) c (t) dt

�
1X
n=0

exp (�� (n+ 1)�2)
Z �2

0
c (t) dt

=

Z �2

0

c (t)

�2
dt�

1X
n=0

exp (�� (n+ 1)�2)�2, (I7.39)

where the second line uses c (n�2 + t) = c (t) for all n and t 2 [0;�2], and the inequality in the
third line follows since exp (��t) � exp (���2) for t 2 [0;�2]. Using lim�1!0�2 (�1) = 0,
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we get

lim
�1!0

1X
n=0

exp (�� (n+ 1)�2)�2 =
Z 1

0
exp (��t) dt = 1=�.

As the limit of the �rst term in Eq. (I7:39) is c� (cf. Eq. (I7:35)), we have

lim
�1!0

inf

Z 1

0
exp (��t) c (t) dt � c�=�.

The last equation and Eq. (I7:38) jointly imply Eq. (I7:37) as desired.
Thus we have constructed feasible paths that attain an objective value which is arbitrarily

close to the unconstrained maximum c�=�. As the �nal step, we claim that there does not exist
a solution to the constrained optimization problem, that is, there does not exist a feasible path
[k (t) ; c (t)]1t=0 that attains the optimum value c�=�. Suppose, to reach a contradiction, there
is. We have that [k (t) ; c (t)]1t=0 6= [k (t0) = k�; c (t0) = c�]1t0=0, since the latter is not feasible in
the constrained problem. Moreover, if [k (t) ; c (t)]1t=0 is optimal, then it is also feasible in the
unconstrained problem (see our discussion in the third point above). Then both [k (t) ; c (t)]1t=0
and [k (t0) = k�; c (t0) = c�]1t0=0 are feasible in the unconstrained problem and both attain the
maximum value c�=� for the problem. But this is a contradiction since the unconstrained
problem is strictly concave and by Arrow�s su¢ ciency theorem (k (t0) = k�; c (t0) = c�)1t0=0 is
its unique optimum.

We conclude that the value of the constrained problem is c�=�, this value can be arbitrarily
approximated, but cannot be attained by any sequences of feasible paths. It is instructive
to think about the limit of the paths we have constructed as �1 ! 0. The limiting path of
consumption does not exist since consumption jumps in�nitely often in any given interval and
it does not have a piecewise continuous limit. The limiting path of capital exists and is equal
to k (t) = k� for all t, but is not feasible. The optimum is not attained essentially because the
limiting path either does not exist and/or is not feasible. Theorem 7.15 in Section 7.6 makes
assumptions on the optimization problem which guarantee that when we (carefully) pick a
sequence of paths that arbitrarily approximate the value function, those paths converge to
a path within the feasible set. As long as the limiting path is well de�ned and feasible, it
would also be optimal and the optimum would be attained.

Exercise 7.25

Exercise 7.25, Part (a). For anyM > 0, there exists c 2 (0; 1=M) such that fy (x; y) =
uc (c) = 1=c > M , which proves that part (iii) of Assumption 7.1 is violated.

Exercise 7.25, Part (b). Consider the constrained problem in which c (t) is restricted
to lie in [";+1) and suppose [c (t) ; k (t)]t is an optimal path for this problem which satis�es
c (t) > " for all t. Note that the constrained problem satis�es Assumption 7.1, hence Theorem
7.13 applies to this problem and shows that the interior solution [c (t) ; k (t)]t satis�es the
necessary conditions

Ĥc (c (t) ; k (t) ; � (t)) = 0 =) u0 (c (t)) = � (t) ;

Ĥk (c (t) ; k (t) ; � (t)) = �� (t)� _� (t) =) _� (t)

� (t)
= �

�
f 0 (k (t))� � � �

�
;

_k (t) = f (k (t))� �k (t)� c (t) , k (t) � 0 for all t,
along with the strong form of the transversality condition

lim
t!1

exp (��t) k (t)� (t) = 0.
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Note that these conditions are also the �rst-order conditions for an interior solution of
the unconstrained problem. Since the current value Hamiltonian H (c; k; � (t)) = log (c) +

� (t) (f (k)� �k � c) is strictly concave in c and k, and since any feasible path
h
ĉ (t) ; k̂ (t)

i
t

satis�es limt!1 exp (��t)� (t) k̂ (t) � 0, Theorem 7.14 applies to the unconstrained prob-
lem and shows that [c (t) ; k (t)]t (which is interior by assumption) is also a solution to the
unconstrained optimal growth problem.

Essentially, Theorem 7.14 does not require Assumption 7.1, so the su¢ ciency theorem
continues to apply even though the necessity theorem, Theorem 7.13, does not apply to the
optimal control problem with log utility. Hence, as long as we �nd an interior solution that
is optimal for the constrained problem, it will be feasible and optimal for the unconstrained
problem since the latter is a concave problem.

Exercise 7.25, Part (c). The analysis in Chapter 8 shows that the saddle path
[c (t) ; k (t)]1t=0 that converges to (c

�; k�) satis�es the requirements of Theorem 7.14 and thus
is the unique optimal plan. We claim that there exists " > 0 such that this optimal plan
satis�es c (t) > " for all t. We prove this in three steps.

We �rst claim that c� > 0. Recall that the pair (c�; k�) is the unique solution to

f 0 (k�) = �+ �

c� = f (k�)� �k�.

Since f is strictly concave, the �rst equation shows that k�maximizes f (k)� (� + �) k, and
in particular,

f (k�)� (� + �) k� > f (0)� (� + �)� 0 = f (0) � 0.
This inequality further implies that f (k�)� �k� � �k� + f (0) > 0, proving that c� > 0.

Second, we claim that c (t) > 0 for all t. Suppose, to reach a contradiction, that
c (t0) = 0 for some t0. Since the plan [c (t) ; k (t)]1t=0 satis�es the Euler equation _c (t) =
c (t) (f 0 (k (t))� � � �) =�, this implies c (t) = 0 for all t � t0. But this further implies
limt!1 c (t) = 0 < c�, which yields a contradiction and proves that c (t) > 0 for all t.

Third, we claim that there exits " > 0 such that the optimal plan satis�es c (t) > " for
all t. We have limt!1 c (t) = c�, thus there exists T > 0 such that c (t) > c�=2 for all t � T .
Let �" = 1

2 mint2[0;T ] c (t) which is well de�ned since c (t) is continuous and [0; T ] is compact,
and which is positive since c (0) > 0 for all t 2 [0; T ]. For " = min (c�=2;�") we have that the
optimal plan satis�es c (t) > " for all t, completing the proof.

Exercise 7.28

Exercise 7.28, Part (a). Integrating the condition �00 (I) = 0, we have � (I) = I + �
for some constants  and �. Consider the parameterized optimization problem in which the
�rm�s cost function is given by �n (I) = I + � + aI2= (2n), that is

P (n) : max
[K(t);I(t)]1t=0

Z 1

0
exp (�rt)

"
f (K (t))� (1 + ) I (t)� � � aI (t)2

2n

#
dt (I7.40)

s.t. _K (t) = I (t)� �K (t) .

Denote the value of this problem with V (n). We are interested in the problem P (1), but
P (1) does not necessarily �t into the optimal control framework of Chapter 7, hence we
instead analyze limn!1 P (n).
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For any P (n) with �nite n, note that the investment function is strictly convex therefore
the results in Section 7.8 apply. In particular, the solution [Kn (t) ; In (t)]t satis�es the �rst-
order conditions and the feasibility condition

_In (t) =
n

a

h
(r + �)

�
1 +  +

a

n
In (t)

�
� f 0 (Kn (t))

i
(I7.41)

_Kn (t) = In (t)� �Kn (t) ,

and converges to the steady state with I�n = �K�
n where K

�
n is de�ned as the unique positive

solution to

f 0 (K�
n) = (r + �)

�
1 +  +

1

n
�K�

n

�
.

Taking the limit of this condition, we have that limn!1K�
n = K�, where K� is de�ned as

the solution to

f 0 (K�) = (r + �) (1 + ) .

Then, taking the limit of Eq. (I7:41) at t = 0 and noting that Kn (0) = K (0) for all n, we
have

lim
n!1

_In (0) =

�
1 if K (0) < K�

�1 if K (0) > K�.

It follows that as n goes to 1, Kn (t) converges to K� immediately. More speci�cally, for a
given t0 > 0, we have limn!1Kn (t

0) = K�. Next, note that since the objective function in
(I7:40) is continuous in n, we have limn!1 V (n) = V (1) and the optimal plans that attain
K�
n approximate V (1) arbitrarily closely. In fact, P (1) does not have a continuous optimal

solution, but the optimal solution is approximated arbitrarily closely by [Kn (t) ; In (t)]t as n
increases. It follows that the optimal investment plan for P (1) is such that the capital level
jumps to the steady state value K� immediately and remains there forever.

Exercise 7.28, Part (b). Recall that the dynamic system is�
_K
_I

�
= G

��
K
I

��
=

�
I � �K

1
�00(I)

�
(r + �)

�
1 + �0 (I)

�
� f 0 (K)

� � . (I7.42)

The steady state is (I�;K�) that solves

I� = �K� and f 0 (K�) = (r + �)
�
1 + �0 (I�)

�
. (I7.43)

The curve for (7:88) plotted in Figure 7.1 is characterized by I (K) that solves

(r + �)
�
1 + �0 (I (K))

�
� f 0 (K) = 0: (I7.44)

Note that since �0 is increasing, this equation has a unique solution for all K < f 0�1 (r + �)
hence I (K) is well de�ned in this range. It follows that I (K) is well de�ned around the
steady state K� as K� < (f 0)�1 (r + �) (see Eq. (I7:43)). We claim that I (K) is decreasing
over the range it is de�ned (and in particular at K = K�). To see this, we use the implicit
function theorem and di¤erentiate Eq. (I7:44) with respect to K, which gives,

dI (K)

dK
=

1

r + �

f
00
(K)

�
00
(I (K))

< 0,

where the inequality follows since �00 > 0 and f 00 < 0. Hence, I (K) is indeed decreasing over
the range it is de�ned and its plot in Figure 7.1 is downward sloping.
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Exercise 7.28, Part (c). We �rst claim that the system in (I7:42) is locally saddle path
stable. To study the local behavior, we linearize the system around this steady state. The
Jacobian of G is given by

rG (K; I) =
"

�� 1

�f 00(K)
�00(I)

h�
d
�

1
�00(I)

�
=dI
� �
(r + �)

�
1 + �0 (I)

�
� f 0 (K)

�
+ r + �

i # .
The Jacobian evaluated at the steady state is

rGj(K�;I�) =

"
�� 1

�f 00(K�)
�00(I�)

(r + �)

#
.

Hence, the linearized system around the steady state is�
_K
_I

�
= rGj(K�;I�)

�
K �K�

I � I�
�
. (I7.45)

By Theorem 7.19, the stability of the system is characterized by the eigenvalues ofrGj(K�;I�).
The eigenvalues are found by solving

det
�
rGj(K�;I�) � �I

�
= det

 "
�� � � 1

�f 00(K�)
�00(I�)

(r + �)� �

#!
= 0:

Hence, the eigenvalues are the roots of the following polynomial:

P (�) = (�+ �) (�� r � �) + f 00 (K�) =�00 (I�) .

Note that P (0) < 0 (since f is concave and � is convex) and lim�!�1 P (�) =
lim�!1 P (�) =1, which implies that P has two real roots (�1; �2) that satisfy �1 < 0 < �2.
Since only one eigenvalue is negative, Theorem (7:19) implies that there exists a one dimen-
sional manifoldM in a neighborhood of (K�; I�) such that starting from (K (0) ; I (0)) onM ,
the solution to the di¤erential equation in (I7:42), [K (t) ; I (t)]t, converges to (K

�; I�). This
proves our claim that the system in (I7:42) is locally saddle path stable.

We next claim that the saddle path plan [K (t) ; I (t)]t is the unique optimal plan, which in
turn shows that the optimal investment plan will converge to the steady state. To show this,
we verify that the conditions of Theorem 7.14 are satis�ed. The �rst-order and feasibility
conditions are satis�ed by construction. This plan also satis�es the transversality condition
since

lim
t!1

exp (�rt) q (t) k (t) = lim
t!1

exp (�rt)
�
1 + �0 (I�)

�
K� = 0:

The concavity condition is satis�ed since

M (K; q) = max
I
f (K)� I � � (I) + q (I � �K)

is strictly concave in K. Finally, for any feasible plan
�
~K (t) ; ~I (t)

�
, we have

lim
t!1

exp (�rt) q (t) ~K (t) � 0

since q = 1 + �0 (I) � 0 and ~K � 0. Then, we invoke Theorem 7.14 which proves that the
saddle path plan is the unique optimal investment plan.
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Exercise 7.28, Part (d). We have shown that the optimal plan is the saddle path stable
plan, hence the statement in this exercise follows if we show the saddle path is downward
sloping.

We �rst claim that the linearized system in (I7:45) has a downward sloping saddle path.
This amounts to showing that any eigenvector v1 �

�
v11; v

2
1

�
corresponding to the negative

eigenvalue �1 < 0 of the system (I7:45) has the property that v11 and v
2
1 have opposite signs.

Note that the eigenvector
�
v11; v

2
1

�
satis�es rGj(K�;I�)v1 = �1v1, that is"

�� 1

�f 00(k�)
�00(i�)

(r + �)

# �
v11
v21

�
= �1

�
v11
v21

�
.

Suppose, to reach a contradiction, that v11; v
2
1 have the same signs, and suppose that they

are both positive (the proof for the negative case is symmetric). The second equation in the
previous displayed matrix equation implies

0 < �f
00 (k�)

�00 (i�)
v11 + (r + �) v

2
1 = �1v

2
1 < 0,

where the �rst inequality follows since �f 00(k�)
�00(i�)

> 0 and the last since �1 < 0. This yields the
desired contradiction, proving that the eigenvector has components with di¤erent signs and
the saddle path for the linearized system is downward sloping.

It then follows that, in a neighborhood of K�, when K (0) is strictly less than K�, I (0)
is greater than I� and gradually decreases towards I�. The statement is generalized to all
K (0) < K� by analyzing the saddle path for the nonlinear system in Figure 7.1.

Exercise 7.28, Part (e). We assume that the adjustment cost of installing capital
I when the current capital is K is given by I� (I=K), so the total cost of installing I is
I (1 + � (I=K)). Let us de�ne the investment rate i � I=K since it is easier to derive the
�rst-order conditions in terms of i and K. The Hamiltonian is given by

Ĥ (K; i; q) = f (K)� iK � � (i) + q (iK � �K) .

The �rst-order conditions are

Ĥi = 0 =) �0 (i) = K (q � 1)
ĤK = rq � _q =) f 0 (K)� i+ q (i� �) = rq � _q

Combining these equations, we get the equivalent of Eq. (7:88), given by

f 0 (K) = i+ (r + � � i)
�
�0 (i)

K
+ 1

�
� �00 (i)

K

di

dt
+
�0 (i) _K

K2

= r + � +

 
r + � � i+

_K

K

!
�0 (i)

K
� �00 (i)

K

di

dt
.

Substituting for _K from the feasibility equation

_K = iK � �K;

we can solve for di=dt as

di

dt
=

K

�00 (i)

�
r + � + r

�0 (i)

K
� f 0 (K)

�
.
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Hence, any optimal plan solves the previous two di¤erential equations. The steady state is
the unique (i�;K�) which solves

i� = � and f 0 (K�) = r + � + r
�0 (�)

K� . (I7.46)

It can be checked that the system is saddle path stable, that is, for any K (0), there exists
a unique i (0) such that [i (t) ;K (t)]t converges to (i

�;K�) along the saddle path. Moreover,
Theorem 7:14 also applies to this problem and shows that the saddle path plan is the optimal
plan.

We next compare the steady state characterized by Eq. (I7:46) with the steady state
of the problem analyzed in Section 7.8. Rewriting Eq. (I7:46), we have that the marginal
product of capital satis�es

f 0 (K�) = r + � + r
�0 (I=K)

K� = r + � + r
d

dI
�

�
I

K

�
< (r + �) + (r + �)

d

dI
�

�
I

K

�
= (r + �)

�
1 +

d

dI
�

�
I

K

��
,

where the last line is the analogue of the marginal cost of installing capital in Section 7.8.
Intuitively, the marginal product of capital is lower in this case and hence the capital level
is higher, since investment has the additional bene�t of lowering future investment costs in
view of the functional form � (I=K).

Exercise 7.28, Part (f). As we have shown in Exercise 7.10, the optimality conditions
in this case are the same as the baseline case except for the condition ĤI = 0, which is now
replaced by the complementary slackness condition. Hence the optimality conditions can be
written as

q (t) � 1 + �0 (I (t)) , with equality if I (t) > 0, (I7.47)

f 0 (K (t)) = (r + �) q (t)� _q (t)

lim
t!1

exp (�rt) q (t)K (t) = 0.

We next construct a plan [K (t) ; I (t)]t that satis�es these conditions along with the feasibility
constraints

_K (t) = I (t)� �K (t) , K (0) given, and I (t) � 0 for all t, (I7.48)

which will be the optimal plan using the version of Arrow�s su¢ ciency theorem (analogue of
Theorem 7.14) for constrained problems.

For K (0) < K� where K� is the steady state capital level, the unconstrained problem
has I (t) decreasing towards I� = �K�. Hence, the constraint I (t) � 0 never binds along the
unconstrained optimum. Then the plan [K (t) ; I (t)]t that solves the unconstrained problem
satis�es the above conditions and is also the solution for the constrained problem.

For K (0) > K�, consider the saddle path for the unconstrained problem and let K̂ > K�

be the capital level at which this saddle path intersects the I = 0 axis. Recall that the
unconstrained optimum is such that [K (t) ; I (t)]t starts at the saddle path and converges
to (K�; I�), that is, I (t) increases towards I� = �K�. Hence for K (0) � K̂, the same
reasoning above implies that the constraint I (t) � 0 does not bind and the solution to the
unconstrained problem is therefore also the solution to the constrained problem.
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When K (0) > K̂, the unconstrained optimum features I (0) < 0 and violates the irre-

versibility constraint. In this case, we construct a plan
h
~K (t) ; ~I (t)

i
t
as follows. Let ~I (t) = 0

for all t 2
�
0; ~t
�
where ~t is the unique positive value that satis�es ~K

�
~t
�
= K (0) exp

�
�~t�

�
=

K̂. For all t > ~t, let
�
~K (t) ; ~I (t)

�
=
�
K
�
t� ~t

�
; I
�
t� ~t

��
where [K (t) ; I (t)]t is the solution

to the unconstrained problem starting at K (0) = K̂. We claim that the plan
h
~K (t) ; ~I (t)

i
t

is optimal. First note that this plan satis�es all the feasibility constraints in (I7:48). Second,
note that it also satis�es all of the optimality conditions in (I7:47) for t � ~t, since in this
region, the plan is the solution to the unconstrained problem. Moreover, note also that the
complementary slackness condition in (I7:47) is satis�ed with equality in this region, hence

q
�
~t
�
= 1+�0

�
~I
�
~t
��
= 1+�0 (I (0)). Then, the second equation in (I7:47) and the end-value

constraint q
�
~t
�
= 1 + �0 (I (0)) uniquely solves for q (t) in the range

�
0; ~t
�
. We only need to

show that this solution (q (t))t2[0;~t] satis�es the complementary slackness condition in (I7:47),

that is,
q (t) � 1 + �0 (I (0)) = q

�
~t
�
, for all t 2

�
0; ~t
�
. (I7.49)

Intuitively, this condition holds since q (t), which measures the marginal value of installed
capital, must increase as capital decreases (i.e. as K (t) falls towards K̂). To see this formally,
�rst note that in a neighborhood t 2 [~t; ~t+ "), we have q (t) = 1 + �0

�
I
�
t� ~t

��
and �0 (I (t))

is an increasing function of t, which implies _q
�
~t
�
> 0. Second, note that

_q (t) = (r + �) q (t)� f 0 (K (t)) for t 2
�
0; ~t
�
, (I7.50)

which can be integrated backwards and gives

q (t) = q
�
~t
�
exp

�
� (r + �)

�
~t� t

��
+

Z ~t

t
f 0 (K (s)) exp (� (r + �) (s� t)) ds.

Third note that K (s) > K
�
~t
�
for all s 2

�
0; ~t
�
, thus f 0 (K (s)) < f 0

�
K
�
~t
��
, which implies

q (t) � q
�
~t
�
exp

�
� (r + �)

�
~t� t

��
+ f 0

�
K
�
~t
�� Z ~t

t
exp (� (r + �) (s� t)) ds

= q
�
~t
�
exp

�
� (r + �)

�
~t� t

��
+
f 0
�
K
�
~t
��

r + �

�
1� exp

�
� (r + �)

�
~t� t

���
= q

�
~t
�
�
_q
�
~t
�

r + �

�
1� exp

�
� (r + �)

�
~t� t

���
< q

�
~t
�
,

where the third line substitutes for f 0
�
K
�
~t
��
from Eq. (I7:50) and the last line uses the

fact that _q
�
~t
�
> 0. It follows that the complementary slackness condition in Eq. (I7:49)

holds. This in turn proves that the plan
h
~K (t) ; ~I (t)

i
t
which we have constructed satis�es

the optimality and the feasibility conditions and hence is the optimal investment plan.





Chapter 8: The Neoclassical Growth Model

Exercise 8.2

Exercise 8.2, Part (a). The maximization problem the representative household solves
is given by

max
[c(t)]1t=0

Z 1

0
exp(�(�� n)t)u(c(t))dt

s.t: _a(t) = (r(t)� n)a(t) + w(t)� c(t): (I8.1)

The household takes the sequence of wages [w(t)]1t=0 and asset returns [r(t)]
1
t=0 as given. Let

a(0) be given and consider the consumption plan [c(t)]1t=0. Together with (I8.1), this con-
sumption plan induces a sequence of asset holdings [a(t)]1t=0. Now consider the consumption
plan [c0(t)]1t=0 where c

0(t) = c(t)+�. Again use (I8.1) to de�ne the sequence of asset holding
[a0(t)]1t=0 which correspond to [c

0(t)]1t=0, de�ne [a
0(t)]1t=0 by a

0(0) = a0 and

_a0(t) = (r(t)� n)a0(t) + w(t)� c0(t):
As c0(t) > c(t) for all t, it is clear that [c0(t)]1t=0 yields a higher level of utility than [c(t)]

1
t=0.

Furthermore, the resource �ow constraint (I8.1) is satis�ed by construction. Hence, [c(t)]1t=0
could not have been optimal. As [c(t)]1t=0 was arbitrary, it follows that for any candidate
consumption sequence [c(t)]1t=0 we can �nd [c

0(t)]1t=0 which yields higher utility, satis�es the
resource constraint and involves c0(t) > c(t) for all t.

Exercise 8.2, Part (b). We prove this result by contradiction. Let [c(t)]1t=0 and the
corresponding asset sequence [a(t)]1t=0 satisfying (I8.1) be given and suppose that there exists
some �t for which per capita assets are �nite, i.e. a(�t) > �1. Integrating (I8.1) and using the
initial condition a(0), yields

a(�t) =

Z �t

0
w(t) exp

 Z �t

t
(r(s)� n)ds

!
dt+ a(0) exp

 Z �t

0
(r(s)� n)ds

!
(I8.2)

�
Z �t

0
c(t) exp

 Z �t

t
(r(s)� n)ds

!
dt:

Now consider again the consumption and induced asset sequence [c0(t)]1t=0 and [a
0(t)]1t=0

characterized in Part (a). Substituting into (I8.2) yields

a0(�t) = a(�t)��
Z �t

0
exp

 Z �t

t
(r(s)� n)ds

!
dt:

By construction this plan satis�es (I8.1) for all�. As u(c) is assumed to be strictly increasing,
lifetime utility is strictly increasing in �. Hence, for any a(�t) > �1 there is a � > 0 such
that lifetime utility will be higher and a0(�t) < a(�t). This shows that the household will choose
a consumption plan where the corresponding asset holdings are arbitrarily negative for all t.

87
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Exercise 8.2, Part (c). In order to show that such an allocation will violate feasibility,
we have to analyze what e¤ects such a behavior would have in equilibrium (recall that the
analysis above was entirely from the household�s point of view taking wages and interest rates
as given and acting as if assets were in in�nite supply). In equilibrium, per capita assets have
to be equal to the economy�s per capita capital stock, i.e. a(t) = k(t) for all t (see (8.9)).
Hence, an allocation as in Part (b) would require that the economy�s capital stock will be
arbitrarily negative. Feasibility however requires that k(t) � 0.

Exercise 8.7

To prove this result we will follow the strategy laid out after Theorem 7.14. We will �rst
characterize the interior solution c (t) 2 [";+1) using Theorem 7.13. Then we will show
that the solution is actually the global optimum using the relationship between Theorem
7.13 and Theorem 7.14. This will then imply that the restriction c(t) > " does not a¤ect the
solution as Theorem 7.14 does not require Assumption 7.1 to hold true. Let us start with
the maximization problem of the household. This problem is given by

max

Z 1

0
exp(�(�� n)t)u(c(t))dt

s.t. _a(t) = (r(t)� n)a(t) + w(t)� c(t)

0 � lim
t!1

�
a(t) exp

�Z t

0
�(r(s)� n)ds

��
:

Let us �rst consider Assumption 7.1. To see that this assumption is satis�ed when c (t) 2
[";+1) and when r (t) � n for all t, consider �rst the utility function u. As u0(c(t)) > 0, the
monotonicity of the utility function is satis�ed. Furthermore, the constraint

g(a(t); c(t); t) = g(a(t); c(t)) = (r(t)� n)a(t) + w(t)� c(t)
is also monotone as

ga(a(t); c(t)) = r(t)� n � 0
gc(a(t); c(t)) = �1 < 0:

This shows the �rst part. The second part also follows immediately as

jgc(a(t); c(t))j = j � 1j = 1;
so that jgc(a(t); c(t))j � m for all m 2 (0; 1]. For the third part we need our restriction that
c(t) 2 [";+1). We have to show that there exists M <1 such that

ju0(c(t))j < M for all c(t) 2 [";+1). (I8.3)

As we assumed that u is strictly concave, we have that

u0(c(t)) � u0(") for all c(t) 2 [";+1).
As marginal utility is �nite for all c(t) > 0, (I8.3) is satis�ed forM = u0(")+�, where � > 0.
Hence, Assumption 7.1 is satis�ed whenever we assume that c(t) 2 [";+1) and r(t) � n.

In light of this we can use Theorem 7.13 to characterize the solution, whenever we restrict
the problem such that c(t) > ". So suppose there is a solution to this restricted problem which
satis�es c(t) > ". The analysis in Chapter 7 established that such a solution is characterized
by the �rst-order conditions of the current-value Hamiltonian

Ĥ(c(t); a(t); �(t)) = u(c(t)) + �(t) ((r(t)� n)a(t) + w(t)� c(t))
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and (as we veri�ed Assumption 7.1 for the restricted problem satisfying c(t) > ") the strong
form of the transversality condition

lim
t!1

exp(��t)a(t)�(t) = 0: (I8.4)

The �rst-order conditions of the current-value Hamiltonian Ĥ are given by

Ĥc(c(t); a(t); �(t)) = u0(c(t))� �(t) = 0 (I8.5)

Ĥa(c(t); a(t); �(t)) = �(t) [r(t)� n] = (�� n)�(t)� _�(t). (I8.6)

Let us denote the solution to this problem by [ĉ(t); â(t); �̂(t)].
To show that the restriction c(t) 2 [";+1) is not restrictive, we will now use Theorem

7.14. Note that Theorem 7.14 does not require Assumption 7.1 to hold. It implies however
that if the maximized current-value Hamiltonian

max
c(t)

Ĥ(c(t); a(t); �̂(t)) �M(a(t); �̂(t))

is concave in a (where �̂ refers to the derived multiplier satisfying (I8.4)-(I8.6)) and if any ad-
missible pair [c(t); a(t)]1t=0 satis�es limt!1 exp (��t) �̂ (t) a (t) � 0, the global optimum of the
unrestricted problem will be characterized by (I8.4)-(I8.6). If the concavity of M(a(t); �̂(t))
is strict, the solution is unique. So let us denote

c� = argmax
c
fu(c) + �̂(t) ((r(t)� n)a(t) + w(t)� c)g :

The necessary �rst-order condition is given by

u0(c�) = �̂(t):

That this condition is also su¢ cient follows from the fact that Ĥ is strictly concave in c(t) as

@2Ĥ(c�; a(t); �̂)

@c2
= u00(c�) < 0:

So given �̂(t), we get that c� = ĉ(t), so that

M(a(t); �̂(t)) = max
c(t)

Ĥ(c(t); a(t); �̂(t)) = Ĥ(ĉ(t); a(t); �̂(t)):

To see that M(a(t); �̂(t)) is concave in a(t), note that

@M(a(t); �̂(t))

@a(t)
= �̂(t)(r(t)� n) � 0

@2M(a(t); �̂(t))

@a(t)2
= 0;

where the �rst inequality follows from the fact that r(t)�n � 0 and that �̂(t) = u0(ĉ(t)) > 0.
Additionally note that any feasible path satis�es the constraint

lim
t!1

�
a(t) exp

�Z t

0
�(r(s)� n)ds

��
� 0: (I8.7)

As �̂(t) = u0(ĉ(t)) > 0 for all t and exp
�R t
0 �(r(s)� n)ds

�
is positive, (I8.7) requires that

limt!1 a(t) � 0. Hence we get that
lim
t!1

exp (��t) �̂ (t) a (t) � 0

as required to apply Theorem 7.14 as long as r(t)� n � 0. Note that we also need to check
that the state variable a(t) is chosen from a convex set, but a(t) 2 R+, this requirement
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is satis�ed. Hence, the last thing we have to show is, that in equilibrium we will have
r(t)� n > 0. Equilibrium interest rates are given by the net marginal product of capital, i.e.

r(t) = f 0(k(t))� �:
The analysis in Chapter 8 established that there will be a unique steady state characterized
by

_c(t) = 0:

From (I8.5) and (I8.6) we get that

_c(t)

c(t)
=

1

"u(c(t))
(r(t)� �) = 1

"u(c(t))

�
f 0(k(t))� � � �

�
:

In the steady state k� we therefore have that

r� = f 0(k�)� � = � > n;

where the last inequality follows from Assumption 4�. Hence, in the steady state, interest rates
will be higher than n. But as f is concave and k(t) will be increasing along the transitional
dynamics (as long as k(0) < k�, which we assume to be the case) it follows that

r(t) = f 0(k(t))� � � f 0(k�)� � = � > n:

Hence in equilibrium interest rates will indeed exceed the population growth rate n. This
proves the concavity of M(a(t); �̂(t)) which in turn shows that the solution [c(t)]1t=0 charac-
terized under the restriction that [";+1), is in fact the optimum of the unrestricted problem,
so that the restriction is inconsequential. For further details we refer to Exercise 7.25, which
is very similar.

Exercise 8.11

Recall that the household�s problem in the neoclassical growth model is

max
[c(t);a(t)]t

W ([a (t) ; c (t)]t) �
Z 1

0
exp (��t)u (c (t)) dt (I8.8)

s.t. _a (t) = r (t) a (t) + w (t)� c (t) and lim
t!1

a (t) exp

�
�
Z t

0
r (s) ds

�
� 0. (I8.9)

Denote the Hamiltonian with H (t; c; a; �) and note that the maximized Hamiltonian is given
by

M (t; a; �) = max
c
exp (��t)u (c) + � (r (t) a (t) + w (t)� c (t)) (I8.10)

= exp (��t)u (c� (t; �; r (t))) + � [r (t) a+ w (t)� c� (t; �; r (t))] ,
where

c� (t; �; r) 2 argmax
c�0

exp (��t)u (c)� �c. (I8.11)

Note that M (t; a; �) is linear in a and hence is weakly but not strictly concave in a.
Therefore, even though Theorem 7.14 can be used to show that a path [a (t) ; c (t)]t that
satis�es the �rst-order conditions and the transversality condition is an optimum of the
household problem, it cannot be used to show that this path is the unique optimum. We claim
however that a slight modi�cation of Arrow�s theorem can be used to establish uniqueness
for the household problem (I8:8).

To prove the claim, consider a path [â (t) ; ĉ (t) ; � (t)]1t=0 that satis�es the �rst-order con-
ditions and the transversality condition, and hence is optimal from Theorem 7.14. Consider
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any admissible path [a (t) ; c (t)]t that attains the optimal value for the representative house-
hold. We will show that this path must be the same as [â (t) ; ĉ (t)]t, proving uniqueness. To
see this, note that since M (t; a; �) is linear in a, we have

M (t; a (t) ; � (t)) = M (t; â (t) ; � (t)) +Ma (t; â (t) ; � (t)) (a (t)� â (t))
= M (t; â (t) ; � (t)) + � (t) r (t) (a (t)� â (t)) .

Integrating this expression, we haveZ 1

0
M (t; a (t) ; � (t)) dt =

Z 1

0
M (t; â (t) ; � (t)) +

Z 1

0
� (t) r (t) (a (t)� â (t)) dt. (I8.12)

Recall that [â (t) ; ĉ (t) ; � (t)]t satis�es the �rst-order conditions, and in particular, we have

Ha = � _� (t) =) r (t)� (t) = � _� (t) ,

which, after plugging in Eq. (I8:12) impliesZ 1

0
M (t; a (t) ; � (t)) dt =

Z 1

0
M (t; â (t) ; � (t))�

Z 1

0

_� (t) (a (t)� â (t)) dt. (I8.13)

Next using the de�nition of the maximized Hamiltonian in Eq. (I8:10), we haveZ 1

0
M (t; a (t) ; � (t)) dt �

Z 1

0
exp (��t)u (c (t)) + � (t) _a (t) dt (I8.14)Z 1

0
M (t; â (t) ; � (t)) dt =

Z 1

0
exp (��t)u (ĉ (t)) + � (t) dâ=dt

Here, the inequality in the �rst line follows since M takes its maximum value for
c� (t; � (t) ; r (t)) de�ned in Eq. (I8:11) and c (t) is not necessarily equal to c� (t; � (t) ; r (t)).
The corresponding inequality for M (t; â (t) ; � (t)) (the second line) is satis�ed with equal-
ity since (ĉ (t) ; â (t) ; � (t)) satis�es the �rst-order condition Ĥc = 0 so we have ĉ (t) =
c� (t; � (t) ; r (t)). Moreover, since the Hamiltonian is strictly concave in c, the �rst line is
satis�ed with equality if and only if c (t) = c� (t; � (t) ; r (t)) = ĉ (t) for all t. Then, using Eqs.
(I8:13) and (I8:14), we haveZ 1

0
exp (��t)u (c (t)) dt �

Z 1

0
exp (��t)u (ĉ (t)) dt+Z 1

0
� (t) (dâ=dt� _a (t)) dt�

Z 1

0

_� (t) (a (t)� â (t)) dt;

with equality if and only if c (t) = ĉ (t) for all t. Using integration by parts and the fact that
a (0) = â (0) = a0 (initial asset level is given), this equality can be rewritten asZ 1

0
exp (��t)u (c (t)) dt �

Z 1

0
exp (��t)u (ĉ (t)) dt+ lim

t!1
� (t) (â (t)� a (t))

�
Z 1

0

_� (t) (â (t)� a (t)) dt�
Z 1

0

_� (t) (a (t)� â (t)) dt

=

Z 1

0
exp (��t)u (ĉ (t)) dt+ lim

t!1
(� (t) â (t)� � (t) a (t)) ,

with equality if and only if c (t) = ĉ (t). Since â (t) satis�es the strong form of the transver-
sality condition, we have limt!1

R t
0 � (t) â (t) = 0. Since a (t) satis�es the no-Ponzi scheme
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condition in (I8:9) and since � (t) = � (0) exp
�R t
0 �r (s) ds

�
, we have limt!1 a (t)� (t) � 0.

Using these, the previous displayed inequality can be rewritten asZ 1

0
exp (��t)u (c (t)) dt �

Z 1

0
exp (��t)u (ĉ (t)) dt,

with equality if and only if c (t) = ĉ (t) for all t and [a (t) ; c (t)]t satis�es the no-Ponzi scheme
condition in Eq. (I8:9) with equality. Since the path [a (t) ; c (t)]t attains the same value as
[â (t) ; ĉ (t)]t, it follows that c (t) = ĉ (t) for all t. Note that the di¤erential equations for the
evolution of a and â are identical and are given by

da (t) =dt = r (t) a (t) + w (t)� c (t) with initial condition a (0) = â (0) = a0.

Then, the fact that c (t) = ĉ (t) for all t also implies that a (t) = â (t) for all t, proving
uniqueness.

The critical step of the proof is the observation in Eq. (I8:14) that, due to the separa-
bility of the Hamiltonian in c and a and due to the concavity of the Hamiltonian in c, the
Hamiltonian is maximized at the same c regardless of the asset level, that is, the optimal
choice of c only depends on current asset level indirectly through � (t) but does depend on a
once � (t) is controlled for. This leads to the uniqueness of the optimal path as established
above.

Exercise 8.13

Exercise 8.13, Part (a). The dynamics of consumption and capital in the neoclassical
growth model are depicted in Figure 8.1. In particular it is important to realize that even
though there is only one stable arm, the dynamics for all points (c(t); k(t)) are derived from
the capital accumulation and the Euler equation. So suppose that initial consumption c(0)
started above the stable arm. From Figure 8.1 it is seen that consumption will increase in
all future periods. The behavior of the capital stock is a little more complicated. As long as
consumption is smaller then the _k = 0 locus, the capital stock will increase and vice versa.
However, as consumption will steadily increase, there will be �t such that

c(�t) = f(k(�t))� (� + n)k(�t)
and still

_c(�t)

c(�t)
> 0:

Hence, for all t > �t, consumption will still be increasing and the capital stock will decrease.
This implies that the capital stock will be zero in �nite time, i.e. there will be t0 such that
(c(t0); k(t0)) = (c(t0); 0). At this allocation however, feasibility will be violated. To see this,
note that the dynamic behavior of consumption will still be given by the Euler equation, i.e.

_c(t0)

c(t0)
=
1

�
(f 0(k(t0))� � � �) = 1

�
(f 0(0)� � � �) > 0: (I8.15)

To see that this violates feasibility, note that (I8.15) implies that consumption will grow at
t0. However, the resource constraint implies that

c(t0) = f(k(t0))� �k(t0)� _k(t0) = � _k(t0) � 0;
where the second equality follows from the fact that f is neoclassical, i.e. both factors are
essential so that f(k(t0)) = f(0) = 0 and the inequality follows from the non-negativity of
the capital stock, which requires that _k(t0) � 0 (as k(t0) = 0).
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Exercise 8.13, Part (b). Now suppose initial consumption is too low, i.e. given k(0) it
starts below the stable arm. From the phase diagram in Figure 8.1 this would cause capital
to increase steadily over time. Consumption will increase as long as k(t) < k� where k� is
the steady state level of capital. For k(t) > k�, consumption will decrease and the system
will reach the point (0; �k) at say �t. However we can show that �k > kgold. From the resource
constraint it is clear that

_k(�t) = f(k(�t))� (� + n)k(�t)� c(�t) = f(�k)� (� + n)�k;

so that (for capital to not change at �t) �k will be characterized by

f(�k)
�k

= (� + n): (I8.16)

But as f 0(kgold) = � + n and the production function is neoclassical, i.e.f(k)k > f 0(k), (I8.16)
implies that

�k > kgold.

This is an important result, because it shows that such a path cannot solve the problem.
By de�nition, the consumption level at kgold is higher than for k > kgold. Hence, by not
accumulating capital beyond kgold, consumption could be increased at all points in time. But
then, the conjectured path could not have been optimal. Alternatively, we can also argue that
such a path will violate the transversality conditions (see the discussion following Proposition
8.4).

Exercise 8.15

Exercise 8.15, Part (a). Recall that the equilibrium path of [c (t) ; k (t)]t in the neo-
classical model is characterized by the di¤erential equation system�

_c
_k

�
= F (c; k) �

"
c(t)
�uc (c)

(f 0 (k)� � � �)
f (k)� (� + n) k � c

#
, (I8.17)

where F (c; k) is a vector valued function, and the strong form of the transversality condition
limt!1 exp (��t)� (t) k (t) = 0. The steady state (c�; k�) is given by

f 0 (k�) = � + �

c� = f (k�)� (� + n) k�.

In this exercise, we linearize the system in (I8:17) around the steady state (c�; k�) and show
that locally there is a one-dimensional stable subspace which approximates the saddle path.

A �rst-order approximation of the system in Eq. (I8:17) around steady state gives

d

dt

�
c� c�
k � k�

�
� rF (c�; k�)

�
c� c�
k � k�

�
(I8.18)

where rF (c�; k�) is the derivative of F evaluated at (c�; k�). Hence the local behavior of
system (I8:17) is characterized by the matrixrF (c�; k�). Let �1 and �2 denote the eigenvalues
of rF (c�; k�) with corresponding eigenvectors v1 = (v1c v1k) and v2 = (v2c v2k). Then, the
solution to the linearized system (I8:18) is given by�

c (t)� c�
k (t)� k�

�
� a1 exp (�1t)

�
v1c
v1k

�
+ a2 exp (�2t)

�
v2c
v2k

�
, (I8.19)
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for some constants a1 and a2 which are determined by the initial condition (c (0) ; k (0)).
Considering the equation for k (t), we have

k (t)� k� � a1v1k exp (�1t) + a2v2k exp (�2t) .

Hence, if we de�ne �1 = a1v1k and �2 = a2v2k, the previous displayed equation gives the
desired expression

k (t) � k� + �1 exp (�1t) + �2 exp (�2t) . (I8.20)

Exercise 8.15, Part (b). Note that the derivative of F (the Jacobian) is given by

rF (c; k) =
"

d c
�uc (c)

dc

�
f
0
(k)� � � �

�
c

�uc (c)
f
00
(k)

�1 f
0
(k)� � � n

#
.

Evaluated at steady state, this expression reduces to

rF (c�; k�) =
�
0 c�

�uc (c
�)f

00
(k�)

�1 �� n

�
,

The eigenvalues of rF (c�; k�) are found as the roots of the polynomial P (�) given by

P (�) = det

��
�� c�

�uc (c
�)f

00
(k�)

�1 �� n� �

��
= (� + n� �) � + c�

�uc (c
�)
f
00
(k�) .

Note that, P (�) is a quadratic with positive coe¢ cient on �2 which also satis�es

P (0) =
c�

�uc (c
�)
f
00
(k�) < 0,

hence P (�) has one negative and one positive root. Without loss of generality, we assume
�1 < 0 < �2 for the eigenvalues. This establishes that one of the eigenvalues, �1 is negative
and the other one, �2, is positive.

Exercise 8.15, Part (c). The analysis in Chapter 8 establishes that the equilibrium
path [k (t) ; c (t)]t in the neoclassical model starts on the saddle path and converges to (k

�; c�).
Hence, had the linear approximation in Eq. (I8:20) been exact, we would have required �2 = 0,
since otherwise k (t) would diverge away from k� due to the fact that �2 > 0. Hence, the
fact that the equilibrium path is stable implies that �2 corresponding to the equilibrium path
must be close to zero, that is �2 � 0. For this value of �2, we can verify that the capital stock
indeed converges to k�, that is

lim
t!1

k (t) � lim
t!1

k� + �1 exp (�1t) + �2 exp (�2t)

= lim
t!1

k� + �1 exp (�1t) = k�,

where the last equality follows since �1 < 0.
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Exercise 8.15, Part (d). We now assume that Eq. (I8:20) is exact.1 Recall that k (0)
is given, hence the expression in (I8:20) must satisfy

k (0) = k� + �1 exp (�10) + �2 exp (�20)

= k� + �1

where the last line used our observation that �2 = 0 for the equilibrium path. Then, the last
equation solves �1 uniquely as

�1 = k (0)� k�.
Hence �1 is uniquely determined from the initial value of capital.

From Parts 3 and 4, we note that the solution is uniquely pinned down from the joint facts
that the system is saddle path stable (that is, it converges to some k�) and that the initial
value of capital k (0) is given. Intuitively, given k (0), the household must choose c (0) such
that (k (0) ; c (0)) is exactly on the saddle path, which is a one dimensional linear sub-space
in this example, and once (c (t) ; k (t)) is on the saddle path, it converges to (c�; k�) at the
exponential rate �1 as given by Eq. (I8:19).

Exercise 8.15, Part (e). From Parts 3 and 4, we have

k (t) � k� + (k (0)� k�) exp (�1t) ,

hence k (t) adjusts to its steady state value k� at rate �1, where �1 is the negative eigenvalue
of rF (c�; k�). We next explicitly calculate �1 and see how it responds to the exogenous
parameters. Recall that �1 is the negative solution to

�2 � (�� n) � + c�

�uc (c
�)
f
00
(k�) = 0.

The solutions are given by the quadratic formula

�1;2 =
1

2

 
�� n�

s
(�� n)2 � 4c

�f 00 (k�)

�uc (c
�)

!
.

The smaller (and the negative) real root, �1, is given by

�1 =
1

2

 
�� n�

s
(�� n)2 + 4c

� jf 00 (k�)j
�uc (c

�)

!

=
1

2
(�� n)

 
1�

s
1 + 4

c� jf 00 (k�)j
(�� n) �uc (c�)

!
,

This expression establishes a number of comparative statics for the rate of convergence,
j�1j = ��1. Recall that the higher j�1j, the faster the convergence.2

1This would not be the case for realistic production functions but we make the assumption to demonstrate
how to solve linear systems with one initial condition and one end value constraint (i.e. the transversality
condition). The intuition generalizes to solving non-linear systems with one initial and one end value constraint.

2Note that, if we were to change the parameters of the model, in general the steady state values (k�; c�)
would also change. So the comparative statics we note here apply keeping (k�; c�) constant, that is they
compare two economies with identical (k�; c�) that di¤er in jf 00 (k�)j ; �uc (c�), or � � n. But to keep (k�c�)
constant after changing one of these variables, we typically need to change other things in this economy,
so what other things we change might a¤ect convergence to steady state. Therefore we should take these
comparative statics as suggestive.
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(1) The higher jf 00 (k�)j, the higher the rate of convergence j�1j. Intuitively, the more
inelastic the substitution between capital and labor, the faster the economy faces
diminishing returns and the faster the convergence to steady state (note that this
e¤ect is also present in the Solow model).

(2) The higher �uc (c
�), the lower the rate of convergence j�1j. Recall that, �uc (c�) is

elasticity of marginal utility and the inverse elasticity of intertemporal substitution.
Hence, the higher �uc (c

�), the less elastic intertemporal substitution, the less willing
are people to give up consumption now to invest, hence the slower the economy
converges to steady state level of k� (say from some k (0) < k�).

Exercise 8.19

Exercise 8.19, Part (a). The steady state saving rate s� is given by

s� =
�k�

f(k�)
:

The steady state capital-labor ratio k� is of course a function of the underlying parameters
(see Proposition 8.3). Hence,

ds�

d�
=
@s�

@k�
dk�

d�
= �

f(k�)� k�f 0(k�)
(f(k�))2

dk�

d�
:

That dk�

d� < 0 was shown in Proposition 8.3 and that f(k�) � k�f 0(k�) > 0 follows from the

concavity of f . To see this, note that f(k�)�k�f 0(k�) = k�(f(k
�)

k� �f 0(k�)) > 0 as the average
product is higher than the marginal product or from the fact that we assumed F (K(t); L(t))
to have CRS, so that f(k�)� k�f 0(k�) is just equal to the marginal product of labor (i.e. the
wage rate, see (8.6)) which is positive. Hence

ds�

d�
=
@s�

@k�
dk�

d�
= �

f(k�)� k�f 0(k�)
(f(k�))2

dk�

d�
< 0;

i.e. a lower discount rate will increase the steady state saving rate.

Exercise 8.19, Part (b). The per capita consumption level in the steady state is given
by (see (8.37))

c� = f(k�)� (n+ �)k�:
Di¤erentiating this with respect to the discount rate � yields

dc�

d�
= (f 0(k�)� (n+ �))dk

�

d�
. (I8.21)

Again we have dk�

d� < 0. In the steady state, the marginal product of capital has to be such
that there is no consumption growth (see (8.35)), i.e.

f 0(k�) = �+ �

Substituting this into (I8.21) yields

dc�

d�
= (�+ � � (n+ �))dk

�

d�
= (�� n)dk

�

d�
:

But from Assumption 4�we know that � > n, so that

dc�

d�
= (�� n)dk

�

d�
< 0:
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This shows that the steady state level of consumption will always be decreasing in the dis-
count rate. The reason why there cannot be �oversaving� in the neoclassical growth model
(in contrast to the Solow model) is simply that equilibrium has to be consistent with con-
sumer maximization. But any plan which would have had the property that by saving less,
consumption could be increased could not have been optimal in the �rst place as such a plan
was clearly available by simply consuming more to begin with.

Exercise 8.23

Exercise 8.23, Part (a). In this exercise we consider a neoclassical economy where tech-
nological progress is not Harrod neutral, but capital-augmenting. The production function
is given by

Y (t) = F (A(t)K(t); L(t)):

Besides that, everything is standard, in particular preferences are given byZ 1

0
exp(��t)c(t)

1�� � 1
1� � dt;

and the budget constraint is the usual �ow constraint

_a(t) = r(t)a(t) + w(t)� c(t); (I8.22)

augmented by the no-Ponzi condition

lim
t!1

a(t) exp

�
�
Z t

0
r(s)ds

�
� 0: (I8.23)

Note that there is no population growth. Besides the di¤erent technology, this is just the
standard economy with technological progress described in Chapter 8. Hence the competitive
equilibrium is de�ned as in De�nition 8.2, i.e. as paths of per capita consumption, capital-
labor ratios, wage rates and rental rates of capital, [c (t) ; k (t) ; w (t) ; R (t)]1t=0, such that
�rms maximize pro�ts, the representative household maximizes utility subject to the budget
constraint (I8.22) and the no-Ponzi condition (I8.23) and markets clear.

Exercise 8.23, Part (b). The household maximization problem follows exactly along
the same lines as in Chapter 8. In particular, the Euler equation will be given by

_c(t)

c(t)
=
1

�
(r(t)� �) = 1

�
(A(t)f 0(A(t)k(t))� � � �), (I8.24)

where the second equality uses the equilibrium condition r(t) = R(t)�� = A(t)f 0(A(t)k(t))��
and the de�nition of per capita production

y(t) =
Y (t)

L
=
F (A(t)K(t); L)

L
= F

�
A(t)K(t)

L
; 1

�
� f(A(t)k(t)):

Note that capital-augmenting technological progress introduces the technology term A(t)
in front of f 0(A(t)k(t)). Hence the competitive equilibrium is characterized by the capital
accumulation equation

_k(t) = f(A(t)k(t))� �k(t)� c(t)) (I8.25)

the Euler equation (I8.24) and the transversality condition

lim
t!1

�
exp

�
�
Z t

0
�ds

�
�(t)k(t)

�
= 0;

where �(t) is the costate variable of the consumer�s maximization problem.
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Let us now look for a steady state equilibrium where A(t) = A(0) for all t, i.e. there is
no technological progress. In the steady state, consumption has to be constant, so that from
(I8.24) we get that the steady state capital stock k� is implicitly de�ned by

A(0)f 0(A(0)k�) = � + �: (I8.26)

The steady state level of consumption is given from (I8.25) as

c� = f(A(0)k�)� �k�:
As (I8.26) determines the steady state capital-labor ratio k� in this economy and does not
depend on �, it is clear that k� is independent of �. The reason is the following: � is the
inverse of the intertemporal elasticity of substitution, i.e. it regulates the willingness of
individuals to substitute between consumption today and consumption in the future. But
this economy does not experience growth in the steady state as the technology is constant.
Hence, consumption is constant over time so the consumer�s preferences about intertemporal
substitution do not matter once the steady state is reached. Note that � matters of course
for the transitional dynamics, in particular for the speed of convergence.

Exercise 8.23, Part (c). Let us now allow for technological progress, i.e. A(t) =
A(0) exp(gt). It is clear that this economy will not have a steady state where consumption
and output are constant. Hence we are looking for a balanced growth path (BGP) where both
consumption growth and the capital share in national income k(t)=f(A(t)k(t)) is constant
(i.e. capital and output grow at the same rate). For consumption growth to be constant,
(I8.24) implies that A(t)f 0(A(t)k(t)) has to be constant. Hence, for a BGP to exist we need
that

A(t)f 0(A(t)k(t)) = c1 (I8.27)
k(t)

f(A(t)k(t))
= c2;

where c1 and c2 are constants. Let us de�ne z(t) � A(t)k(t) and combine the two equations
above to get

z(t)f 0(z(t))

f(z(t))
= c1c2 � �: (I8.28)

Note that z(t) has to be increasing along the BGP. This can be seen from (I8.27), which
implies

z(t) = f 0�1
�
c1
A(t)

�
: (I8.29)

As f is neoclassical, f 0(z(t)) is decreasing in z(t). And as A(t) grows at an exponential rate,
z(t) also has to increase over time for (I8.29) to be satis�ed. As z(t) is not constant, (I8.28)
de�nes a di¤erential equation which we can solve to recover f . Rearranging terms yields the
di¤erential equation

z(t)f 0(z(t))� �f(z(t)) = 0: (I8.30)

The solution to (I8.30) is given by

f(z(t)) = Cz(t)�;

where C is the constant of integration. Using z(t) = A(t)k(t) we get that

Y (t) = L(t)f(A(t)k(t)) = L(t)

�
CA(t)

K(t)

L(t)

��
= ~C(A(t)K(t))�L(t)1��;



Solutions Manual for Introduction to Modern Economic Growth 99

where ~C � C�. Hence, this economy does only admit a BGP equilibrium if the production
function indeed takes the Cobb-Douglas form.

Exercise 8.23, Part (d). Let us now characterize the BGP if the production function
is of the Cobb-Douglas form (and where we normalized ~C = 1), i.e.

y(t) = f(A(t)k(t)) = (A(t)k(t))�:

Let us denote the growth rate of variable W by gW . The growth rate of output per capita is
given by

gy =
_y(t)

y(t)
=
d log(f(t))

dt
= �(

_A(t)

A(t)
+
_k(t)

k(t)
) = �(g + gk):

Along the BGP, k(t) grows at the same rate as output, i.e. gk = gy. Hence,

gy = gk =
�

1� �g: (I8.31)

To determine the capital-labor ratio along the BGP, we have to go back to the Euler equation.
As consumption also grows at gk3 we get that

gk =
_c(t)

c(t)
=
1

�
(A(t)f 0(A(t)k(t))� � � �) = 1

�
(�A(t)�k(t)��1 � � � �): (I8.32)

As both the capital-labor ratio k(t) and the technology term A(t) are growing, let us de�ne
the normalized capital-labor ratio

�(t) =
k(t)

A(t)�=(1��)
;

so that (I8.32) reads

gk =
1

�
(��(t)��1 � � � �): (I8.33)

From (I8.33) it is seen that the BGP level of �(t) is given by

�(t) = �� =

�
�

�gy + � + �

�1=(1��)
; (I8.34)

i.e. the BGP, which refers to the equilibrium path where k(t); y(t) and c(t) grow at the
common rate gk (given in (I8.31)), is a steady state of the transformed variable �(t). The
capital-labor ratio along the BGP can then be found as

k(t) = A(t)�=(1��)��:

First of all note that indeed
_k(t)

k(t)
=

�

1� �
d log(A(t))

dt
=

�

1� �g = gk

3This can be easily seen from the resource constraint. The resource constraint is given by

_k(t) = y(t)� c(t) + (1� �)k(t):

Dividing by k(t) and rearranging terms yields

c(t)

k(t)
= 1� � +

y(t)

k(t)
�
_k(t)

k(t)
= 1� � � gk +

y(t)

k(t)
:

As y(t) and k(t) grow at the same rate, y(t)
k(t)

is constant. Hence the RHS of the equation above is constant

along the BGP so that c(t)
k(t)

has to be constant too. This shows that consumption grows at rate gk along the

BGP.
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as required on the BGP (see (I8.31)). Secondly note that now � does matter as it determines
�� (see (I8.34)). The reason is that now there is consumption growth on the BGP so that
consumers� preferences about substituting consumption intertemporally do matter. Note
however, that � only matters for levels but not for the growth rate of the economy as gk =
gy = gc =

�
1��g is independent of �. In particular, note that (I8.34) shows that

@��

@�
< 0;

i.e. the lower the elasticity of substitution (recall that � is the inverse of the elasticity of
substitution), the lower the normalized capital-labor ratio along the BGP. To understand
this result, note that per capita consumption grows at rate gy so that (I8.32) implies that

gy =
�

1� �g =
1

�
(r� � �);

where r� denotes the BPG interest rate. The level of � governs the consumers�willingness to
intertemporally substitute consumption. In particular, the lower the elasticity of substitution,
the higher the utility cost of having a non-�at consumption pro�le, so that the BGP interest
rates r� are increasing in �. Intuitively, if � is higher, interest rates also have to be higher to
convince consumers to have consumption growing at rate gy. But as interest rates equal the
(net of depreciation) marginal product of capital and f has decreasing returns, the normalized
level of the capital-labor ratio �(t) will have to be lower.

From (I8.34) we can also get some more basic comparative static results. An increase in
the discount rate � and an increase in the depreciation rate � will both reduce the economy�s
(normalized per capita) capital stock. This is also intuitive. If consumers discount the future
more, there will be less capital accumulation so that the capital stock will be lower. Similarly,
if the depreciation rate is higher, more savings are needed to preserve a given capital stock.
This will also reduce capital accumulation.

Exercise 8.25

Consider the �ow equation of the consumer�s budget given by

a(t+ 1) = w(t) + (1 + r(t))a(t)� c(t): (I8.35)

We can solve this equation for a(t) as

a(t) =
c(t)� w(t)
1 + r(t)

+
a(t+ 1)

1 + r(t)
:

Hence we get that

a(0) =
c(0)� w(0)
1 + r(0)

+
a(1)

1 + r(0)

=
c(0)� w(0)
1 + r(0)

+
1

1 + r(0)

�
c(1)� w(1)
1 + r(1)

+
a(2)

1 + r(1)

�
= :::

=

T�1X
t=0

"
tY

s=0

1

1 + r(s)

#
(c(t)� w(t)) +

"
T�1Y
s=0

1

1 + r(s)

#
a(T ):
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Rearranging terms yields4

T�1X
t=0

"
tY

s=0

1

1 + r(s)

#
c(t) +

"
T�1Y
s=0

1

1 + r(s)

#
a(T ) = a(0) +

T�1X
t=0

"
tY

s=0

1

1 + r(s)

#
w(t);

which we can also write as an inequality if we do not think of the �ow constraint (I8.35)
as de�ning assets a(t) as the residual, but let the consumer choose consumption and assets
under the constraint that total "expenditures" on consumption and assets cannot exceed the
available budget, i.e.

a(t+ 1) + c(t) � w(t) + (1 + r(t))a(t):

Then we get that
T�1X
t=0

"
tY

s=0

1

1 + r(s)

#
c(t) +

"
T�1Y
s=0

1

1 + r(s)

#
a(T ) � a(0) +

T�1X
t=0

"
tY

s=0

1

1 + r(s)

#
w(t): (I8.36)

As (I8.36) has to hold for all T � 1, we can take the limit to arrive at
1X
t=0

"
tY

s=0

1

1 + r(s)

#
c(t)+ lim

T!1

"
T�1Y
s=0

1

1 + r(s)

#
a(T ) � a(0)+

1X
t=0

"
tY

s=0

1

1 + r(s)

#
w(t): (I8.37)

If the no-Ponzi condition takes the form of (8.42), i.e.

lim
T!1

"
T�1Y
s=0

1

1 + r(s)

#
a(T ) � 0;

(I8.37) implies that
1X
t=0

"
tY

s=0

1

1 + r(s)

#
c(t) �

1X
t=0

"
tY

s=0

1

1 + r(s)

#
w(t) + a(0):

This is exactly the in�nite horizon budget constraint requiring that the net present value of
consumption cannot exceed the net present value of wages (plus initial assets).

Exercise 8.27

Exercise 8.27, Part (a). Consider the discrete version of the neoclassical growth model
with labor-augmenting technological progress A(t + 1) = (1 + g)A(t). This means that the
production function is given by

Y (t) = F (K(t); A(t)L(t)):

As there is no population growth, we can normalize the labor force to L(t) = �L = 1. The
preferences of the representative consumer are given by

U0 =

1X
t=0

�tu(c(t)): (I8.38)

We need to show that balanced growth requires u in (I8.38) to take the CRRA form. The
necessary condition of maximizing (I8.38) subject to the capital accumulation equation

K(t+ 1) = F (K(t); A(t))� c(t) + (1� �)K(t), (I8.39)

4Note that there is a small typo in the statement of the exercise. In particular, period T assets a(T )
should be discounted T � 1 periods instead of t � 1 periods and both consumption expenditures and wage
payments in t should have a discount factor of �ts=0 instead of �

t�1
s=0.
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is the Euler equation

u0(c(t)) = u0(c(t+ 1))�(1 + FK(K(t+ 1); A(t+ 1))� �): (I8.40)

Along the balanced growth path we require that the capital output ratio Y (t)=K(t) is con-
stant. As the production function is assumed to be neoclassical, it is clear that

Y (t)

K(t)
= F

�
1;
A(t)

K(t)

�
;

so that A(t)=K(t) has to be constant along the BGP. Hence, the capital stock has to grow
at rate g. Using (I8.39) we get that

K(t+ 1)

A(t)
= F

�
K(t)

A(t)
; 1

�
� c(t)

A(t)
+ (1� �)K(t)

A(t)
:

Along the BGP we have that k(t) = K(t)
A(t) = k� is constant, so that

k�(1 + g) = F (k�; 1)� c(t)

A(t)
+ (1� �)k�:

Hence, c(t)
A(t) is constant too, i.e. consumption c(t) also has to grow at rate g. The Euler

equation (I8.40) implies that

u0(c(t))

u0(c(t+ 1))
= �(1 + FK(K(t+ 1); A(t+ 1))� �): (I8.41)

As FK(K(t); A(t)) = FK

�
K(t)
A(t) ; 1

�
(recall that the marginal products are homogenous of

degree zero) is constant along the BGP, (I8.41) implies that the ratio of marginal utilities is
constant, i.e.

u0(c(t))

u0(c(t+ 1))
= �(1 + FK(k

�; 1)� �) = �R�; (I8.42)

where R� is constant. As (I8.42) has to hold for all t and consumption grows at rate g, it
follows that

u0(c(t))

u0(c(t+ 1))
=

u0(c(t))

u0((1 + g)c(t))
= �R�: (I8.43)

Additionally, (I8.43) also has to hold for any level of consumption c(t). Di¤erentiating (I8.43)
with respect to c(t) yields

u00(c(t))u0((1 + g)c(t))� u0(c(t))u00((1 + g)c(t))(1 + g)
(u0((1 + g)c(t)))2

= 0:

Rearranging terms and resubstituting c(t)(1 + g) = c(t+ 1) gives

u00(c(t))

u0(c(t))
=
u00(c(t)(1 + g))(1 + g)

u0(c(t)(1 + g))
=
u00(c(t+ 1))(1 + g)

u0(c(t+ 1))
. (I8.44)

Multiplying both sides by c(t) shows that (I8.44) implies that

u00(c(t))c(t)

u0(c(t))
=
u00(c(t+ 1))c(t+ 1)

u0(c(t+ 1))
;

so that the inverse of the intertemporal elasticity of substitution

1

"u(c(t))
= � u0(c(t))

u00(c(t))c(t)
(I8.45)
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has to be constant, say equal to � = 1
"u(c(t))

. As c(t) is growing along the BGP (in particular
consumption is growing at rate g), we can rewrite (I8.45) as the di¤erential equation

��u0(c(t))� u00(c(t))c(t) = 0

which has the solution u0(c(t)) = Bc(t)��, where B is the constant of integration. Integrating
again, we recover the required utility function

u(c(t)) =

(
c(t)1���1
1�� if � 6= 1

ln(c(t)) if � = 1
(I8.46)

up to the constant of integration. Hence, utility of the CRRA form is the only utility function
which is consistent with balanced growth if technological progress is labor-augmenting.

Exercise 8.27, Part (b). Let us now assume that preferences do take the CRRA form
given in (I8.46). A competitive equilibrium in this economy consists of allocations of consump-
tion and capital fc(t);K(t)g1t=0 and of sequences of wages and rental rates fR(t); w(t)g1t=0
such that consumers maximize utility, �rms maximize pro�ts and markets clear. Pro�t max-
imization of �rms implies that the rental rate is given by

R(t) = 1 + FK(K(t); A(t))� � = 1 + f 0(k(t))� �; (I8.47)

where we de�ned k(t) = K(t)=A(t) as the e¤ective capital-labor ratio and f(k) = F (k; 1).
The necessary �rst-order condition for utility maximization is given by

c(t)�� = c(t+ 1)���R(t+ 1) = c(t+ 1)���(1 + f 0(k(t+ 1))� �); (I8.48)

where the second equality uses (I8.47). That we recover the Euler equation is not surprising
- it is just a consequence of the First Welfare Theorem. Additionally we have the resource
constraint (I8.39) which is implied by all markets clearing.5 Normalizing all variables by the
technology level A(t) or A(t+ 1) respectively, this can be written as

k(t+ 1)(1 + g) = f(k(t))� c(t)

A(t)
+ (1� �)k(t): (I8.50)

Now consider the BGP equilibrium where the e¤ective capital-labor ratio is constant, say
equal to k�. From (I8.50) it is clear that in such a steady state we need

c(t)

A(t)
= f(k�)� (g + �)k�;

5To see this, simply note that we always implicitly assumed that the labor market cleared as consumers
supply labor inelastically. The consumers�budget constraint is given by

c(t) +K(t+ 1) = w(t) +K(t)R(t); (I8.49)

as consumers earn wage income for their one unit of labor and receive the gross interest R(t) for their capital
holdings. But as �rms are perfectly competitive we get that w(t) = FL(K(t); A(t))A(t). Using the de�nition
of the gross interest rate in (I8.47) it then follows that

w(t) +K(t)R(t) = FL(K(t); A(t))A(t) + (1 + FK(K(t); A(t))� �)K(t)

= FL(K(t); A(t))A(t) + FK(K(t); A(t))K(t) + (1� �)K(t)

= F (K(t); A(t)) + (1� �)K(t)

where the last equality followed from F being CRS. Substituting this into (I8.49) yields the economy wide
resource constraint.
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so that consumption per e¢ ciency unit c(t)=A(t) is constant. Hence, consumption grows at
rate g. But then we can use (I8.48) to arrive at�

c(t+ 1)

c(t)

��
=

�
c(t+ 1)=A(t+ 1)

c(t)=(A(t)(1 + g))

��
= (1 + g)� = �(1 + f 0(k�)� �): (I8.51)

As (I8.51) de�nes k� uniquely as a function of parameters, there is a BGP equilibrium where
the e¤ective capital-labor ratio is constant. To ensure that such an equilibrium is well de�ned,
we �nally need to make appropriate parametric assumptions to satisfy the transversality
condition. As usual the transversality condition is given by

lim
t!1

�t�(t)K(t+ 1) = lim
t!1

�tc(t)��k(t+ 1)A(t+ 1) = 0: (I8.52)

Along the BGP k(t) is constant and equal to k� and ~c(t) = c(t)
A(t) is also constant (and equal

to ~c�) as consumption grows at rate g. Hence the transversality condition in (I8.52) can be
written as

lim
t!1

�t(A(t)~c�)��A(t+ 1)k� = k� (~c�)�� A(0)1��(1 + g) lim
t!1

�t(1 + g)(1��)t = 0;

so that a steady state equilibrium exists if

�(1 + g)(1��) < 1: (I8.53)

Whereas the growth rate of the economy g is exogenous.

Exercise 8.27, Part (c). To prove global stability and monotone convergence, we have
to show that the sequence of e¤ective capital-labor ratios fk(t)g1t=0 converges to k� starting
from any k(0) and that k(t + 1) > k(t) if and only if k(0) < k�. To prove these properties
in this economy we will show that we can transform the problem so that it coincides with
the optimal growth problem of the neoclassical growth model without technological progress.
First of all note that the First Welfare Theorem applies to the economy of this exercise. Hence,
the equilibrium is Pareto e¢ cient and the solution fc(t); k(t)g1t=0 can be characterized as the
solution to the maximization problem faced by the social planner

max
fc(t);k(t)g1t=0

1X
t=0

�t
c(t)1�� � 1
1� � (I8.54)

s.t. k(t)(1 + g) = f(k(t))� ~c(t) + (1� �)k(t) (I8.55)

~c(t) =
c(t)

A(t)
: (I8.56)

where again k(t) denotes capital in e¢ ciency units and ~c(t) refers to normalized consump-
tion. To make this problem isomorphic to the canonical optimal growth problem without
technological progress, note that (I8.54) can be rewritten as

1X
t=0

�t
c(t)1�� � 1
1� � =

1X
t=0

�t
~c(t)1��A(t)1�� � 1

1� �

= A(0)1��
1X
t=0

[�(1 + g)1��]t
~c(t)1��

1� � � 1

(1� �)(1� �) ;

where we used that A(t) = A(0)(1 + g)t. As A(0)1�� and the last term are just positive
transformations which do not a¤ect the maximization, we can drop those terms. Let us also
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de�ne ~� = �(1+ g)1�� to conclude that if f~c(t); k(t)g1t=0 solves (I8.54) subject to (I8.55) and
(I8.56), it also solves

max
f~c(t);k(t)g1t=0

1X
t=0

~�
t ~c(t)1�� � 1

1� � (I8.57)

s.t. k(t)(1 + g) = f(k(t))� ~c(t) + (1� �)k(t):
Note that we dropped the second constraint (I8.56) as c(t) does not appear anywhere any
longer. But the problem in transformed variables contained in (I8.57) is just the optimal
growth problem, where global stability and monotonicity of convergence was shown in Chap-
ter 6 (see especially Proposition 6.3). The only thing we have to ensure is, that the problem
is well de�ned, i.e. that ~� < 1. But this is the case as ~� = �(1 + g)1�� < 1 by (I8.53)
above. This proves global stability and monotone convergence of the economy in normalized
variables k(t) and ~c(t). Having characterized the time path f~c(t); k(t)g1t=0 we can then simply
calculate the implied behavior of the capital-labor ratio and per capita consumption from

K(t)

L(t)
= k(t)A(t) and c(t) = ~c(t)A(t):

A steady state in the system of normalized variables refers to a BGP for c(t) and the capital-
labor ratio (and both variables grow at the rate of technological progress g) and the transi-
tional dynamics are similar to the canonical neoclassical growth model as both consumption
and capital per capita are simple transformations of k(t) and ~c(t) (in fact they are just
�scaled�versions of those variables where the scaling factor A(t) grows at a constant rate).

Exercise 8.30

Exercise 8.30, Part (a). We �rst consider the economy with a heterogenous set
of households H. Equilibrium in this economy is a path of allocations and prices�
fah (t) ; ch (t)gh2H ; k (t) ; r (t) ; w (t)

�
t
such that each household h chooses [ah (t) ; ch (t)]t that

solves Problem (I8:60) below, r (t) and w (t) are determined in competitive markets that is

r (t) = FK (K (t) ; jHj)� � = f 0 (k (t))� �, (I8.58)

w (t) = FL (K (t) ; jHj) = f (k (t))� k (t) f 0 (k (t)) ,
and the market for �nal goods and assets clear. In particular

k (t) = jHj�1
Z
H
ah (t) dh. (I8.59)

We next characterize this equilibrium. Household h solves

max
ah(t);ch(t)

Z 1

0
exp (��t) ch (t)

1�� � 1
1� � dt, (I8.60)

s.t. _ah (t) = r (t) ah (t) + w (t)� ch (t) , and lim
t!1

a (t) exp

�
�
Z t

0
r (s) ds

�
� 0.(I8.61)

The �rst-order conditions for an interior solution give the Euler equation

_ch (t)

ch (t)
=
1

�
(r (t)� �) (I8.62)

and the transversality condition

lim
t!1

ah (t) exp

�
�
Z t

0
r (s) ds

�
= 0. (I8.63)
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Aggregating the Euler equation over all households and substituting competitive returns
r (t) = f 0 (k (t))� �, we have

_c (t)

c (t)
=
1

�

�
f 0 (k (t))� � � �

�
(I8.64)

where c (t) =
R
H ch (t) dh= jHj denotes consumption per capita. Similarly, the asset evolution

equations (I8:61) can also be aggregated and give

jHj�1
Z
H
_ah (t) dh = r (t) jHj�1

Z
H
ah (t) dt+ w (t)� jHj�1

Z
H
ch (t) dh,

which, after using the asset market clearing condition (I8:59) and the competitive equilibrium
values for r (t) and w (t), implies

_k (t) = f (k (t))� �k (t)� c (t) , with k (0) = a (0) given. (I8.65)

Finally, the transversality conditions in (I8:63) can also be aggregated and give

lim
t!1

k (t) exp

�
�
Z t

0
r (s) ds

�
= 0. (I8.66)

From the analysis in Chapter 8 for the neoclassical model, the per-capita variables [c (t) ; k (t)]t
are uniquely determined as the solutions to the two di¤erential Eqs. (I8:64) and (I8:65) with
the initial condition k (0) and the transversality condition (I8:66). In particular, for any
level of initial capital-labor ratio k (0), consumption per-capita starts on the saddle path and
[c (t) ; k (t)]t converge to the steady state (c

�; k�). Given the path [c (t) ; k (t)]t for aggregate
variables, we have

r (t) = f 0 (k (t)) and w (t) = f (t)� k (t) f 0 (k (t)) ,

which uniquely de�nes the price sequence. Moreover, given the path of prices [r (t) ; w (t)]t,
Theorem 7.14 and Exercise 8.11 shows that there exists a unique optimal path [ch (t) ; ah (t)]t
for each household which solves the di¤erential equations (I8:61), (I8:62) with the initial value
ah (0) and the transversality condition (I8:63). This completes the characterization of the
equilibrium with heterogenous agents.

Next, we consider the alternative economy which has one representative household with
initial assets a (0) = jHj�1

R
H ah (0) dh and the same preferences as all other households. The

analysis in this section is identical to the baseline analysis in Chapter 8. In particular, the
equilibrium path for per-capita allocations [c (t) ; k (t)]t is characterized by the same equations
(I8:64)� (I8:66). It follows that the aggregate (per capita) variables are identical in the two
economies.

This exercise then establishes that there is a representative consumer for the neoclassical
economy when the preferences are CES and when we take the no-Ponzi scheme condition
as the appropriate borrowing restriction for the household. This is not surprising since we
have shown in Section 5.2 that the CES preferences satisfy the requirement of the Gorman�s
aggregation theorem (cf. Theorem 5.2) and thus the distribution of income does not a¤ect
aggregate demand. In the above analysis, Gorman�s aggregation theorem best manifests itself
at the step that allows us to go from the individual �rst-order conditions (I8:62) to the �rst-
order conditions that characterize the aggregate (per capita) level of consumption (I8:64)
regardless of the consumption levels of di¤erent households (that is, regardless of the wealth
distribution).
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Exercise 8.30, Part (b). An equilibrium with a no-borrowing constraint is a path
of allocations and prices

�
fah (t) ; ch (t)gh2H ; k (t) ; r (t) ; w (t)

�
t
such that each household h

solves

max
ah(t);ch(t)

Z 1

0
exp (��t) ch (t)

1�� � 1
1� � dt, (I8.67)

s.t. _ah (t) = r (t) ah (t) + w (t)� ch (t) , and ah (t) � 0,
r (t) and w (t) are determined in competitive markets [cf. Eq. (I8:58)] and the markets
for assets and �nal goods clear. Note that the only di¤erence of this equilibrium from the
equilibrium in the previous part is that the household h solves Problem (I8:67) with the
no-borrowing constraint ah (t) � 0 rather than Problem (I8:60) with the no-Ponzi condition.
Our goal is to construct example economies in which this seemingly small di¤erence can
generate di¤erent equilibrium paths.

Consider a two household economy, i.e. H 2 fA;Bg, in which the initial conditions are
given by aA (0) = 0 and aB (0) = aB, where aB is a parameter to be determined later. Here,
household A is the poor graduate student with no assets and household B is another agent

in this economy. Consider the equilibrium path
h
fah (t) ; ch (t)gh2fA;Bg ; k (t) ; w (t) ; r (r)

i
t
in

the economy with the no-Ponzi condition (characterized in Part (a)). We claim that under
an appropriate parameterization, the equilibrium will feature _aA (0) < 0 so that agent A

will go into debt at time 0. It then follows that
h
fah (t) ; ch (t)gh2fA;Bg ; k (t) ; w (t) ; r (r)

i
t

cannot be the equilibrium of this economy with the no-borrowing constraint since it violates
the condition aB (t) � 0 in a neighborhood of t = 0, proving that the equilibria in the two
economies will be di¤erent.

To construct a parameterization that leads to _aA (0) < 0, �rst note that this conditions
is equivalent to

cA (0) > w (0) (I8.68)

in view of the asset evolution equation _aA (0) = r (0) aA (0)+w (0)�cA (0). That is, household
A will initially go into debt if and only if he consumes more than he earns at time 0. We next
describe two scenarios in which this is possible. As the �rst example, consider the case in
which aB is very large (think of B as Bill Gates) so that the initial capital-labor ratio is large.
In particular, assume that k (0) = aB=2 is much larger than k�, the steady state capital-labor
ratio. From the baseline analysis for the neoclassical model, k (0) gradually decreases to k�

along the saddle path. The interest rate r (t) in this economy then starts low and gradually
increases to its steady state value r�. Since interest rate is low early on, A would like to
borrow and consume more early on, which creates a force that increases cA (0). On the other
hand, wages w (t) are decreasing in this economy, hence the initial wages w (0) are also high
compared to the steady state value w�. This creates a wealth e¤ect which may make agent
A save early on rather than borrow. In general, it is not clear which force dominates and
whether Eq. (I8:68) is satis�ed. However, when � is very small (intertemporal substitution
is su¢ ciently elastic), it can be shown that A has a lot of incentives to tilt consumption to
earlier dates, the �rst force dominates, and Eq. (I8:68) is satis�ed.6 As the second example,
consider the case in which aB is also low, hence the initial level of capital-labor ratio satis�es
k (0) < k�. In this case, the capital-labor ratio gradually increases towards k� along the

6In fact, the example might be constructed in a way such that not only A goes into debt initially, but
also stays in debt in steady state. Even though A is in debt in steady state, he pays interest on his debt so
the level of the debt does not grow. Hence, A is not running a Ponzi scheme and Bill Gates is willing to lend
him money since he is getting a fair rate of return from him.
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saddle path. In particular, wages w (t) also increase over time. Assume this time that � is
high, so that A would like a �atter consumption pro�le. Given that A faces an increasing
wage pro�le, he has an incentive to borrow early on and smooth his consumption over time.
Intuitively, A might borrow in equilibrium to buy his Ferrari as a graduate student!7

Note that going into debt is never observed in equilibrium with a representative household.
In a closed economy, the equilibrium asset level of the representative household is equal to
the level of the capital stock, which is always positive. As our analysis in part (a) shows,
replacing the no-Ponzi scheme condition with a no-borrowing constraint does not change the
equilibrium path in a representative household model. But as this exercise demonstrates
the equilibrium path might change once we have heterogenous agents. The exercise also
shows that the Gorman aggregation theorem does not necessarily apply to the neoclassical
economy if we assume the no-borrowing constraint. Hence the no-Ponzi condition is the
right borrowing restriction if we are studying issues not related to credit constraints, since it
enables us to study the simpler representative household economy without loss of generality.

Exercise 8.31

Exercise 8.31, Part (a). Consider an economy populated by a representative household
whose preferences are given by

U(0) =

Z 1

0
exp(��t)(c(t)� )

1�� � 1
1� � dt

with  > 0. The production function Y (t) = F (K(t); A(t)L(t)) is neoclassical, there is no
population growth and technology grows exponentially, i.e. A(t) = exp(gt)A(0). The utility

function u(c) = (c�)1���1
1�� is meant to capture that there is a minimum level of consumption

 the consumer has to consume every period, i.e.  can be seen as a subsistence level of
consumption.

Exercise 8.31, Part (b). Changing the utility function does not change anything in
the de�nition of an equilibrium. Hence, a competitive equilibrium in this economy consists
of allocations of consumption and e¤ective capital-labor ratios [c(t); k(t)]1t=0 and of sequences
of wages and interest rates [r(t); w(t)]1t=0 such that consumers maximize utility taking prices
as given, �rms maximize pro�ts taking prices as given and markets clear. As this economy
features labor-augmenting technological change, we use the e¤ective capital-labor ratio k(t) =
K(t)

A(t)L(t) =
K(t)
A(t)L instead of the usual capital-labor ratio

K(t)
L .

Exercise 8.31, Part (c). As shown in the de�nition above, the central object of the
equilibrium are the time paths of consumption and capital-labor ratios [c(t); k(t)]1t=0. Hence,
to characterize the equilibrium in this economy we have to derive the system of di¤erential
equations characterizing the entire evolution of these two variables. From the consumer�s
maximization problem we get the usual Euler equation

_c(t)

c(t)
=

1

"u(c(t))
(r(t)� �); (I8.69)

7Note, however, that it is not very easy to get this situation in equilibrium. Since aggregate per-capita
assets (aA + aB) =2 must be increasing, the parameters must be such that, as A borrows, B must be willing to
lend and increase his level of assets. The di¢ culty is that A and B share the same �, face the same wages, and
they both have somewhat low levels of initial wealth. This makes it di¢ cult to get the e¤ect in equilibrium.
Nevertheless, there exists parameterizations such that this happens.
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where "u(c(t)) is the inverse of the intertemporal elasticity of substitution and in our case
given by

"u(c(t)) = �
u00(c(t))c(t)

u0(c(t))
= �

c(t)

c(t)�  : (I8.70)

In the case of standard CRRA preferences with  = 0, (I8.70) shows that "u(c(t)) is just
given by the constant �. In this exercise this term is not constant but depends on the level
of consumption c(t). Pro�t maximization by competitive �rms implies that the marginal
product of capital net of deprecation is equal to the real interest rate, i.e.

r(t) = FK(K(t); A(t)L(t))� � � f 0(k(t))� �; (I8.71)

where k(t) = K(t)
A(t)L and f(k) � F ( KAL ; 1) as the production function is neoclassical. From

(I8.69) and (I8.71) we therefore get

_c(t)

c(t)
=

1

"u(c(t))
(f 0(k(t))� � � �): (I8.72)

The economy wide resource constraint

_K(t) = F (K(t); L(t)A(t))� C(t)� �K(t)

implies that the e¤ective capital-labor ratio accumulates according to

_k(t) = f(k(t))� c(t)

A(t)
� (� + g)k(t): (I8.73)

In contrast to the analysis contained in Chapter 8, we cannot exclude the technology term
A(t) from the analysis. Even if we would analyze the system using normalized consumption
~c(t) = c(t)

A(t) , (I8.73) would not explicitly depend on A(t) anymore, but this transformation
would cause (I8.72) to feature an explicit dependence on A(t). Hence we have to analyze the
system in all three variables k(t); c(t) and A(t). As the technology term grows exponentially,
its law of motion is simply given by

_A(t) = gA(t): (I8.74)

This being said, we have now derived the equations characterizing the evolution of the entire
system. The three equations contained in (I8.72), (I8.73) and (I8.74) are three di¤erential
equations in the three variables k(t); c(t) and A(t). Additionally we have two initial conditions
for k(t) and A(t) as k(0) and A(0) are given. To pin down the exact path for the evolution
of per capita consumption c(t), we get a terminal condition from the transversality condition

lim
t!1

exp (��t)� (t) k (t) = 0; (I8.75)

where �(t) is the multiplier of the corresponding current value Hamiltonian. Hence we have
three di¤erential equations in three variables and three terminal conditions so that the analy-
sis above pins down the entire path [c(t); k(t); A(t)]1t=0. The implied path for per capita
consumption and the e¤ective capital-labor ratio is the desired equilibrium path for these
variables. Equilibrium prices can then be recovered as

r(t) = f 0(k(t))� �
w(t) = f(k(t))� k(t)f 0(k(t)):

This concludes the characterization of the equilibrium.
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We will now show that this economy does not admit a BGP equilibrium. To see why,
recall that along the BGP the capital-output ratio is constant. But now note that

K(t)

Y (t)
=
K(t)=(A(t)L(t))

Y (t)=(A(t)L(t))
=

k(t)

f(k(t))
;

so that K(t)Y (t) can only be constant when k(t) is constant, as f is strictly concave. Hence along
the BGP we need k(t) = k� for some constant k�. From (I8.73) it then follows that

c(t)

A(t)
= f(k�)� (� + g)k�:

Hence c(t)
A(t) has to be constant along the BGP, i.e. consumption per capita grows at the

constant rate g. Using (I8.72) and (I8.70) we therefore get that along the BGP we need that

g =
1

�

c(t)� 
c(t)

(f 0(k�)� � � �):

This however is a contradiction as the LHS is constant, whereas the RHS changes over time
as c(t) grows at rate g. This proves that this economy does not admit a BGP with a positive
growth rate. The reason is that the consumer�s intertemporal elasticity of substitution is not
constant but decreasing in c(t) as

@"u(c(t))

@c(t)
= �� 

(c(t)� )2 :

For given interest rates r > �, consumption growth will therefore be increasing in the level of
consumption. Intuitively, the higher the level of consumption, the more willing the consumer
to tilt his consumption schedule as the subsistence level  loses in importance. Along the
BGP with a positive growth rate however, interest rates are constant (as k(t) = k�) and per
capita consumption is growing. Hence, the growth rate of consumption will be a function
of the level of consumption and consumption growth is not constant. This is inconsistent
with balanced growth. We will show below however, that this economy will feature balanced
growth asymptotically.

Exercise 8.31, Part (d). The transversality condition was given in (I8.75) as

lim
t!1

exp(��t)�(t)k(t) = 0; (I8.76)

where recall �(t) is the multiplier in the corresponding current value Hamiltonian. From the
necessary condition

�(t)[f 0(k(t))� � � g] = ��(t)� _�(t)

we can solve for �(t) as

�(t) = �(0) exp

�
�
Z t

0
(f 0(k(s)� � � �� g)ds

�
:

Substituting this into (I8.76) yields

lim
t!1

�(0) exp

�
�
Z t

0
(f 0(k(s)� � � g)ds

�
k(t)L = 0: (I8.77)

Although we saw that this economy does not admit a BGP, we will show below that growth
will be balanced asymptotically. In particular we show that asymptotically per capita con-
sumption will grow at the constant rate g and that the e¤ective capital-labor ratio will be
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constant. Using the Euler equation (I8.72) we therefore know that (asymptotically)

lim
t!1

k(t) = k� and lim
t!1

_c(t)

c(t)
= g =

1

�

�
f 0(k�)� � � �

�
;

where we used (and will argue below) that

lim
t!1

"u(c(t)) = � lim
t!1

c(t)

c(t)�  = �:

Substituting this in (I8.77) yields

lim
t!1

exp (�(�g + �� g)t) = lim
t!1

exp ((1� �)g � �)t) = 0:

This can only be satis�ed if
� > (1� �)g (I8.78)

which is the required parametric condition for the transversality condition to be satis�ed.

Exercise 8.31, Part (e). Now let us think about the transitional dynamics of this
economy. To do so and to show the relationship between this economy and the canonical
neoclassical economy let us consider the transformation

x(t) = c(t)� :
From (I8.72) we therefore get that

_x(t)

x(t)
=
1

�
(f 0(k(t))� � � �);

and the accumulation equation of the e¤ective capital-labor ratio (I8.73) changes to

_k(t) = f(k(t))� x(t)

A(t)
� (� + g)k(t)�A(t)�1:

To stress the similarity between this economy and the baseline model with labor-augmenting
technological progress analyzed in Section 8.7, let us consider the normalized variable ~x(t) =
x(t)=A(t). Doing so yields the two di¤erential equations

d~x(t)dt

~x(t)
=

1

�
(f 0(k(t))� � � �� �g) (I8.79)

_k(t) = f(k(t))� ~x(t)� (� + g)k(t)�A(t)�1:
Together with the initial conditions k(0) and the terminal condition given by the transver-
sality condition (see (I8.77))

lim
t!1

exp

�
�
Z t

0

�
f 0 (k (s))� � � g

�
ds

�
k (s) = 0,

this economy looks exactly the same as the baseline model except for the A(t)�1 term in
the capital accumulation equation. So if this term was absent, this economy (in normalized
variables ~x and k) would have a steady state (~x�; k�) given by

f 0(k�) = � + �+ �g and ~x� = f(k�)� (� + g)k(t): (I8.80)

Furthermore, the system was saddle path stable such that x(0) would be chosen to ensure
that the solution would be on the stable arm of the system and converge to the steady state.

Now consider the original economy where A(t)�1 is not absent. As this term will vanish
in the limit as limt!1A(t)�1 = 0, the steady state of the original economy will also be
given by (I8.80). In particular, the economy will also be saddle path stable so that there
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is one stable arm and the solution will be on this arm and converges to the steady state.
In particular (I8.80) shows that k(t) will be constant in the steady state and x(t) will be
proportional to A(t) (as ~x(t) is constant). Hence, x(t) asymptotically grows at rate g so that

g = lim
t!1

_x(t)

x(t)
= lim

t!1

_c(t)

c(t)�  = lim
t!1

_c(t)

c(t)

c(t)

c(t)�  = lim
t!1

_c(t)

c(t)

as limt!1
_c(t)
c(t) > 0. This shows that growth will be balanced asymptotically as claimed in

the analysis in Part (d) above.
Although the steady state of the system is the same as in the economy where the A(t)�1

term is absent, the transitional dynamics are di¤erent. If we consider the phase diagram in
the (k; ~x) space, it is apparent from (I8.79) that the d~x(t)dt = 0 locus has exactly the same
form as in the baseline model. The _k(t) = 0-locus however is di¤erent. This locus is given
by the equation

~x(t) = f(k(t))� (� + g)k(t)�A(t)�1:

Hence in the (k; ~x) space, this locus shift up over time (as A(t)�1 decreases over time) and
converges to the _k(t) = 0-locus of the baseline model. Hence asymptotically as t tends to
in�nity, this economy is characterized by exactly the same equations as the baseline model.
Therefore it is also intuitive that the required parametric restriction in (I8.78) is the same as
in the baseline model (see Assumption 4). Note in particular that the saddle path will also
be a function of time. Hence, together with the _k(t) = 0-locus, the saddle path will also shift
as time progresses. The system however will still be saddle path stable, i.e. in each period
the solution will be on the respective period�s saddle path and converge to the unique steady
state.

Exercise 8.31, Part (f). With the alternative preferences, the Euler equation is still
given by

_c(t)

c(t)
=

1

"u(c(t))
(r(t)� �);

where now "u(c(t)) is given by

"u(c(t)) = �
u00(c(t))c(t)

u0(c(t))
= �

c(t)

c(t)� (t) :

The rest of the analysis is exactly analogous to the case considered above. In particular there
will not exist a BGP as "u(c(t)) is not constant. Asymptotically however, we have that

lim
t!1

"u(c(t)) = lim
t!1

�
c(t)

c(t)� (t) = lim
t!1

�
c(t)

c(t)�  = �;

as (t) converges to a constant and c(t) grows over time. Hence, the economy will again
have a BGP asymptotically and this BGP is exactly the same as the one characterized above
(and therefore also the same as in the baseline model). Note however that if the dynamics of
(t) are unrestricted, we cannot conclude anything about the behavior of the k(t) = 0�locus
over time. Although we know that this locus will converge to its counterpart of the baseline
model, there is no reason why it should shift up over time as in Part (e) above.
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Exercise 8.33

Exercise 8.33, Part (a). A (symmetric) competitive equilibrium (in which all house-
holds choose the same per capita variables) is a path of allocations [c (t) ; l (t) ; a (t) ; k (t)]t
and prices [r (t) ; w (t)]t such that each household solves

max
[c(t);l(t)2[0;1];a(t)]t

U (0) =

Z 1

0
exp (��t)u (c (t) ; 1� l (t)) ; (I8.81)

s.t. _a (t) = r (t) a (t) + w (t) l (t)� c (t) , (I8.82)

and lim
t!1

a (t) exp

�
�
Z t

0
r (s) ds

�
� 0,

�rms maximize pro�ts which gives

r (t) = FK (k (t) ; A (t) l (t))� �, w (t) = A (t)FL (k (t) ; A (t) l (t)) , (I8.83)

and all markets clear, in particular, a (t) = k (t) for all t.

Exercise 8.33, Part (b). Note that Problem (I8:81) is a problem with one state vari-
able, a, and two control variables, c and l. The current value Hamiltonian is

Ĥ (t; a; c; l; �) = u (c; 1� l) + � (r (t) a+ w (t) l � c) .
The �rst-order conditions are

Ĥc = 0, which gives uc (c; 1� l) = �

Ĥl = 0, which gives u2 (c; 1� l) = �w (t)

Ĥa = ��� _�, which gives
_�

�
= �� r (t) .

(here, u2 (c; 1� l) = @ul (c; 1� l) =@ (1� l) denotes the partial derivative of u with respect
to leisure choice 1� l) The �rst-order conditions can be simpli�ed to

�u (c; 1� l)
_c

c
� uc2 (c; 1� l) _l

uc (c; 1� l)
= r (t)� � (I8.84)

u2 (c; 1� l) = uc (c; 1� l)w (t) , (I8.85)

where

�u (c; 1� l) = �
ucc (c; 1� l) c
uc (c; 1� l)

is the elasticity of the marginal utility uc with respect to c. Note that the �rst condition (I8:84)
is the intertemporal condition, i.e. the Euler equation, and the second condition (I8:95) is the
intratemporal condition, i.e. the labor-leisure trade-o¤. The strong form of the transversality
condition is also necessary in this problem, that is limt!1 exp (��t)� (t) a (t) = 0. As in the
baseline case, the transversality condition can be rewritten as

lim
t!1

a (t) exp

�
�
Z t

0
r (s) ds

�
= 0. (I8.86)

Note that the maximized Hamiltonian M (t; a; �) = maxc;l Ĥ (t; a; c; l; �) is linear and

hence concave in a. Note also that for each feasible
h
~a (t) ; ~c (t) ; ~l (t)

i
t
, by the no-Ponzi

condition, we have limt!1 exp (��t)� (t) ~a (t) � 0. Then Theorem 7.14 applies and shows
that these conditions are su¢ cient for optimality.
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Exercise 8.33, Part (c). The social planner solves

max
[c(t);l(t)2[0;1];k(t)]t

U (0) =

Z 1

0
exp (��t)u (c (t) ; 1� l (t)) ;

s.t. _k (t) = F (k (t) ; A (t) l (t))� �k (t)� c (t) and k (t) � 0. (I8.87)

Note that this problem is also an optimal control problem with one state variable k (t) and
two control variables fc (t) ; l (t)g. The current value Hamiltonian is

Ĥ (t; k; c; l; �) = u (c; 1� l) + � (F (k;A (t) l)� �k � c) .

The �rst-order conditions are

Ĥc = 0, which gives uc (c; 1� l) = �

Ĥl = 0, which gives u2 (c; 1� l) = �A (t)FL (k;A (t) l)

Ĥk = ��� _�, which gives
_�

�
= �+ � � FK (k;A (t) l) .

The �rst-order conditions can once again be simpli�ed to

�u (c; 1� l)
_c

c
� uc2 (c; 1� l) _l

uc (c; 1� l)
= FK (k;A (t) l)� � � � (I8.88)

u2 (c; 1� l) = uc (c; 1� l)A (t)FL (k;A (t) l) . (I8.89)

The transversality condition can be written as

lim
t!1

exp (��t) k (t)
Z t

0
� (FK (k (s) ; A (s) l (s))� �) ds = 0. (I8.90)

Under the parametric restriction g (1� �) < �, there is a unique path that satis�es all of Eqs.
(I8:87)� (I8:90).

Assuming that u is jointly concave in c and l, the current value Hamiltonian Ĥ (t; k; c; l; �)
is concave and we have limt!1 exp (��t)� (t) ~k (t) � 0 for all feasible paths since ~k (t) � 0.
Then Theorem 7.14 applies and shows that these conditions are su¢ cient for optimality, that
is, the path described above is the unique solution to the social planner�s problem.

Exercise 8.33, Part (d). Note that, after substituting the competitive market prices
for r (t) and w (t) from Eq. (I8:83), the household resource constraints (I8:82), �rst-order
conditions (I8:84) � (I8:85), and the transversality condition (I8:86) become equivalent to
respectively to their counterparts in the social planner�s problem, Eqs. (I8:87),(I8:88)�(I8:89)
and (I8:90).

It follows that given any equilibrium allocation [a (t) � k (t) ; k (t) ; c (t) ; r (t) ; w (t)]t, the
allocation [c (t) ; k (t)]t solves the social planner�s problem. Conversely, consider a solution
[c (t) ; k (t)]t to the social planner�s problem and de�ne the competitive prices r (t) and w (t)
as in Eq. (I8:83). From the correspondence that we have noted above, the allocation

ah (t) = k (t) , ch (t) = c (t) , lh (t) = l (t)

solves the household�s problem given the path of prices [r (t) ; w (t)]t (where we use the su-
perscript h to distinguish between the household�s and the social planner�s allocations). It
follows that the allocation [a (t) � k (t) ; k (t) ; c (t) ; r (t) ; w (t)]t is a competitive equilibrium,
proving that the two problems are equivalent when the prices are given by Eq. (I8:83).



Solutions Manual for Introduction to Modern Economic Growth 115

Exercise 8.33, Part (e). Suppose that the equilibrium we have described in Part (d)
has constant and equal rates of consumption and output growth, and a constant level of labor
supply l� 2 [0; 1]. From the resource constraints, we have

_k (t) = F (k (t) ; A (t) l�)� �k (t)� c (t) .

This equation implies that, k (t) grows at the same constant rate as output and consumption,
and that this constant rate must be equal to g, the growth rate of A (t) ; since F is constant
returns to scale. Moreover, in any such BGP, the interest rate is constant since

r (t) = FK (k (t) ; A (t) l
�)� �

= FK

�
k (t)

A (t)
; l�
�
� � = r�,

where the second line uses the fact that FK is homogenous of degree 0 and the equality follows
from the fact that k (t) and A (t) grow at the same rate g on a BGP. Further, the wages grow
at the constant rate g since

w (t) = A (t)FL (k (t) ; A (t) l
�) (I8.91)

= A (t)FL (k (t) =A (t) ; l
�) = A (t)w�,

where the second line uses linear homogeneity and the last line uses the fact that k (t) =A (t)
is constant.

Next, note that substituting l (t) = l�, the _l term in Eq. (I8:84) drops out and the Euler
equation can be rewritten as

�u (c (t) ; 1� l�)
_c (t)

c (t)
= r� � �

Since _c (t) =c (t) is constant on the BGP, it follows that �u (c (t) ; 1� l�) should be independent
of c (t). Since we assume (in the exercise statement) that the function �u (c; 1� l) does not
depend on l, it follows that it should be a constant function, that is

�u (c; 1� l) = �
ucc (c; 1� l) c
uc (c; 1� l)

= � (I8.92)

for all c � c (0) and l, where � 2 R+ is some constant. Rewriting Eq. (I8:92) as

@ log [uc (c; 1� l)]
@ log (c)

= ��

and partially integrating this expression with respect to c, we get

log [uc (c; 1� l)] = �� log (c) +X (1� l) ,

where X (1� l) is a constant of (partial) integration that could depend on l but not c.
Rewriting the previous expression, we have

uc (c; 1� l) = X (1� l) c��. (I8.93)

Let us now distinguish between two cases.
Case 1, � 6= 1. Integrating Eq. (I8:93) with respect to c once more, we have

u (c; 1� l) = X (1� l) c
1��

1� � + Y (1� l) , (I8.94)
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where Y (1� l) is a constant of partial integration that could depend on l. Note that the
intratemporal �rst-order condition in Eq. (I8:85) must also hold on a BGP, which, after
substituting w (t) = w�A (t) from Eq. (I8:91), implies

u2 (c (t) ; 1� l�) = A (t)w�uc (c (t) ; 1� l�) . (I8.95)

Plugging in the functional form in Eq. (I8:94), the previous equation can be rewritten as

X 0 (1� l�) c (t)
1��

1� � + Y 0 (1� l�) = X (1� l�)A (t)w�c (t)�� .

Recall that c (t) and A (t) grow at the same constant rate g. Then, the left hand side and
the right hand side grow at the same constant rate only if

Y 0 (1� l�) = 0. (I8.96)

In particular, we have
Y (1� l) = Y

for some constant Y .8 We de�ne h (1� l) = X (1� l) and take Y = 0 (which is without loss
of generality since it only normalizes the utility function) and conclude that, when � 6= 1, the
only functional form for u (c; 1� l) that is consistent with a BGP is

u (c (t) ; 1� l (t)) = h (1� l (t)) c (t)
1��

1� � . (I8.97)

Note also that we should have h (:) > 0 since otherwise the marginal utility, uc, would be
negative.9

Case 2, � = 1. In this case, integrating Eq. (I8:93) gives

u (c; 1� l) = X (1� l) log (c) + Y (1� l) .
Substituting this in the intratemporal condition, we have

X 0 (1� l�) log (c (t)) + Y 0 (1� l�) = X (1� l�) A (t)
c (t)

w�.

This time, since A (t) =c (t) is constant on a BGP, this can be satis�ed only if

X 0 (1� l�) = 0, and Y 0 (1� l�) =X (1� l�) > 0. (I8.98)

In particular, we have10

X (1� l) = X

for some X. This time we de�ne h (1� l) = Y (1� l), normalize X = 1, and conclude that
the only functional form for u (c; 1� l) that is consistent with a BGP is

u (c (t) ; 1� l (t)) = log c (t) + h (1� l (t)) , (I8.99)

where h (:) is some function with h0 (:) > 0 as desired.

8This assumes that the restriction in Eq. (I8:96) holds not just for l� but for any l. This is not entirely
correct. Actually, the only restriction we will get will be Eq. (I8:96), since, given l is constant at l�, we do
not really have any information on functional forms away from the BGP value l = l�.

9It turns out that the condition h0 (:) > 0 is not necessary in this case. Note that we have

u2 (c (t) ; 1� l (t)) = h0 (1� l (t))
c (t)1��

1� �
.

Hence, to ensure that u2 > 0 so that the individual enjoys leisure, we need h0 (:) > 0 when � < 0 and h0 (:) < 0
when � > 1.

10The same caveat above applies here as well. The only restriction we get is Eq. (I8:98). Given that l is
constant at l� on a BGP, we do not have any information on the shape of the function away from the BGP
level l = l�.
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Intuitively, the interest rate is constant only if the intertemporal elasticity of substitution
remains constant as c grows, which explains why the utility function must be CES when
viewed as a function of c. For the intratemporal trade-o¤, there are three economic forces.
First, income and hence consumption is growing at rate g hence the marginal utility of con-
sumption is shrinking at rate ��g, which creates a force towards more leisure (the income
e¤ect). Second, wages are growing at rate g hence the marginal return to labor is growing at
rate g, which creates a force towards more labor (the substitution e¤ect). Third, marginal
bene�t to leisure might also be changing as consumption grows, depending on whether con-
sumption or leisure are complements or substitutes. To have a constant labor choice l� on a
BGP, we must have the functional form such that the third force exactly balances the �rst
two forces. In particular, when � > 1, we need the leisure and consumption to be substitutes
with the functional form in (I8:97) so that with more consumption marginal value for leisure
decreases just enough that the individual keeps leisure choice constant. When � < 1, we
need the leisure and consumption to be complements with exactly the functional form in
(I8:97) so that with more consumption marginal value for leisure increases just enough that
the individual keeps leisure choice constant. With � = 1, the �rst two e¤ects (income and
substitution) cancel so we want consumption and labor to be separable (neither substitutes
nor complements) as in Eq. (I8:99) :

Exercise 8.34

Exercise 8.34, Part (a). Including a government with an exogenous tax sequence
[� (t)]1t=0 does not a¤ect the de�nition of the competitive equilibrium, i.e. a competitive
equilibrium in this economy is given by sequences of wages and interest rates [w (t) ; r(t)]1t=0
and sequences of per capita consumption levels and capital stocks [c (t) ;K(t)]1t=0 such that
the utility of the representative household is maximized, �rms maximize pro�ts and all mar-
kets clear. Note that we did not explicitly consider the labor supply of the representative
household as labor will be supplied inelastically.

Exercise 8.34, Part (b). The maximization problem of the representative household
is given by

max
[c(t);K(t)]1t=0

Z 1

0
exp (��t)

"
c (t)1�� � 1
1� � +G (t)

#
dt

s.t. _k (t) = (1� � (t)) (f(k(t))� c(t))� �k (t) ;

where we again de�ned all variables as per capita variables and already substituted that
c (t)+i (t) = y (t) (which will of course hold with equality). Note especially that the household
does not internalize that g (t) = � (t) i (t), i.e. takes g(t) as given. The corresponding current-
value Hamiltonian for this problem is given by

Ĥ(c; k; �) =
c (t)1�� � 1
1� � +G (t) + �(t)((1� � (t)) (f(k(t))� c(t))� �k (t));

which yields the necessary conditions

Ĥc(c; k; �) = c (t)�� � (1� � (t))�(t) = 0 (I8.100)

Ĥk(c; k; �) = �(t)
�
(1� � (t)) f 0(k(t))� �

�
= � _�(t) + ��(t): (I8.101)
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From (I8.100) we get that
_c(t)

c(t)
=
1

�

�
_�(t)

1� �(t) �
_�(t)

�(t)

�
;

so that by substituting (I8.101) we get the modi�ed Euler equation

_c(t)

c(t)
=
1

�

�
_�(t)

1� �(t) + (1� � (t)) f
0(k(t))� � � �

�
: (I8.102)

The intuition for (I8.102) is straightforward. As usual, this equation describes the consumer�s
intertemporal consumption behavior. This however now takes the tax sequence the consumer
faces into account. If the tax schedule is increasing over time, i.e. _�(t) > 0, the consumer
will tilt his consumption schedule more as investing today is relatively cheap. Hence, an
increasing tax schedule acts like a higher interest rate, as the returns of investing today are
higher than doing so tomorrow.

Exercise 8.34, Part (c). If limt!1 � (t) = � we can characterize the steady state of
this economy. As taxes are constant asymptotically, the _�(t)

1��(t) term vanishes in (I8.102) so
that asymptotically, consumption behavior is described by

_c(t)

c(t)
=
1

�

�
(1� �) f 0(k(t))� � � �

�
:

As consumption has to be constant in the steady state, the steady state capital stock k� is
implicitly de�ned by

f 0(k�) =
� + �

1� � : (I8.103)

By the concavity of f , the steady state capital-labor ratio is unique. The steady state levels of
consumption and investment can then be backed out from the capital accumulation equation
and the resource constraint as

i� =
�

1� � k
�

c� = f(k�)� �

1� � k
�: (I8.104)

The steady state per capita level of the public good is given by

G� = �i� = �
�

1� � k
�: (I8.105)

Exercise 8.34, Part (d). To study the optimal steady state tax rate, suppose the
economy is in the steady state. The utility level of the representative consumer is given by

USS(�) =

Z 1

0
exp (��t)

�
(c�)1�� � 1
1� � +G�

�
dt =

�
(c�)1�� � 1
1� � +G�

�
1

�
;

where USS(�) stresses the fact that we consider steady state utility and explicitly denote the
dependence on the tax rate � via the steady state levels of consumption c� and the public
good G� given in (I8.104) and (I8.105). Substituting those expressions, the optimal tax rate
�SS is given by

�SS = argmax
�

(f(k�)� �
1�� k

�)1�� � 1
1� � + �

�

1� � k
�:

The necessary �rst-order condition is given by

(c�)��
��
f 0(k�)� �

1� �

�
@k�

@�
� �

(1� �)2k
�
�
+

��

1� �
@k�

@�
+

�k�

(1� �)2 = 0: (I8.106)
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Although this might look daunting, recall that from (I8.103) we get that

f 0(k�)� �

1� � =
� + �

1� � �
�

1� � =
�

1� � : (I8.107)

Additionally we have that
@k�

@�
=

� + �

(1� �)2f 00(k�) ;

so that
��

1� �
@k�

@�
+

�k�

(1� �)2 =
��

1� �
� + �

(1� �)2f 00(k�) +
�k�

(1� �)2 =
�

(1� �)2

�
�

1� �
� + �

f 00(k�)
+ k�

�
:

Using this and (I8.107), we can write (I8.106) as

(c�)��
�

�

�(1� �)
� + �

f 00(k�)
� k�

�
+

�
�

1� �
� + �

f 00(k�)
+ k�

�
= 0;

which de�nes the optimal tax rate implicitly.
Although this tax rate maximizes the steady state utility of the representative consumer,

it will not maximize the utility of the representative household if the economy starts away
from the steady state. The reason is that the sequence of taxes [�(t)]1t=0 determines the
investment behavior of the household and hence the whole sequence of the capital stock
[k(t)]1t=0. In particular taxes therefore determine the speed of adjustment to the steady state
capital stock and the consumption level during the transitional dynamics. This is not taken
into account when taxes are chosen to maximize the steady state utility of the representative
consumer.

Exercise 8.37

Even with the introduction of adjustment costs, the Second Welfare Theorem still ap-
plies in this economy. Hence, let us study the social planner�s problem to characterize the
equilibrium allocation. In Chapter 7 we introduced costs of adjustment by assuming that
those costs are represented by a function �(I) which is continuously di¤erentiable, strictly
increasing and strictly convex. Furthermore we assumed that

�(0) = �0(0) = 0:

The problem of the social planner is therefore given by

max
[c(t);i(t)]1t=0

Z 1

0
exp (��t) c (t)

1�� � 1
1� � dt

s.t: _k(t) = i(t)� �k(t)
f(k(t)) = i(t) + c(t) + �(Li(t)):

where we again de�ned per capita variables and denoted them with small letters. To simplify
notation we furthermore normalize the size of the population to one so that I(t) = Li(t) =
i(t). This is without any loss of generality but simpli�es the notation as �(Li(t)) = �(i(t)). As
in the analysis in Chapter 7, these constraints show that the costs of adjustment �(i(t)) just
represent a loss of resources without adding to either consumption or capital accumulation.
By solving the resource constraint for consumption, the problem has only one control variable
(i(t)) and one state variable (k(t)). The corresponding current-value Hamiltonian is given by

Ĥ(i(t); k(t); �(t)) =
[f(k(t))� i(t)� �(I(t))]1�� � 1

1� � + �(t) (i(t)� �k(t)) :
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The �rst-order conditions are

Ĥi(i(t); k(t); �(t)) = �c(t)��[1 + �0(i(t))] + �(t) = 0 (I8.108)

Ĥk(i(t); k(t); �(t)) = c(t)��f 0(k(t))� ��(t) = ��(t)� _�(t): (I8.109)

From (I8.108) and (I8.109) we get that

�(t)

[1 + �0(i(t))]
f 0(k(t))� ��(t) = ��(t)� _�(t);

so that

� _�(t)
�(t)

=
f 0(k(t))

[1 + �0(i(t))]
� � � �:

Additionally we can di¤erentiate (I8.108) with respect to time to get

� _�(t)
�(t)

= �
_c(t)

c(t)
� �00(i(t))

1 + �0(i(t))
_i(t): (I8.110)

Hence, the modi�ed Euler equation in this economy is given by

_c(t)

c(t)
=
1

�

�
f 0(k(t)) + �00(i(t))_i(t)

[1 + �0(i(t))]
� � � �

�
: (I8.111)

Together with the capital accumulation equation

_k(t) = i(t)� �k(t); (I8.112)

the initial condition k(0) and the transversality condition

lim
t!1

exp(��t)�(t)k(t) = 0;

(I8.111) this is a system of two di¤erential equations in two unknowns c(t) and k(t), which
characterizes the dynamic behavior of the economy.

Let us �rst look for a steady state where consumption and capital are constant, i.e.
c(t) = c� and k(t) = k�. From the capital accumulation equation (I8.112) we get that steady
state investment is given by

i(t) = i� = �k�;

i.e. investment will also be constant. This is intuitive, as for capital to be constant, investment
has to be exactly high enough to replace the depreciated capital stock. Hence investment
will be positive but constant. Using that _i(t) = 0 in the steady state, the modi�ed Euler
equation (I8.111) implies that the steady state capital stock is implicitly de�ned by

� + � =
f 0(k�)

1 + �0(i�)
=

f 0(k�)

1 + �0(�k�)
: (I8.113)

To see that (I8.113) de�nes k� uniquely, note that the RHS is strictly decreasing as

@
�

f 0(k)
1+�0(�k)

�
@k

=
f 00(k�)(1 + �0(�k�))� f 0(k�)�00(�k�)��

1 + �0(�k�)
�2 < 0;

because f 00(k) < 0 and �00(�k) > 0. Finally we have to show that the transversality condition
is satis�ed on the path that leads to the steady state. In the steady state we k(t) = k�

and (from (I8.110)) _�(t)
�(t) = 0, as both consumption and investment are constant. Hence, the

transversality condition reduces to

lim
t!1

exp(��t)�(t)k(t) = ��k� lim
t!1

exp(��t) = 0;
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which is satis�ed as � > 0. This shows that the economy with adjustment costs has a unique
steady state. Furthermore we can see from (I8.113) that the presence of adjustment costs
will decrease the steady state capital stock compared to the standard neoclassical growth
model. In the standard model, the marginal returns to capital in the steady state were given
by �+ �, whereas now they are given by (1+�0(�k))(�+ �) > �+ �. As f is strictly concave,
the steady state level of capital will be lower. Steady state consumption is given by

c� = f(k�)� i� � �(i�) = f(k�)� �k� � �(�k�);

which is also lower than its baseline model counterpart. First of all, each period the adjust-
ment costs �(�k�) have to be paid. Secondly, the capital stock is lower and given that the
capital stock in neoclassical growth model without adjustment costs was already below the
golden rule level, a lower level of capital will unambiguously decrease consumption.

Let us now turn to the transitional dynamics. We will just provide the intuition. As in
Chapter 7 it is seen from (I8.110) that if investment costs are linear, i.e. �00(i) = 0, the model
with adjustment costs behaves like the neoclassical growth model, as the dynamic system is
given by

_c(t)

c(t)
=

1

�

�
f 0(k(t))

[1 + �]
� � � �

�
_k(t) = i(t)� �k(t) = (1 + �)�1 (f(k(t))� c(t))� �k(t);

where we used that investment costs are given by �i(t). Hence, in this case the transitional
dynamics are very similar to the ones of the neoclassical growth model. The reason is that
with a linear adjustment cost function there are no incentives to smooth investment expen-
ditures. If adjustment costs are convex (i.e. �00(i) > 0), there is a bene�t of choosing a
smoother path of investment as the total costs of investing an amount i are lower when those
expenditures are smoothed over time. Hence, adjustment costs introduce a second force
which calls for slow path of capital accumulation. Not only tends capital accumulation to
be slow because of the consumption smoothing e¤ect, but investment will also be smooth to
reduce investment costs. Hence, if there are adjustment costs of investing, capital accumu-
lation will be slowed down. As the steady state will be similar to the standard neoclassical
growth model, adjustment costs of investment are often introduced as a explanation why the
transition to the steady state might not occur as fast as the standard neoclassical growth
model predicts.

Exercise 8.38*

Exercise 8.38, Part (a). Consider the budget constraint of the representative house-
hold. Let us �rst analyze the case where there areM separate assets. Although this economy
uses M capital goods, the resource constraint

C (t) +
MX
m=1

Im (t) � Y (t)

shows that all of these capital goods can be transformed into the consumption good. Hence
let us normalize the prices to unity, i.e.

pc(t) = pm(t) = 1, 8m;

and introduce asset-speci�c rates of return as the key prices in this economy. Let rm(t) be
the rate of return for asset m and let am(t) be the asset holdings of the mth asset. The �ow
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constraint of the representative consumer is given by

w(t) +
MX
m=1

rm(t)am(t) = c(t) +
MX
m=1

_am(t); (I8.114)

which states that the consumer receives labor income w(t) and capital incomePM
m=1 rm(t)am(t) and can allocate these funds between consumption and savings in any

of the M available assets. However, as from the point of view of the consumer all assets are
perfect substitutes, any equilibrium we will need to have

rm(t) = rs(t) = r(t) 8m; s: (I8.115)

This follows from the requirement that asset prices (or returns) have to be arbitrage-free. If
(I8.115) would not hold, there would be risk-free arbitrage opportunities in that the consumer
could take on a (in�nite) short position in the asset with the lowest return and a (in�nite)
long position in the asset with the highest return. This can not occur in equilibrium as asset
markets would not clear. Then however we can show that the budget constraint in (I8.114)
is equivalent to a setup where the consumer holds one asset consisting of the entire capital
stock in the economy. To see this, let us de�ne

a(t) =
MX
m=1

am(t)

as the total asset holdings With (I8.115), (I8.114) can then be written as

w(t) + r(t)
MX
m=1

am(t) = w(t) + r(t)a(t) = c(t) +
MX
m=1

_am(t) = c(t) + _a(t): (I8.116)

And (I8.116) is just the standard budget constraint of the canonical neoclassical growth
model.

Exercise 8.38, Part (b). The de�nition of a competitive equilibrium is the usual one.
We just have to take care of the fact that now we have M asset markets with M rental
rates which have to be consistent with equilibrium. Hence, a competitive equilibrium in
this economy consists of sequences of wages and interest rates [w(t); r1(t); :::; rM (t)]1t=0 and
sequences of consumption levels and capital-labor ratios [c(t); k1(t); :::; kM (t)]1t=0, such that
the consumer�s utility is maximized, �rms maximize pro�ts and markets clear. Note that in
the de�nition of the equilibrium we need to consider rental rates rm(t) for all M types of
capital, as there are M markets for capital which all have to clear in equilibrium. Our result
that all those rental rates will have to be the same as claimed in (I8.115) follows directly from
market clearing as argued above. A BGP allocation in this economy is as usual one where
consumption and output grow at a common rate.

Exercise 8.38, Part (c). To study the decentralized economy, consider the represen-
tative �rm. The �rm takes wages and all m rental rates as given and chooses labor and the
m capital inputs to maximize pro�ts. As pro�ts are given by

�m(t) = F (k1 (t) ; :::; kM (t) ; 1)L(t)� w(t)L(t)�
MX
m=1

Rm(t)km(t)L(t);

wages and rental rates have to satisfy the usual �rst-order conditions

FL (k1 (t) ; :::; kM (t) ; 1) = w(t)

Fkm (k1 (t) ; :::; kM (t) ; 1) = Rm(t); (I8.117)
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where as usual the rate of return rm(t) and the rental rate Rm(t) are related by Rm(t) =
rm(t) + �m.

The dynamic optimization problem of the consumer is almost the same as in the neoclas-
sical growth model once we use that the M rental rates have to be equalized, i.e. have to
satisfy (I8.115). In particular, the consumer solves the problem

max
[c(t);a1(t);:::;aM (t)]

1
t=0

Z 1

0
exp (��t) c (t)

1�� � 1
1� � dt

s.t.
MX
m=1

_am (t) = w(t) + r(t)

MX
m=1

am(t)� c(t);

0 � lim
t!1

�
am(t) exp

�
�
Z t

0
r(s)ds

��
for all m:

This problem yields the familiar Euler equation

_c(t)

c(t)
=
1

�
(r(t)� �):

Using (I8.117) and (I8.115), this can be written as

_c(t)

c(t)
=
1

�
(Fkm (k1 (t) ; :::; kM (t) ; 1)� �m � �) (I8.118)

With these equations (note especially that (I8.118) is really a system ofM equations as it has
to hold for all M sectors) we are now in the position to characterize the equilibrium. As seen
in the de�nition of the equilibrium provided in Part (b), we have to characterize the time
paths of M + 1 variables [c(t); k1(t); :::; kM (t)]1t=0. To do so, note that (I8.115) and (I8.117)
imply that

r(t) = Fkm (k1 (t) ; :::; kM (t) ; 1)� �m = Fkn (k1 (t) ; :::; kM (t) ; 1)� �n; 8m;n:

These equations can be solved recursively to yield M � 1 equations hm(:) such that

km(t) = hm(k1(t)) for m > 1. (I8.119)

We can prove this result by induction. Suppose M = 2. Then we get that

Fk1 (k1; k2; 1)� Fk2 (k1; k2; 1) = �1 � �2:

As the production function is neoclassical, the LHS is strictly increasing in k2. Furthermore
it satis�es the Inada Conditions so that

lim
k2!0

[Fk1 (k1; k2; 1)� Fk2 (k1; k2; 1)] = �1

lim
k2!1

[Fk1 (k1; k2; 1)� Fk2 (k1; k2; 1)] = 1:

Hence, k2 can be uniquely solved in terms of k1 and parameters so that our claim is true for
M = 2. Now suppose the claim is true for M � 1 assets. Then we can solve the level of the
Mth assets in terms of the M � 1 assets, as the equation

Fk1 (k1; k2; :::; kM�1; kM ; 1)� Fk2 (k1; k2; :::; kM�1; kM ; 1) = �1 � �M
has a unique solution

kM = h(k1; k2; ::; kM�1): (I8.120)
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By our induction hypothesis we can express km as a function of k1 for all m �M �1. Hence,
(I8.120) implies that

kM = hM (k1; k2; ::; kM�1)

= hM (k1; h2(k1); ::; hM�1(k1)) � hM (k1);

so that kM can be written as a function of k1 only. This concludes the proof. Note that
(I8.119) also allows us to express investment in sector m as a function of the capital-labor
ratio in sector one. To see this, observe that

im(t) = _km(t) + �mkm(t)

= h0m(k1(t)) _k1(t) + �mhm(k1(t)) � gm(k1(t));

where the second line uses the fact that (I8.119) has to hold for all t and the last equality
de�nes the function gm(:). Now note however, that there is nothing special about sector one.
In particular, the initial level of capital in this sector can also be chosen freely as long as the
aggregate level of capital does not change. To clarify this distinction, we let km(0) be the
capital-labor ratio in sector m chosen in period 0 by the appropriate investment im(0) and
k0m the exogenous initial level of the capital-labor ratio in sector m. Hence we require thatPM

m=1 km(0) =
PM

m=1 k
0
m. Intuitively, in this economy, capital can be freely allocated across

sectors by choosing sectoral investment levels im(0) su¢ ciently high. In particular there is
no constraint on the decumulation of capital, i.e. investment in sector m can be (arbitrarily)
negative.11. Using this, we can characterize the equilibrium in this economy by the following
equations:

_c(t)

c(t)
=

1

�
(Fk1(k1(t); h2(k1(t)); :::; hM (k1(t)); 1)� �1 � �)

� 1

�

�
f 0(k1(t))� �1 � �

�
(I8.121)

_k1(t) = f(k1(t))� c(t)�
MX
m=2

im(t)� �mk1(t) (I8.122)

im(t) = gm(k1(t)): (I8.123)

With the initial condition

k1(0) +

MX
m=2

hm(k1(0)) =

MX
m=1

k0m (I8.124)

and the transversality condition

lim
t!1

exp

�
�
Z t

0

�
f 0 (ki (s))� �1

�
ds

�
k1(t); (I8.125)

this is a system of two di¤erential equations with two terminal conditions which has a solution
[c(t); k1(t)]

1
t=0. Having solved for [k1(t)]1t=0, we can then solve the other M � 1 capital-

labor ratios from km(t) = hm(k1(t)). This concludes the characterization of the equilibrium
path [c(t); k1(t); k2(t); :::; kM (t)]1t=0. Note in particular that conditional on the total capital
endowment

PM
m=1 k

0
m, the initial conditions (k

0
1; :::; k

0
M ) do not matter as long as the level of

investment im(0) is unconstrained as in this case km(0) can e¤ectively be chosen freely.

11This will no longer be the case in Part (f) below
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Let us now characterize the steady state allocations of this economy.12 In the steady
state, consumption is constant. From (I8.121) this implies that

f 0(k�1) = �1 + �;

i.e. the capital-labor ratio employed in the �rst sector is constant too. This then immediately
implies that k�m = hm(k

�
1) for all m, i.e. in the steady state of this economy each sectors�

capital-labor ratio is constant. From the resource constraint we can then calculate the steady
state level of consumption as

c� = f(k�1; k
�
2; :::; k

�
M )�

MX
m=1

�mk
�
m:

This established the characterization of the steady state in this economy.

Exercise 8.38, Part (d). If we want to study the optimal growth problem, we have
to realize that we will have M state variables (namely the capital-labor ratios of the M sec-
tors) and M +1 control variables (consumption and the sectoral composition of investment).
Clearly we can eliminate the explicit choice of consumption by using the budget constraint.
The current-value Hamiltonian (using the capital-labor ratios km(t) as state variables) is
given by

H(i1; :::; iM;k1; :::; kM ; �1; :::; �M ) =

�
f(k1(t); :::; kM (t))�

PM
m=1 im(t)

�1��
� 1

1� � +

MX
m=1

�m(t) [im(t)� �mkm (t)] :

This Hamiltonian will give rise to 2M necessary conditions of the form

Him = c(t)�� � �m(t) = 0 (I8.126)

Hkm = c(t)��fm(k1(t); :::; kM (t))� �m�m(t) = � _�m(t) + ��m(t): (I8.127)

Additionally we have the M transversality conditions

lim
t!1

exp(��t)�m(t)km(t) = 0:

From (I8.126) we see that the solution will be characterized by

�1(t) = �2(t) = ::: = �M (t) � �(t):

This is intuitive, because given that investment levels in di¤erent sectors are prefect sub-
stitutes in terms of consumption, their marginal value will have to be equalized along the
optimal path. Using this and (I8.127), we then get that

fm(k1(t); :::; kM (t))� �m � � = �
_�(t)

�(t)
;

which again shows the net-of-depreciation returns fm(k1(t); :::; kM (t))� �m have to be equal-
ized across sectors. In particular we can combine those equations with (I8.126) to get M
equations of the form

_c(t)

c(t)
=
1

�
(fm(k1(t); :::; kM (t))� �m � �) ;

12Note that there is no technological progress in this economy so that the BGP will actually be a steady
state which does not feature growth.
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which is exactly the same Euler equation as found in the characterization of the competi-
tive equilibrium (see (I8.118)). As the capital accumulation equations, the initial conditions
and the transversality conditions are also identical, the optimal growth problem�s solution
[c(t); k1(t); k2(t); :::; kM (t)]

1
t=0 is characterized by exactly the same equations as the com-

petitive equilibrium. Hence the allocation of the optimal growth problem and equilibrium
allocation coincide. This is not surprising as this economy satis�es all requirements of the
First Welfare Theorem.

Exercise 8.38, Part (e). We have shown above, that the steady state of this multi-
sector economy is very similar to the canonical one-sector neoclassical growth model. What
is maybe more surprising is that the transitional dynamics in this economy are also very
similar to the ones in the neoclassical growth model featuring only one sector. To see this,
recall that we gave the formal characterization of the equilibrium in Part (c). In particular
we showed that (I8.121)-(I8.123) together with the terminal conditions (I8.124) and (I8.125)
characterized the equilibrium in this economy.

These equations showed that the system could be reduced to e¤ectively a single state vari-
able, in this case k1(t). The transitional dynamics then take the following form. Starting with
an initial vector of state variables (k01; k

0
2; :::; k

0
M ) investment in period 0 will ensure that after

that, each sector�s capital-labor ratio will be exactly given by k1(0) and km(t) = hm(k1(t))
where k1(0) satis�es the equations (I8.121)-(I8.125) above. As investment is a control variable
and unrestricted (in particular we allow for negative values) this is clearly possible. Once the
sectoral capital-labor ratios are aligned in that way, the transitional dynamics will be like
in the neoclassical growth model, i.e. the evolution of the system is described by the two
di¤erential equations (I8.121) and (I8.122) and the terminal conditions (I8.124) and (I8.125).
This analogy with the one-sector neoclassical growth model in particular shows that the sys-
tem is saddle-path stable, i.e. at t = 0, both consumption and the sectoral distribution of
capital (k1(0); :::; kM (0)) take the economy on the saddle-path so that it converges to the
steady state characterized above.

Exercise 8.38, Part (f). Our discussion above already suggested that the assumption
that investment was unconstrained is important. To see this, consider the unconstrained
allocation characterized above. The necessary initial investment for sector m was given by

im(0) = km(0)� k0m;

i.e. im(0) < 0 whenever km(0) < k0m. If we impose the constraint that investment has to be
nonnegative, this allocation is clearly not possible. To characterize the transitional dynamics
with the additional requirement of such irreversibilities, note �rst, that the steady state of
the system will not be a¤ected. This follows from the fact, that the irreversibility constraints
will not be binding in the steady state as steady state investment in sector m is given by

i�m = �mk
�
m > 0:

Hence, the constraints only a¤ect the transitional dynamics but will cease to bind in �nite
time. In particular they take the following form. Let us suppose that the economy starts
"below" its steady state in the sense that there will be at least one sector such that k0m < k�m.

13.

13If k0m > k�m for all m, the transitional dynamics are uninteresting. They will take the following form:
Whenever km(t) > k�m we will have that im(t) = 0. Due to depeciation, the capital-labor ratio will decrease in
all sectors. Hence there exists �tm, such that km(�tm) = k�m. From then on, im(t) = �mk

�
m so that km(t) = k�m

for all t � �tm.
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Then there will be at least one sector which will not be constrained. This follows from the
fact that

0 =
MX
m=1

k0m �
MX
m=1

km(0) =
MX
m=1

im(0);

so that im(0) < 0 for allm is impossible. This simply re�ects the fact that capital can be freely
distributed across sectors but that aggregate capital

PM
m=1 k

0
m still accumulates slowly. Hence

there will be at least one sector which is unconstrained. So let us without loss of generality
assume that it is sector one. Furthermore note that by the virtue of being constraint, the
respective sector has too large a capital-labor ratio, i.e. in the unconstrained allocation, the
capital-labor ratio chosen in period 0 would have been lower, that is km(0) < k0m. Hence,
the transitional dynamics take the form that im(t) = 0 whenever km(0) > hm(k1(0)) and
im(t) � 0 whenever sector m is unconstrained. As the capital-labor ratios in the constrained
sectors depreciate and the unconstrained sectors gain capital, the irreversibility constraint
will cease to bind in �nite time, i.e. there will be t̂m such that km(t̂m) = hm(k1(t̂m)).
From then on, investment is given by im(t) = gm(k1(t)) (see (I8.123)). In particular note
that gm(k1(t)) > 0 as long as sector one accumulates capital as the production function is
neoclassical so factors are complementary which causes the mapping hm(:) (see (I8.120)) to
be increasing. Hence at t̂ = maxmft̂mg all sectors will be unconstrained and the evolution of
the system will take exactly the same form as in the unconstrained case. For some details of
the proof that the dynamics will take this form, we refer to Exercise 10.14 which analyzes a
very similar problem so that the argument can be adapted.





Chapter 9: Growth with Overlapping Generations

Exercise 9.1

Exercise 9.1, Part (a). We claim that an allocation
�
cii; c

i+1
i ; pi

�
is an equilibrium if

and only cii = 1; ci+1i = 0 for all i and the price sequence (pi)
1
i=0 is weakly increasing in i

and satis�es pi > 0 for all i. We �rst show that the consumption allocations are uniquely
characterized. Note that household i solves

P (i) : max
fcii;ci+1i g

cii + c
i+1
i

s.t. ciipi + c
i+1
i pi+1 � pi.

Hence we have pi > 0 for all i, otherwise household i would demand in�nite amount of good
i, violating market clearing. Next note that household 0 is the only household that can
consume period 0 goods. So the market clearing in period 0 goods along with the fact that
p0 > 0 implies that c00 = 1, which also implies c10 = 0 from her budget constraint. Hence
household 0 consumes her own endowment in any equilibrium. Since c10 = 0, we have that
household 1 is the only household that can consume period 1 goods. The same reasoning
shows that household 1 consumes her own endowment, that is c11 = 1. By induction, we have
that cii = 1 for all i. Hence, the consumption of households are uniquely characterized with
cii = 1; c

i+1
i = 0 for all i.

We next characterize the price sequences (pi)
1
i=0 that support this consumption alloca-

tion as an equilibrium. Note that when pi � pi+1, cii = 1 solves problem P (i) for each i.
Hence any weakly increasing price sequence (pi)

1
i=0 along with the allocation

�
cii = 1

�1
i=0

is
an equilibrium. Conversely, consider a price sequence (pi)

1
i=0 that is not weakly increasing.

Let i � 0 be the smallest index such that pi > pi+1. Then, cii = 1 does not solve problem
P (i) since household i would rather choose ~ci+1i = pi=pi+1 > 1 and ~cii = 0. This proves
that (pi)

1
i=0 that is not weakly increasing cannot be part of an equilibrium and completes the

characterization of the equilibria.

Exercise 9.1, Part (b). Let � = 1= (i2 + 1� i1). Consider the allocation ~xi1;i2 de�ned
as follows:

cii = 1, ci+1i = 0 for all i < i1,

cii = 1� � (i� i1) , ci+1i = � (i� i1 + 1) for all i 2 [i1; i2]
cii = 0, ci+1i = 1 for all i > i2.

129
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That is, each old household i 2 [i1; i2] receives � more than the amount she gives when she is
young. This allocation satis�es the resource constraints since

cii + c
i
i�1 =

8>><>>:
1 + 0 = 1 if i � i1,

1� � (i� i1) + � (i� 1� i1 + 1) = 1 if i 2 (i1; i2],
0 + � (i2 + 1� i1) = 1 if i = i2 + 1,

0 + 1 = 1 if i > i2 + 1;

where the third line follows since � is chosen to be 1= (i2 + 1� i1). Moreover, each household
i 2 [i1; i2] is strictly better o¤ since she receives a utility 1+� which is greater than 1. Finally,
all other households receive utility 1 and are as well o¤ as in equilibrium. This proves that,
in the simple overlapping generations economy introduced by Shell (1971), a reallocation
of resources can make an arbitrary number of generations better o¤ while making no other
generation worse o¤.

Exercise 9.3

Exercise 9.3, Part (a). We denote the consumption of household j at time j and j+1
with respectively cjj and cj+1j .A competitive equilibrium is a set of allocations and prices�
cjj ; c

j+1
j ; pj

�1
j=0

such that each household j solves

P (j) : max
cjj�0;c

j+1
j �0

u
�
cjj

�
+ �u

�
cj+1j

�
s.t. cjjpj + c

j+1
j pj+1 � pj ,

and commodity markets clear, that is, c00 � 1 with equality if p0 > 0, and for j > 1,
cjj�1 + c

j
j � 1 with equality if p1 > 0.

Exercise 9.3, Part (b). The same analysis we have given for Part (a) of Exercise 9.1
also applies in this case and shows that, in any equilibrium, cjj = 1 and c

j+1
j = 0 for all j. We

next turn to the price sequences fpjg1j=0 that support this allocation as an equilibrium. We
have, as in Exercise 9.1, that pj > 0 for all j. The optimality conditions for Problem P (j)
are

u0
�
cjj

�
� �pj with equality if c

j
j > 0, (I9.1)

�u0
�
cj+1j

�
� �pj+1 with equality if c

j+1
j > 0,

cjjpj + c
j+1
j pj+1 = pj ,

where � > 0 is the Lagrange multiplier. Then, cjj = 1 and c
j+1
j = 0 is optimal if and only if

�u0 (0)

pj+1
� � =

u0 (1)

pj
:

If u is concave and increasing, then this condition is equivalent to

�u0 (0)

u0 (1)
� pj+1

pj
for each j.

Any price sequence that satis�es this condition constitutes an equilibrium with the allocations�
cjj = 1; c

j+1
j = 0

�1
j=0
. Moreover, any price sequence that violates this condition is not an

equilibrium. It is interesting to note that, if limc!0 u0 (c) =1, that is, if the utility function
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satis�es the Inada conditions, then there are no price sequences that satisfy the previous
displayed equation and the equilibrium set is empty. Intuitively, with Inada conditions, the
individual indexed i = 0 would want to shift some consumption to the future, but those
allocations violate market clearing in this economy.

Exercise 9.3, Part (c). Under standard assumptions (when u is strictly increasing
and strictly concave), the set of Pareto optimal allocations can be found as solutions to the
following Pareto problem1

P (f�ig1i=0 ; �i � 0; � 6= 0) :

max
fcii;ci+1i g1

i=0
�0

1X
i=0

�i
�
u
�
cii
�
+ �u

�
ci+1i

��
= c00 +

1X
i=1

�iu
�
cii
�
+ �i�1�u

�
cii�1

�
s.t. c00 = 1 and c

i
i + c

i
i�1 = 1 for all i > 0.

That is, every Pareto optimal allocation maximizes a weighted-sum of household utilities
subject to economy-wide resource constraints, where the weight of an household �i (loosely
speaking) denotes the importance of the household i in this Pareto allocation. For any �0 � 0,
the solution to Problem P (f�ig1i=0 ; �i � 0; � 6= 0) features c00 = 1. The optimality conditions
for
�
cii; c

i
i�1
�1
i=1

are

�iu
0 �cii� � �i with equality if cii > 0, (I9.2)

�i�1�u
0 �cii�1� � �i with equality if cii�1 > 0,

cii + c
i
i�1 = 1,

where f�i > 0g1i=1 are Lagrange multipliers. Assuming u0 (0) <1 for simplicity, the solution
path

�
cii; c

i
i�1
�1
i=1

can be further characterized. In the degenerate case in which �i = �i�1 = 0

for some i > 0, any pair
�
cii; c

i
i�1
�
such that cii+c

i
i�1 = 1 satis�es the optimality conditions in

(I9:2) and thus is a solution. If �i and �i�1 are not both zero, then there is a unique solution�
cii; c

i
i�1
�
to the equations in (I9:2) given by:2

If �i > �i�1
�u0 (0)

u0 (1)
, then cii = 1; c

i
i�1 = 0,

else if �i < �i�1
�u0 (1)

u0 (0)
, then cii = 0; c

i
i�1 = 1,

else cii 2 [0; 1] is the unique solution to �iu0
�
cii
�
= �i�1�u

0 �1� cii� and cii�1 = 1� cii.
This completes the characterization of the Pareto set.

Exercise 9.3, Part (d). The set of Pareto optima cannot be decentralized without
changing endowments. Note that we have shown in Part (b) that given these endowments,
every equilibrium in this economy features cii = 1 and c

i+1
i = 0 for all i. Note, however, that

the Pareto set is much larger. Consider, for example Pareto weights

�i =

�
1 for even i
0 for odd i:

1See Section 16.E of Mas Colell, Whinston, Green (1995) for the exact conditions under which solving
the Pareto problem characterizes the Pareto optimal allocations.

2In this part and Part 4, we assume, for simplicity that u0 (0) <1.
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When u0 (0) < 1, our analysis in the previous part shows that the Pareto allocation corre-
sponding to these weights is given by cii = ci+1i = 1 for even i, and cii = ci+1i = 0 for odd i,
which is di¤erent than the equilibrium allocation.

Note, however, that the preferences are convex and the second welfare theorem applies
to this economy, that is, every Pareto optimal allocation can be decentralized by changing
endowments. To see this directly, consider any set of Pareto weights (f�ig1i=0 ; �i � 0; � 6= 0)
and a corresponding Pareto optimal allocation

�
cii; c

i+1
i

�1
i=0

as characterized in Part (c) of this
exercise. We next construct endowments and prices such that this allocation corresponds to
an equilibrium allocation. Let p0 = 1 and for each i � 0, construct pi+1 inductively with

pi+1 = pi
�u0

�
ci+1i

�
u0
�
cii
� . (I9.3)

Next, let each household i hold an endowment
�
!ii; !

i+1
i

�
�
�
cii; c

i+1
i

�
just enough to purchase

the allocated consumption bundle. Then, it can be seen that the economy with endowments�
!ii; !

i+1
i

�1
i=0

has a competitive equilibrium with allocations
�
cii; c

i+1
i

�1
i=0

and prices (pi)
1
i=0.

For each i, the bundle
�
cii; c

i+1
i

�
solves individual i�s optimization problem since prices are

constructed as in Eq. (I9:3) so that the optimality conditions in Eq. (I9:1) hold. Moreover,
markets clear since

c00 = 1 = !00, and

cii + c
i
i�1 = 1 = !ii + !

i
i�1 for each i > 0,

where the left hand side equalities follow since
�
cii; c

i+1
i

�1
i=0

is a Pareto optimal allocation.
This proves that every Pareto equilibrium can be decentralized by changing endowments.

Exercise 9.6

Rearranging Eq. (9:17), we have

g (k (t+ 1)) �
�
1 + n

1� �

h
k (t+ 1) + ��1=���(1��)=�k(t+ 1)(1��)=�+�

i�1=�
= k (t) . (I9.4)

Note that the function g (:) is increasing in k (t+ 1) and hence has an inverse g�1 (:). Moreover
g (0) = 0 and limk!1 g (k) =1, hence for a given level of k (t), the next period capital-labor
ratio is uniquely de�ned by k (t+ 1) = g�1 (k (t)).

We �rst claim that the system characterized by (I9:4) has a unique steady state with
positive capital-labor ratio, k�. Plugging k (t) = k (t+ 1) = k� in Eq. (I9:4), using k� > 0

and rewriting the equation in terms of the rental rate of capital R� = � (k�)��1 , we obtain
Eq. (9:16), which can be rearranged as

h (R�) � 1 + ��1=� (R�)(��1)=� � 1� �
(1 + n)�

R� = 0.

Note that limR�!0 h (R
�) > 0 and limR�!1 h (R�) < 0 (since R� grows faster than R�1�1=� for

any � > 0), hence the previous equation always has a solution. Note also that the derivative
of h (R�) is given by

h0 (R�) = ��1=�
� � 1
�

(R�)�1=� � 1� �
(1 + n)�

. (I9.5)

For � � 1, h0 (R�) < 0 and h (R�) is everywhere decreasing which in turn shows h (R�) = 0
has a unique solution. For � > 0, h (R�) is increasing for su¢ ciently small R�, however
this does not overturn the uniqueness result. In particular, when � > 1, we claim that h is
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decreasing at all crossing points, that is, h0 (R�) < 0 for all R� such that h (R�) = 0, which
in turn shows that there exists exactly one crossing point. To see this, note that h (R�) = 0
implies ��1=� (R�)�1=� = 1��

(1+n)� �
1
R� , which, after plugging in Eq. (I9:5) gives

h0 (R�) jh(R�)=0;�>1 =
� � 1
�

�
1� �

(1 + n)�
� 1

R�

�
� 1� �
(1 + n)�

= �1
�

1� �
(1 + n)�

� � � 1
�

1

R�
< 0,

proving our claim. Hence, for any � > 0, there exists a unique R� that solves h (R�) = 0. It
follows that there exists a unique (non-zero) steady state for the system in (I9:4), given by
k� = (R�=�)1=(��1).

We next claim that the system k (t+ 1) = g�1 (k (t)) is globally stable, so that the
economy converges to the unique steady state capital-labor ratio k� starting at any k (0) > 0.
The above analysis has established that the function g�1 (k (t)) crosses the 45 degree line
exactly once. We next claim that

dg�1 (k (t))

dk (t)

����
k(t)=k�

< 1 (I9.6)

so that g�1 (k (t)) crosses the 45 degree line from above. This claim implies that the plot of
k (t+ 1) = g�1 (k (t)) starts above the 45 degree line, crosses it once and goes below the 45
degree line (as displayed in Figure 9.2) and thus the system is globally stable. To show the
claim in Eq. (I9:6), we �rst take the derivative of the inverse function to obtain

dg�1 (k (t))

dk (t)

����
k(t)=k�

=
�
g0 (k (t+ 1)) jk(t+1)=g�1(k�)=k�

��1
= (I9.7)

 
k (t)1��

�

1

k (t+ 1)

1 + n

1� �

 
[k (t+ 1)]+

�
�1
� �

�(1��)
�

�
1��
� + �

�
k(t+ 1)

1��
�
+�

!!�1������ k(t)=
k(t+1)=k�

.

We consider the cases � � 1 and � > 1 separately. If � � 1, then 1��
� + � � 1 and replacing

the bracketed term
�
1��
� + �

�
in Eq. (I9:7) with 1 and using Eq. (I9:4), we have

dg�1 (k (t))

dk (t)

����
k(t)=k�

�
�
1

�
k (t)1��

1

k (t+ 1)
k (t)�

��1�����
k(t)=k(t+1)=k�

= � < 1,

proving Eq. (I9:6). Else if � > 1, then 1��
� + � � 1 and replacing the bracketed term

[k (t+ 1)] in Eq. (I9:7) with
�
1��
� + �

�
k (t+ 1) and using Eq. (I9:4), we have

dg�1 (k (t))

dk (t)
jk(t)=k� �

 
1

�
k (t)1��

1��
� + �

k (t+ 1)
k (t)�

!�1
jk(t)=k(t+1)=k�

=

�
1� �
��

+ 1

��1
< 1.

This proves Eq. (I9:6) also for the case � > 0 and shows that the system k (t+ 1) = g�1 (k (t))
is globally stable for any � > 0.

The economic intuition for global stability can be given as follows. When � � 1, the
substitution e¤ect dominates the income e¤ect so households save a higher fraction of their
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wage income (i.e. the saving rate is higher) when the interest rate is higher. When the capital-
labor ratio in the economy is lower than the steady state level, the interest rate is higher,
which induces households to save more and increases the capital-labor ratio towards the
steady state. A second stabilizing force, which applies for all � > 0, comes from diminishing
returns in the aggregate production function. When the capital-labor ratio is lower than the
steady state level, the marginal product of capital is higher and the ratio of income to capital
f (k) =k is higher, which tends to increase capital accumulation controlling for the saving rate
(i.e. controlling for the �rst e¤ect). Thus, when � < 1, both forces help to stabilize the
system. When � > 1, the two forces go in opposing directions, but our analysis shows that
the second (diminishing returns) force dominates the �rst force and the system is globally
stable.

Exercise 9.7

Exercise 9.7, Part (a). Let L (t) denote the population of the young at time t and
k (t) � K (t) =L (t) denote capital-labor ratio in this economy. A competitive equilib-
rium is a sequence of capital-labor ratios, household consumption and savings, and prices
fk (t) ; c1 (t) ; s (t) ; c2 (t) ; R (t) ; w (t)g1t=0 such that the household consumption solves

max
fc1(t);c2(t);s(t)�0g

log (c1 (t)) + � log (c2 (t+ 1)) (I9.8)

c1 (t) + s (t) � w (t)

c2 (t+ 1) � s (t)R (t+ 1) ,

competitive �rms maximize, that is,

R (t) = �A (t) (k (t))��1 (I9.9)

w (t) = (1� �)A (t) (k (t))� ,
and markets clear,

k (t+ 1) =
s (t)

1 + n
for all t. (I9.10)

We can de�ne a steady state equilibrium as an equilibrium in which capital-labor ratio,
k (t), and output per labor y (t) = F (k (t) ; A (t)) grow at constant rates.

Exercise 9.7, Part (b). With log preferences, the solution to the household�s Problem
(I9:8) is given by

c1 (t) =
1

1 + �
w (t) and s (t) =

�

1 + �
w (t) . (I9.11)

Since income and substitution e¤ects exactly cancel, interest rates have no e¤ect on the saving
decision of the households. Using Eqs. (I9:10), (I9:11) and (I9:9), we have

k (t+ 1) =
�

(� + 1) (1 + n)
(1� �)A (t) (k (t))� ; (I9.12)

which describes the evolution of k (t). Note that this expression takes the form k (t+ 1) =
SA (t) k (t)� for some positive constant S, hence the behavior of capital in this model is very
similar to the Solow model. From the analysis in Chapter 2, we predict that k (t) grows by
a factor of (1 + g)1=(1��) in steady state, hence we de�ne

k̂ (t) =
k (t)

A (t)1=(1��)
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as the normalized capital-labor ratio. By Eq. (I9:12), normalized capital-labor ratio evolves
according to

k̂ (t+ 1) = g
�
k̂ (t)

�
� � (1� �)
(� + 1) (1 + n) (1 + g)1=(1��)

�
k̂ (t)

��
.

This is a stable system and starting from any k̂ (0) = k (0), k̂ (t) converges to

k̂� =

"
� (1� �)

(� + 1) (1 + n) (1 + g)1=(1��)

#1=(1��)
. (I9.13)

To prove stability, note that g
�
k̂
�
=k̂ is decreasing for all t and is equal to 1 for k̂ = k̂�, thus

k̂ (t+ 1)� k̂ (t)
k̂ (t)

=
g
�
k̂ (t)

�
k̂ (t)

� 1
�
> 0 if k̂ (t) < k̂�

< 0 if k̂ (t) < k̂�
,

which shows that k̂ (t) moves towards k̂�. Note also that g
�
k̂
�
is increasing in k̂, thus

if k̂ (t) < k̂�, then k̂ (t+ 1) = g
�
k̂ (t)

�
< g

�
k̂�
�
= k̂� so k̂ (t) does not overshoot k̂�,

hence it converges to k̂�. This characterizes the steady state and proves that the steady
state is asymptotically stable. On the steady state, capital-labor ratio grows by a factor of
(1 + g)1=(1��).

We next calculate the interest rate, wages, and the growth rates of output and consump-
tion on steady state. Using Eq. (I9:9) and (I9:13), we have

R� = �k̂���1 =
� (1 + �) (1 + n) (1 + g)1=(1��)

(1� �)� (I9.14)

hence the interest rate is constant on the steady state. Using Eq. (I9:9)), we have

w (t) = (1� �) k̂��A (t)1=(1��) , (I9.15)

so wages grow by the same factor as capital-labor ratio (1 + g)1=(1��) on the steady state.
Similarly, for consumption of each generation, we have,

c1 (t) =
1

1 + �
w (t) (I9.16)

c2 (t) =
�

1 + �
w (t)R (t+ 1) =

�

1 + �
w (t)R�,

hence, consumption also grows by the same factor (1 + g)1=(1��) on the steady state. Finally,
output per labor is given by

y (t) = A (t) k (t)� = k̂��A (t)1=(1��) ,

which also grows by a factor of (1 + g)1=(1��) on steady state. We conclude that, capital,
output, consumption, and wages grow by the same factor (1 + g)1=(1��) on the steady state
and interest rate remains constant at R� given by Eq. (I9:14).
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Exercise 9.7, Part (c). By the capital accumulation equation (I9:12), an increase in g
increases A (t) at all points and hence increases k (t) at all times t (except for the initial time
t = 1 at which k (t) will be constant). To prove this rigorously, let us compare two economies
that start with k (0) = k0 (0) and A (0) = A0 (0) in which A (t) grows at rates g0 > g. By
Eq. (I9:12), we have k0 (1) � k (1). Suppose that k0 (t) � k (t) for some t � 1. Then, since
A0 (t) > A (t) and k0 (t) � k (t), by Eq. (I9:12), we have k0 (t+ 1) > k0 (t). This proves by
induction that for each time t � 2, we have k0 (t) > k (t) as desired. Note also that, from
Eq. (I9:13), an increase in g reduces the e¤ective steady state capital-labor ratio k̂� (in fact,
reduces k̂ (t) at all times), but as our analysis shows it increases capital-labor ratio k (t) at
all times.

By Eq. (I9:15), wages are an increasing function of both A (t) and k (t), which shows
that an increase in g increases wages at all times t � 2. By Eq. (I9:14), an increase in g also
increases the interest rate at all times t since the e¤ective capital-labor ratio, k̂ (t), is lower
at all times. Finally, using Eq. (I9:16) and the fact that w (t) and R (t) are higher, c1 (t) and
c2 (t) are also higher for all t.

Exercise 9.7, Part (d). We claim that an increase in � at time t = 1 increases k (t)
at all t � 2. Consider two otherwise identical economies with �0 > �, and denote their
capital-labor ratios with k0 (:) and k (:). We have k0 (1) = k (1). Suppose k0 (t) � k (t) for
some t � 1. Then, by Eq. (I9:12), we have

k (t+ 1) =
�

(� + 1) (1 + n)
(1� �)A (t) (k (t))�

<
�0�

�0 + 1
�
(1 + n)

(1� �)A (t)
�
k0 (t)

��
= k0 (t+ 1) ,

where the inequality follows since k (t) � k0 (t) and �= (� + 1) < �0=
�
�0 + 1

�
. This proves by

induction that k0 (t) > k (t) for each t � 2, showing our claim. Note that capital-labor ratio
increases at all periods, and consequently, the steady state capital-labor ratio with �0 > �
is also higher, as can be seen from Eq. (I9:13). Intuitively, a higher � induces households
to save more and increases the capital-labor ratio at all periods, including the steady state.
Note that this model resembles the Solow model and � acts as a proxy for the savings rate
in the Solow model, hence the qualitative implications of an increase in � is identical to the
implications of an increase in the savings rate in the Solow model.

Next, we characterize the e¤ect of � on steady state consumption, c1 (t) and c2 (t). Using
(I9:16) and (I9:9), we have

c1 (t) =
1

1 + �
(1� �)A (t)1=(1��)

�
k̂�
��

= A (t)1=(1��)
1� �
1 + �

"
� (1� �)

(� + 1) (1 + n) (1 + g)1=(1��)

#�=(1��)
= A (t)1=(1��) � S � ��=(1��) (1 + �)�1=(1��) ,

where the second line substitutes for k̂� from Eq. (I9:13) and the last line de�nes a constant
S that doesn�t depend on �. It follows that the e¤ect of an increase on c1 (t) is ambiguous. In
particular, when � is not too large, for low levels of �, increasing � increases c1 (t), while for
high levels of � it decreases c1 (t). On the one hand, a higher � induces individuals to save
more, which directly reduces consumption at young age. On the other hand, higher savings
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increase the capital stock in the economy and the wages at steady state, which increases
consumption at young age.

For c2 (t), a similar analysis gives

c2 (t) =
�

1 + �
(1� �)A (t)1=(1��)

�
k̂�
��

�
�
k̂�
���1

= A (t)1=(1��)
�

1 + �
(1� �)�

"
� (1� �)

(� + 1) (1 + n) (1 + g)1=(1��)

#(2��1)=(1��)

= A (t)1=(1��) � S �
�

�

1 + �

��=(1��)
,

where S is a constant that doesn�t depend on �. This expression shows that c2 (t) unam-
biguously increases. An increase in � increases the saving rate which creates a direct e¤ect
towards increasing c2 (t). It also generates price e¤ects (an increase in w (t) and a decrease
in R (t+ 1)) but our analysis shows that these price e¤ects do not overturn the direct e¤ect.

Therefore, for low levels of �, increasing � increases the steady state consumption both at
young and old age. However, for high levels of �, it may decrease the �rst period consumption
while increasing the second period consumption. This is related to overaccumulation of capital
and the dynamic ine¢ ciency in the OLG model. From the expression for the steady state
interest rate (I9:14), we have R� < 1 + n when

�

1 + �
>
� (1 + g)1=(1��)

1� � .

Then, if g and � are such that the expression on the right hand side is less than 1, there
exists a level � 2 (0; 1) such that increasing � beyond � will create dynamic ine¢ ciency.
When there is dynamic ine¢ ciency, total resources available for consumption is reduced so
the steady state consumption cannot increase both at young and old age, providing a di¤erent
perspective for our results regarding c1 (t) and c2 (t).

Exercise 9.8

Plugging in � = 1 (log preferences) in Eq. (9:17), we have that the capital-labor ratio
evolves according to

k (t+ 1) =
�

(1 + n) (1 + �)

�
f (k (t))� k (t) f 0 (k (t))

�
,

and a steady state equilibrium is the solution to

k� =
�

(1 + n) (1 + �)

�
f (k�)� k�f 0 (k�)

�
� g (k�) , (I9.17)

where the last equality de�nes the function g (k�). Hence, multiple steady state equilibria are
possible if the function g (k�) crosses the 45 degree line more than once. We claim that there
exists a production function f (:) that satisfy the neoclassical Assumptions 1 and 2 and that
results in a g (:) that crosses the 45 degree line more than once. Intuitively, this claim holds
since w (k) � f (k)�kf 0 (k) is increasing in k but is not necessarily concave in k. Economically,
this could happen, for example, due to a change in the structure of the economy or an
endogenous change in technology in response to capital deepening. Neoclassical Assumptions
1 and 2 are su¢ ciently weak to allow for economies featuring such structural change.
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To construct a concrete example, let

f 0 (k) = A�k��1
�
1 +

C

B

sin (Bk)

k

�
and de�ne the production function f as the integral of this expression, that is

f (k) = A

Z k

0
�~k��1

0@1 + C

B

sin
�
B~k
�

~k

1A d~k. (I9.18)

Note that when C = 0, the production function f (k) takes the Cobb-Douglas form Ak�.
For C > 0, the production function allows for oscillations in w (k). We claim that, for
appropriately chosenA;B;C and � (and the remaining parameters, � and n), the function
constructed in (I9:18) satis�es the neoclassical Assumptions 1 and 2, but nevertheless yields
multiple solutions to Eq. (I9:17) and multiple steady state equilibria in the OLG model.
First, note that, limk!0 f

0 (k) =1 and limk!1 f 0 (k) = 0, so the production function always
satis�es the Inada conditions, Assumption 2. Second, we claim that it satis�es the concavity
requirements, Assumption 1, for appropriately chosen A;B;C and �. To ensure that f
is increasing and concave in k, we choose C and C=B su¢ ciently small (in particular, C
su¢ ciently smaller than (1� �)) so that f 0 (k) is always positive and f 00 (k) is always negative.
The concavity of f (k) also ensures that w (k) = f (k) � kf 0 (k) is increasing in k, hence f
satis�es Assumption 2 for appropriately chosen A;B,C and �. Third, we also claim that
f (:) yields multiple equilibria in the OLG model for appropriately chosen A;B;C; �; � and
n. Figure I9.1 plots the right hand side of Eq. (I9:17) for parameters A = 3:75; B = 100; C =
0:248; � = 0:8; n = 0:02 and demonstrates that the OLG economy has multiple steady state
equilibria, even though the production function f (:) satis�es Assumptions 1 and 2.

Exercise 9.15

Suppose that the economy is initially on a steady state equilibrium, fc�1; c�2; k�; R�; w�g.
Assume that the steady state equilibrium is dynamically ine¢ cient, that is, r� � R�� 1 < n,
or equivalently, k� > kgold � f 0�1 (1 + n). Similar to Diamond (1965), suppose that at time
0, the government issues new debt D (0) = �D > 0 and keeps debt to labor ratio D (t) constant
at �D for all subsequent periods.3 In equilibrium, the government bonds must pay interest
rate r (t+ 1), otherwise there would be no demand for these bonds. The new debt issued
at any time t + 1 is used to settle the debt at time t, and any residual government revenue
is distributed to the old generation at time t + 1 as lump sum transfers (or taxes, if this
amount is negative). With a constant debt to labor ratio, the lump sum transfers to the old
generation at time t+ 1 is given by

D (t+ 1) (1 + n)�D (t) (1 + r (t+ 1)) = �D (1 + n�R (t+ 1)) :
Let s (t) denote the savings of a young individual, which includes investment in both capital
and government bonds. A young individual at time t � 0 chooses s (t) that solves

max
s(t);c1(t);c2(t)

u (c1 (t)) + �u (c2 (t+ 1)) (I9.19)

s.t. c1 (t) + s (t) � w (t)

c2 (t) � R (t+ 1) s (t) + �D (1 + n�R (t+ 1)) .

3We use capital letters D (t) for debt to labor ratio since we reserve d (t) for the social security policy
analyzed in the next exercise.
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Figure I9.1. The plot shows that the right hand side expression of Eq.
(I9:17) intersects the 45 degree line more than once and this OLG economy
with log preferences has multiple steady state equilibria.

An equilibrium in this economy with constant debt to labor ratio �D and initial capital
k (0) = k� is a sequence [c1 (t) ; c2 (t) ; k (t) ; R (t) ; w (t)]

1
t=0 such that young individuals at

all t � 0 solve Eq. (I9:19), factor prices are competitive, and factor and goods markets clear.
First, we note that capital market clearing in this economy requires

k (t+ 1) =
s (t)� �D

1 + n
for all t, (I9.20)

that is, government debt substitutes capital investment, which creates a direct e¤ect towards
decreasing the capital-labor ratio in this economy. Second, we also claim that, in the dy-
namically ine¢ cient region, the lump-sum transfers �D (1 + n�R (t+ 1)) create an income
e¤ect which increases the household�s period consumption and reduces savings s (t), further
decreasing the capital-labor ratio. To prove this claim, note that the �rst-order condition for
Problem (I9:19) is

u0 (w (t)� s (t)) = �R (t+ 1)u0
�
R (t+ 1) s (t) + �D (1 + n�R (t+ 1))

�
.

De�ne the savings function s
�
w (t) ; R (t+ 1) ; �D

�
as the solution to this equation and

note that when r (t+ 1) < n (i.e. when there is dynamic ine¢ ciency) the function
s
�
w (t) ; R (t+ 1) ; �D

�
is decreasing in �D, that is

@s
�
w (t) ; R (t+ 1) ; �D

�
@ �D

< 0, (I9.21)

proving our claim. Hence, government debt creates a direct e¤ect and an indirect income
e¤ect both of which decrease capital accumulation when the economy is in the dynamically
ine¢ cient region (keeping prices w (t) and R (t+ 1) constant).
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We next show that these e¤ects are not overturned by general equilibrium price e¤ects
caused by the reduction in the capital-labor ratio. More speci�cally, we claim that, by
appropriately choosing �D, the government can reduce the long run capital stock towards
kgold. Note that the equilibrium prices are given by w (t) = f (k (t)) � k (t) f 0 (k (t)) and
R (t+ 1) = f 0 (k (t+ 1)), hence using the savings function s

�
w (t) ; R (t+ 1) ; �D

�
de�ned

above, Eq. (I9:20) can be rewritten as

k (t+ 1) =
s
�
f (k (t))� k (t) f 0 (k (t)) ; f 0 (k (t+ 1)) ; �D

�
� �D

1 + n
, (I9.22)

which is the analogue of Eq. (9:8) with government debt. This equation implicitly de-
�nes k (t+ 1) in terms of k (t), that is, there exists a function g

�
k (t) ; �D

�
such that

the capital-labor ratio dynamics are given by k (t+ 1) = g
�
k (t) ; �D

�
. Note also that

k (t+ 1) = g
�
k (t) ; �D = 0

�
captures the dynamics for the baseline economy without national

debt. Implicitly di¤erentiating Eq. (I9:22) with respect to �D, we have

@g
�
k (t) ; �D

�
@ �D

=

@s(w(t);R(t+1); �D)
@ �D

� 1

1 + n� @s(w(t);R(t+1); �D)
@R(t+1) f 00 (k (t+ 1))

:

Using Eq. (I9:21), this expression is negative at �D = 0 under the regularity assumption
@s(w�;R�;0)
@R(t+1) f 00 (k�) < 1 + n,4 which implies that increasing �D shifts the g

�
k (t) ; �D

�
function

down and lowers the steady state capital-labor ratio (see Figure I9.2). Starting from �D = 0
and the corresponding steady state k� > kgold, the social planner can introduce a constant
level of national debt �D > 0 and reduce the capital-labor ratio to a new steady state �k 2
[kgold; k

�). Moreover, the capital stock k (t) monotonically declines from k (0) = k� to �k 2
[kgold; k

�) so we have k (t) 2 [kgold; k�] for all t.
We next claim that this path of capital-labor ratio increases net resources at every period.

To see this, note that the resource constraints at time t are given by

c2 (t)

1 + n
+ c1 (t) � f (k (t))� (1 + n) k (t+ 1) for all t � 0, (I9.23)

where the right hand side of this expression constitutes the net output at time t. We have

f (k (t))� (1 + n) k (t+ 1) = f (k (t))� (1 + n) k (t) + (1 + n) (k (t)� k (t+ 1))
� f (k (t))� (1 + n) k (t)
> f (k�)� (1 + n) k�,

where the �rst inequality follows since k (t) is weakly decreasing (so k (t) � k (t+ 1)), and
the second inequality follows since k (t) 2 [kgold; k�) for all t and f (k)� (1 + n) k is a concave
function maximized at k = kgold. It follows that the right hand side of (I9:23) is increased
for all periods, hence by issuing national debt the government increases net resources for all
periods.

This result is in contrast with the Ricardian equivalence result for the neoclassical econ-
omy (cf. Exercise 8.35). Note that the government in this economy borrows at competitive
interest rates and transfers the net borrowing back to the public, thus it does not change
the lifetime budget of the representative household. According to the Ricardian equivalence
reasoning, government actions (tax, transfer, debt/repayment etc.) that do not change the
lifetime budget of the representative household should have no e¤ect on consumption. The

4See Exercise 9.16, which works out the details of this argument in a related economy with social security
(instead of national debt).
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Figure I9.2. Introducing government debt (Exercise 9.15) or an unfunded
social security system (Exercise 9.16) lowers the steady state capital-labor
ratio in the OLG economy. Starting from the old steady state, the capital-
labor ratio monotonically converges to the new steady state.

reasoning does not apply to the OLG economy since there is no representative household and
the government�s debt/repayment plans redistribute resources between current and future
generations, which have potentially di¤erent consumption patterns. When there is dynamic
ine¢ ciency, the government debt may increase the consumption of all generations by slowing
down capital accumulation.

Exercise 9.16

Consider a steady state equilibrium denoted by fc�1; c�2; k�; R�; w�g. Assume that the
steady state equilibrium is dynamically ine¢ cient, that is, r� � R� � 1 < n, or equivalently,
k� > kgold � f 0�1 (1 + n). We provide two di¤erent proofs for the proposition. The �rst proof
is based on the Second Welfare Theorem and highlights the e¢ ciency properties of the OLG
model, while the second proof is more constructive and is similar to the original analysis in
Samuelson (1975).

Proof 1, the less constructive proof based on the Second Welfare Theorem.
The proof has three steps. First, we show that the government can improve the net output
(i.e. the part of output that is consumed) in every period by reducing the capital stock
at all t � 1 to kgold. Second, we use the �nding in step one to show that there exists an
allocation [c1 (t) ; c2 (t) ; k (t)]

1
t=0 that (i) Pareto dominates the equilibrium allocation, (ii) is

Pareto e¢ cient, that is, no further improvements are possible without making some generation
worse o¤. As the third and the �nal step, we show that the Pareto e¢ cient allocation
[c1 (t) ; c2 (t) ; k (t)]

1
t=0 that Pareto dominates the equilibrium allocation can be decentralized

using an unfunded social security system.
As the �rst step, we claim that the plan k (t) = kgold for all t � 1 increases net out-

put in every period relative to the equilibrium plan, k (t) = k�. Note that the allocation
[c1 (t) ; c2 (t) ; k (t)]

1
t=0 is feasible if it satis�es Eq. (I9:23). Consider a plan in which capital-

labor ratio allocations k (t) = ~k are constant for all t � 1. Note that both the equilibrium
plan k (t) = k� and the proposed plan with k (t) = kgold for all t � 1 fall in the category of
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such plans. The period t � 1 feasibility condition (I9:23) for these plans is given by
c2 (t)

1 + n
+ c1 (t) � f

�
~k
�
� (1 + n) ~k for all t � 1. (I9.24)

Since f (kgold)� (1 + n) kgold > f (k�)� (1 + n) k�, the feasibility condition (I9:24) is strictly
relaxed with the plan k (t) = kgold for all t � 1 . The period t = 0 feasibility condition for
the proposed plan is

c2 (0)

1 + n
+ c1 (0) � f (k�)� (1 + n) kgold,

which is also relaxed with respect to the equilibrium period 0 constraint since f (k�) �
(1 + n) k� < f (k�) � (1 + n) kgold. Hence, the proposed plan with k (t) = kgold for all t � 1
relaxes the feasibility condition and increases net output at all times.

As the second step, we show that there exists an allocation [c1 (t) ; c2 (t) ; k (t)]
1
t=0 that

Pareto dominates the equilibrium allocation and that is Pareto e¢ cient. To see this, consider
the Pareto problem that maximizes the welfare of the old generation at time 0 without making
future generations worse o¤

P (0) : max
fc1(t);c2(t);k(t)g1t=0

u (c2 (0))

s.t.
c2 (t)

1 + n
+ c1 (t) � f (k (t))� (1 + n) k (t+ 1) for all t � 1,

u (c1 (t)) + �u (c2 (t+ 1)) � u (c�1) + �u (c
�
2) for all t � 0.

By step one, the allocation with capital-labor ratio k (t) = kgold for all t � 1 and consumption
given by

[c1 (t) = c�1; c2 (t) = c�2]
1
t=0 ; c1 (0) = c�1; c2 (0) = c�2 + �

is feasible for su¢ ciently small �. Hence the constraint set of P (0) is non-empty and its
value is greater than the equilibrium utility u (c�2). It follows that there exists a solution
[c1 (t) ; c2 (t) ; k (t)]

1
t=0 to the Pareto problem P (0) that Pareto dominates the equilibrium

allocation, and the solution is Pareto e¢ cient by construction. For future reference (to be
used in step three), note also that any solution to Problem P (0) satis�es the �rst-order
condition

u0 (c1 (t)) = �f 0 (k (t+ 1))u0 (c2 (t+ 1)) , for all t � 0. (I9.25)

As the third step, we show that there exists an unfunded social security allocation
[d (t) ; b (t) = (1 + n) d (t)]1t=0, where d (t) represents the social security payments of young
and b (t) = (1 + n) d (t) the bene�ts received by old at time t, which decentralizes the plan
[c1 (t) ; c2 (t) ; k (t)]

1
t=0 constructed in step two. This step essentially follows since the Sec-

ond Welfare Theorem applies to the OLG economy, hence any Pareto e¢ cient allocation can
be decentralized. We provide a direct proof by constructing the social security payments
[d (t)]1t=0 such that the resulting decentralized allocation is identical to the Pareto e¢ cient
allocation [c1 (t) ; c2 (t) ; k (t)]

1
t=0. We de�ne

R (t) = f 0 (k (t)) , and w (t) = f (k (t))� k (t) f 0 (k (t)) , (I9.26)

s (t� 1) = k (t) (1 + n) , for all t � 0,

as the prices and the amount of per capita savings consistent with the allocation
[c1 (t) ; c2 (t) ; k (t)]

1
t=0. We also de�ne

d (t) = c1 (t) + s (t)� w (t) , for all t � 0,
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so after making the social security payment the young at time t has just enough to consume
c1 (t) and save s (t). Finally, we de�ne

b (t) = c2 (t)�R (t) s (t� 1) , for all t � 0
so after the social security transfer b (t), the old generation at time t has just enough to
consume c2 (t).

We claim that the constructed endowments [d (t) ; b (t)]1t=0 constitute an unfunded social
security system, that is, the payments by young at time t are just enough to cover the bene�ts
received by the old. To see this, note that

b (t) + (1 + n) d (t) = c2 (t)�R (t) s (t� 1) + (1 + n) (c1 (t) + s (t)� w (t))
= c2 (t) + (1 + n) c1 (t) + (1 + n)

2 k (t+ 1)

� (1 + n) f 0 (k (t)) k (t)� (1 + n)
�
f (k (t))� k0 (t) f 0 (k (t))

�
= c2 (t) + (1 + n) c1 (t) + (1 + n)

2 k (t+ 1)� (1 + n) f (k (t))
= 0,

where the second line follows from Eq. (I9:26), the third line from algebra, and the last
line from the fact that the Pareto e¢ cient allocation [c1 (t) ; c2 (t) ; k (t)]

1
t=0 satis�es the re-

source constraints with equality. This proves that the constructed allocations [d (t) ; b (t)]1t=0
represent an unfunded social security system.5

We next claim that the allocations and prices [c1 (t) ; c2 (t) ; s (t) ; k (t) ; R (t) ; w (t)]
1
t=0

constitute a competitive equilibrium with endowments [d (t) ; b (t)]1t=0. From our construction
of [d (t) ; b (t)]1t=0, all we need to check is that generation t � 0 chooses c1 (t) ; c2 (t+ 1) and
s (t) when they are entitled to the endowments d (t) ; b (t+ 1) and when they face prices
R (t),w (t). Note that generation t solves

max
~c1(t);~c2(t+1);~s(t)

u (~c1 (t)) + �u (~c2 (t+ 1)) (I9.27)

s.t. ~c1 (t) + ~s (t) � w (t) + d (t)

~c2 (t) � ~s (t)R (t+ 1) + b (t+ 1) .
Since the consumption plan (c1 (t) ; c2 (t+ 1)) satis�es the �rst-order condition (I9:25) for
problem P (0), it follows that

u0 (c1 (t)) = �R (t+ 1)u0 (c2 (t+ 1)) ,

which is the �rst-order condition for Problem (I9:27). Since the allocation
(c1 (t) ; c2 (t+ 1) ; s (t)) satis�es the budget constraints in Problem (I9:27) with equality by
construction, it follows that (c1 (t) ; c2 (t+ 1) ; s (t)) solves Problem (I9:27). This further
shows that the path of allocations and prices [c1 (t) ; c2 (t) ; s (t) ; k (t) ; R (t) ; w (t)]

1
t=0 is an

equilibrium with unfunded social security endowments [d (t) ; b (t)]1t=0, completing the proof
of step 3 and the proof of Proposition 9.8.

Proof 2, the more constructive proof. In this proof, we consider the new equilibrium
path [c1 (t) ; c2 (t) ; s (t) ; k (t) ; R (t) ; w (t)]

1
t=0 corresponding to a social security scheme that

treats all generations the same, that is d (t) = �d > 0 for all t so b (t) = �d (1 + n). We claim
that there exists �d su¢ ciently small such that the new equilibrium is a Pareto improvement
over the old equilibrium (i.e. the equilibrium with �d = 0). We prove this claim in two steps.
First, similar to Exercise 9.15, we show that there exists a su¢ ciently small �d > 0 such

5Note, however, that this is not necessarily a fair unfunded social security system, in the sense that d (t)
is not necessarily equal to d (t+ 1) so generations are not necessarily treated equally.
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that the steady state capital-labor ratio in the new equilibrium, �k, lies in [kgold; k�) and k (t)
monotonically converges to �k starting from k�, that is

k (t) # �k 2 [kgold; k�). (I9.28)

Second, we show that every generation (including the generations along the transition path)
is better o¤ in the new equilibrium than in the old equilibrium.

Step one, showing that the capital-labor ratio declines. Note that the consumer
solves Problem (I9:27) with d (t) = �d and b (t+ 1) = �d (1 + n), which leads to the �rst-order
condition

u0
�
w (t)� s (t)� �d

�
= �R (t+ 1)u0

�
s (t)R (t+ 1) + �d (1 + n)

�
. (I9.29)

We de�ne the savings function s
�
w (t) ; R (t+ 1) ; �d

�
as the solution to this equation. Using

the competitive prices for w (t) and R (t+ 1), the capital-labor ratio at time t+1 is found as
the solution to the following �xed point equation.

k (t+ 1) =
1

1 + n
s
�
f (k (t))� k (t) f 0 (k (t)) ; f 0 (k (t+ 1)) ; �d

�
. (I9.30)

We denote the solution to this equation by k (t+ 1) = g
�
k (t) ; �d

�
. Note that when �d = 0,

k (t+ 1) = g (k (t) ; 0) describes the dynamics in the original economy without transfers. We
make the following regularity assumption which ensures that the function g (k; 0) is increasing
in a neighborhood of the steady state capital (so that the equilibrium in the original economy
is stable and well behaved).

Assumption 2. The function g (k; 0) is increasing in k in a neighborhood of k = k�, or
equivalently, @s(w

�;R�;0)
@R(t+1) f 00 (k�) < 1 + n.6

Under this regularity assumption, we claim that the function g
�
k (t) ; �d

�
is decreasing in

�d in a neighborhood of k (t) = k� and �d = 0, that is

@g (k�; 0)

@ �d
< 0. (I9.31)

To prove the claim, �rst we show

@s (w�; R�; 0)

@ �d
< �1, (I9.32)

that is, keeping equilibrium prices constant, a unit increase in �d reduces savings by more than
one unit. To see this partially di¤erentiate the �rst-order condition Eq. (I9:29) with respect
to �d and evaluate at w (t) = w�, R (t+ 1) = R�, �d = 0 to get�

�@s (w
�; R�; 0)

@ �d
� 1
�
u
00
(c�1) = �R�u00 (c�2)

�
@s (w�; R�; 0)

@ �d
R� + 1 + n

�
6This conditions ensures gk (k�; 0) > 0. To see this, di¤erentiate Eq. (I9:30) with respect to k (t) and

evaluate at the steady state
�
k (t) = k�; �d = 0

�
to get

gk (k
�; 0) =

1

1 + n

�
sw (w

�; R�; 0)
@ (f (k)� kf 0 (k))

@k
jk=k� + sR (w

�; R�; 0) f 00 (k�) gk (k
�; 0)

�
,

which implies

gk (k
�; 0) = sw (w

�; R�; 0)
@ (f (k)� kf 0 (k))

@�k
jk=k�

1

1 + n� sR (w�; R�; 0) f 00 (k�)
.

We have sw (w�; R�; 0) > 0 since increasing the wage income always increases c2 (t) = s (t)R� (while keeping

the interest rate constant). We also have
@(f(k)�kf 0(k))

@k
jk=k� > 0 hence gk (k�; 0) > 0 i¤ sR (w�; R�; 0) f 00 (k�) <

1 + n.
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From here, we solve

@s (w�; R�; 0)

@ �d
= �u

00
(c�1) + � (1 + n) (R

�)u00 (c�2)

u00 (c�1) + � (R
�)2 u00 (c�2)

< �1,

where the inequality follows from the fact that 1 + n > R�, i.e. the original economy is in
the dynamically ine¢ cient region, proving Eq. (I9:32). Next, to show Eq. (I9:31), partially
di¤erentiate Eq. (I9:30) with respect to �d and evaluate at k (t) = k� and �d = 0 (and
k (t+ 1) = g (k�; 0) = k�) to get

@g (k�; 0)

@ �d
=

1

1 + n

�
@s (w�; R�; 0)

@R (t+ 1)
f 00 (k�)

@g (k�; 0)

@ �d
+
@s (w�; R�; 0)

@ �d

�
.

Solving for @g(k�;0)
@ �d

from this expression, we have

gd (k
�; 0) =

@s(w�;R�;0)
@ �d

1 + n� @s(w�;R�;0)
@R(t+1) f 00 (k�)

.

Since @s(w�;R�;0)
@ �d

< �1 < 0, this expression is negative when Assumption 2 holds, proving the
claim in (I9:31).

By Eq. (I9:31), increasing �d shifts the function g
�
k (t) ; �d

�
downwards (in a neighborhood

of �d = 0) as in Figure I9.2. Then there exists a su¢ ciently small �d which leads to a new
steady state capital-labor ratio �k < k�. We can also choose �d su¢ ciently small to ensure
�k � kgold, that is, we do not overshoot the golden rule capital-labor ratio. Moreover, Figure
I9.2 shows that capital-labor ratio monotonically declines to the new steady state level �k,
proving Eq. (I9:28).

Intuitively, the social security policy reduces capital accumulation through two channels.
First, the social security payments can be thought of as coming from the savings account of
the young generation, directly reducing their savings and slowing down capital accumulation.
Second, the social security system creates an income e¤ect for the young (since the returns
from social security are higher than R�) which increases c1 (t) and further decreases s (t),
leading to Eq. (I9:32). Consequently one unit of the social security payment reduces savings
by more than one unit. Eq. (I9:31) shows that at the margin, these e¤ects are not over-
turned by general equilibrium price e¤ects and the social security system slows down capital
accumulation.

Step two, showing that the welfare of all generations increase. We consider the
equilibrium corresponding to the capital-labor ratio constructed in step one and we claim
that the old equilibrium consumption is in the lifetime budget of generation t for Problem
(I9:27), that is

c�1 +
c�2

R (t+ 1)
< w (t) + �d

1 + n

R (t+ 1)
� �d for all t. (I9.33)

If this claim holds, then by revealed preference and non-satiation, generation tmust be strictly
better o¤ consuming (c1 (t) ; c2 (t)) than (c�1; c

�
2). To prove Eq. (I9:33), we use

c�1 = w� � s� = w� � k� (1 + n) = f (k�)�R�k� � k� (1 + n)
and c�2 = s�R� = k� (1 + n)R�

to get

c�1 +
c�2

R (t+ 1)
= f (k�)�R�k� � k� (1 + n) + k� (1 + n)R�

R (t+ 1)
. (I9.34)
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Since f (k�) is concave, we have

f (k�) < f (k (t)) + f 0 (k (t)) (k� � k (t)) = f (k (t)) +R (t) (k� � k (t)) :

Using this in Eq. (I9:34), we have

c�1 +
c�2

R (t+ 1)
< f (k (t))� k (t)R (t) + k� (R (t)�R�)� k� (1 + n) + k� (1 + n)R�

R (t+ 1)

< f (k (t))� k (t)R (t) + k� (R (t+ 1)�R�) + k� (1 + n) (R� �R (t+ 1))
R (t+ 1)

= w (t) + k� (R (t+ 1)�R�)
�
1� 1 + n

R (t+ 1)

�
< w (t) , (I9.35)

where the second line uses R (t) < R (t+ 1) (which holds since k (t+ 1) < k (t)) and the last
inequality follows since R (t+ 1) < 1 + n. Eq. (I9:33) then follows from Eq. (I9:35) and
the fact that R (t+ 1) < 1 + n, completing the proof. Intuitively, step one shows that the
new equilibrium has lower capital-labor ratio and hence higher net resources at every period
(due to dynamic ine¢ ciency), while step two ensures that these greater resources are divided
between generations so that all generations are better o¤.

Exercise 9.17

We will show, more generally, that the equilibrium in this case is Pareto optimal.
Hence, any allocation that increases the welfare of the current old generation (in particu-
lar, the unfunded social security system) must necessarily reduce the welfare of some future
generation. To show that the equilibrium is Pareto optimal, recall that the equilibrium
path in this economy is unique [c1 (t) ; c2 (t) ;K (t) ; L (t) ; R (t) ; w (t) ; r (t)]

1
t=0 and satis�es

limt!1 fR (t+ 1) = 1 + r (t+ 1)g ! 1 + r�. Our goal is to map this economy into an
Arrow-Debreu economy with production and apply Theorem 5.6 for the equilibrium path.
Let [pc (t)]

1
t=0 denote the sequence of Arrow-Debreu prices for the �nal good and normalize

pc (0) = 1. For any t � 1, pc (t) can be determined from the interest rate sequence [r (t)]1t=1
as

pc (t) =
1Qt

t0=1 1 + r (t
0)

Next note that the endowments in this economy are the labor supply of each young generation
at t, [L (t)]1t=0, and the initial capital stock K (0) held by the old generation at time 0
(there are Arrow-Debreu production �rms that convert these endowments to consumption
and capital in subsequent periods). Then, this is a standard Arrow-Debreu economy with
production and Theorem 5.6 applies for the equilibrium path as long as the sum of the value
of all households�endowments,

K (0)R (0) +

1X
t=0

L (t)w (t) pc (t) = K (0)R (0) + L (0)w (0) +

1X
t=1

L (0)

tY
t0=1

�
1 + n

1 + r (t0)

�
,

(I9.36)
is �nite. Since 1 + r (t0) ! 1 + r� > 1 + n, there exists some " > 0 and T su¢ ciently large
such that (1 + n) = (1 + r (t0)) < 1 � " for all t0 > T . Then the endowment sum is smaller
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than

K (0)R (0) + L (0)w (0) +

T�1X
t=1

L (0)

tY
t0=1

�
1 + n

1 + r (t0)

�
+

TY
t0=1

�
1 + n

1 + r (t0)

� 1X
k=0

L (0) (1� ")k

= K (0)R (0) + L (0)w (0) +

TX
t=1

L (0)

tY
t0=1

�
1 + n

1 + r (t0)

�
+

TY
t0=1

�
1 + n

1 + r (t0)

�
L (0)

"

< 1,
which is �nite, proving that Theorem 5.6 applies and the equilibrium allocation is Pareto
optimal.

We next consider the role of the �niteness of endowments in ensuring Pareto optimality.
Intuitively, the standard proof of the First Welfare Theorem (Theorem 5.6) compares the
budget sum of a Pareto improving allocation to the budget sum of the equilibrium allocation
and obtains a contradiction. This logic applies as long as the relevant budget sums (which
is equal to the endowment sum) is �nite. But the logic breaks down and does not yield a
contradiction when the sums are in�nite, since an inequality between two in�nite sums is not
a rigorous mathematical statement. For example, consider the in�nite sums

A = 1 + 2 + 1 + 2 + :::

B = 2 + 1 + 2 + 1 + :::

There is a sense in which B is greater than A, since B = 2+A. But also, there is a sense in
which A is greater than B, since A = 1 + B. The problem is that A and B are in�nite and
hence cannot be compared. In the OLG economy, the endowment sum in Eq. (I9:36) is �nite
if and only if r� > n, so the standard proof of the First Welfare Theorem only applies in this
case. Moreover, when r� < n, not only the standard proof fails but also the equilibrium is
Pareto ine¢ cient as we have seen in Exercises 9.15 and 9.16.

Exercise 9.20

Suppose that u1 and u2 are increasing, strictly concave and that they satisfy the Inada
conditions

lim
c!0

u01 (c) = lim
c!0

u02 (c) =1.

We claim that there exists a steady state equilibrium in which the capital-labor ratio is
constant and all individuals have the same wealth level. We also claim that, under Condition
(I9:40) below, this steady state is locally stable. To prove our claims, we consider the problem

max
fci;big�0

u1 (ci) + �u2 (bi)

s.t. ci + bi � xi � w +Rbi.

Let the function b (xi) denote the bequest level that solves this problem given the wealth
level xi. With the Inada conditions, b (x) is the unique solution to

u01 (x� b (x)) = �u02 (b (x)) . (I9.37)

Note that, the equilibrium factor prices are given by R (t+ 1) = f 0 (k (t+ 1)) and w (t+ 1) =
f (k (t+ 1))� k (t+ 1) f 0 (k (t+ 1)), hence the wealth level xi (t+ 1 j bi (t)) for an individual
that receives a bequest bi (t) is

xi (t+ 1) = f (k (t+ 1))� k (t+ 1) f 0 (k (t+ 1)) + f 0 (k (t+ 1)) bi (t)
= f (k (t+ 1)) + f 0 (k (t+ 1)) (bi (t)� k (t+ 1)) .
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Then, the bequest level bi (t+ 1) = b (xi (t+ 1 j bi (t))) can be expressed in terms of bi (t)
and k (t+ 1) as

bi (t+ 1) = b
�
f (k (t+ 1)) + f 0 (k (t+ 1)) [bi (t)� k (t+ 1)]

�
for each i 2 [0; 1] . (I9.38)

Recall also that the capital-labor ratio k (t+ 1) is given by

k (t+ 1) =

Z
bi (t) di. (I9.39)

The dynamic path for the distribution of bequests and the capital-labor ratio
[fbi (t)gi ; k (t+ 1)]

1
t=0 is then characterized by Eqs. (I9:38) and (I9:39) along with the initial

distribution of bequests fbi (�1)gi and initial capital k (0) =
R
bi (�1) di.

We �rst claim that this economy has a steady state equilibrium in which bi (t) =
k (t+ 1) = k� for all i. Eq. (I9:39) holds by construction and Eq. (I9:38) holds as long
as k� is a steady state of the function b(f(:)). Thus we only need to show that this function
has a steady state. From Eq. (I9:37), we have

b0 (x) =
u
00
1 (x� b (x))

u
00
1 (x� b (x)) + �u

00
2 (b (x))

.

When u1 and u2 are strictly concave, the previous equation implies that b0 (x) 2 (0; 1) for all
x � 0. This further implies

lim
k!0

db(f(k))=dk = lim
k!0

b0(f(k))f 0 (k) =1

and lim
k!1

db(f(k))=dk = lim
k!1

b0(f(k))f 0 (k) = 0

since f satis�es the Inada Conditions (i.e. Assumption 2). Since b (f(0)) = b (0) = 0
and the function b (f(:)) satis�es the limit equations above, there exists k� > 0 such that
b(f(k�)) = k�, proving the existence of a steady state equilibrium.

Moreover, letting k� be the �rst intersection of b(f(k)) with the 45 degree line, we
ensure that the steady state equilibrium is locally stable with respect to the capital-labor
ratio, that is, when all individuals are restricted to have the same wealth level (i.e. when
bi (t) = b (t) = k (t) for all t), k (t) converges to k�. Next, we claim that this equilibrium is
also locally stable with respect to the bequests fbi (t)gi when the following condition holds

b
0
(f (k�)) f 0 (k�) < 1. (I9.40)

From Eq. (I9:38), when k (t) = k� the bequest level for an individual bi (t+ 1) follows the
dynamics

bi (t+ 1) = b
�
f (k�) + f 0 (k�) [bi (t)� k�]

�
.

By choice of k�, bi (t+ 1) = bi (t) = k� is a steady state of this equation. Moreover, this
steady state is locally stable if jdbi (t+ 1) =dbi (t)j < 1, or equivalently if���b0 �f (k�) + f 0 (k�) [bi (t)� k�]� f 0 (k�)���

bi(t)=k�
=
���b0 (f (k�)) f 0 (k�)��� < 1.

Since b and f are increasing, the previous inequality is equivalent to Condition (I9:40),
proving that the steady state is locally stable with respect to bequests fbi (t)gi under this
condition. Intuitively, if this condition fails, then a small decline in bequests will lead to
further declines for bequests of that dynasty and will lead to divergence of bequests away
from k�. Under Condition (I9:40), starting in a neighborhood of the steady state, aggregate
capital-labor ratio converges to k� and asymptotically all individuals tend to the same wealth
level.
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Exercise 9.21

Recall from Section 9.6 that the equilibrium dynamics for the bequests are characterized
by

bi (t) =
�

1 + �
[w (t) +R (t) bi (t� 1)] (I9.41)

where R (t) = �Ak (t)��1 and w (t) = (1� �)Ak (t)�, and aggregate capital-labor ratio
evolves according to

k (t+ 1) =
�

1 + �
f (k (t)) .

Since all individuals earn the same wage, a natural measure of wealth distribution for gen-
eration t is is a distribution of initial assets bi (t� 1), or equivalently, bequests left from the
parents. To derive the result in the exercise, we need a measure of inequality given this wealth
distribution. We consider the variance of the distribution as a natural measure of inequality
and we claim that the inequality can increase away from steady state.

To construct a simple example, suppose initially that there are two bequest levels, that
is, bi (�1) = bl for i 2 Hl and bi (�1) = bh = 2bl for i 2 Hh. Let Hl and Hh each have
measure 1=2. The initial level of capital-labor ratio is k (0) = 3bl=2. Note that the sequence
of bequests will be identical for all i 2 Hl, which we denote by bl (t), and will be identical for
all i 2 Hh, which we denote by bh (t). By Eq. (I9:41), we have

bj (1) =
�

1 + �

h
(1� �)Ak (0)� + �Ak (0)��1 bj

i
(I9.42)

=
�Ak (0)��1

1 + �

�
(1� �) k (0) + �bj

�
=

�Ak (0)��1

1 + �

�
(1� �) 3bl

2
+ �bj

�
for j 2 fl; hg .

The variance of [bi (t)]i2H is given by

var (t) � 1

2

�
bh (t)�

bh (t) + bl (t)

2

�2
+
1

2

�
bl (t)�

bh (t) + bl (t)

2

�2
=

�
bh (t)� bl (t)

2

�2
Note that by Eq. (I9:42), we have

var (0) =
1

4

�
bh � bl

�2
and var (1) =

�Ak (0)��1

1 + �

�2

4

�
bh � bl

�2
,

thus var (1) > var (0) if and only if

�Ak (0)��1 �2 > 1 + �. (I9.43)

Since � < 1, the preceding inequality holds for su¢ ciently small k (0) = 3bl=2, i.e. for a
su¢ ciently small choice of bl. Hence, the variance of the bequests may increase away from
the steady state. Eq. (I9:43) shows that this is more likely for low levels of capital-labor
ratio.

The economic intuition for this result is as follows. For low levels of capital-labor ratio,
wages are relatively low, which implies that bequests constitute a relatively large portion
of household wealth. Moreover, the interest rate is relatively high, which implies that even
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small bequest di¤erences get ampli�ed through asset returns (cf. Eq. (I9:41)). In view of
these e¤ects, wealth inequality may increase for low levels of capital-labor ratio.

Exercise 9.24*

We �rst derive an Euler-like equation in terms of the per capita consumption and the
consumption of the newborn cohort. With log preferences, the Euler equation (9:36) of an
individual of cohort � at time t is

c (t+ 1 j �)
c (t j �) = � [(1 + r (t+ 1)) (1� �) + �] , (I9.44)

where recall that r (t+ 1) = f 0 (k (t)) � 1. Recall that at any time the share of the people
aged j � 0 in the population is given by n

1+n��

�
1��
1+n��

�j
. Hence, we have

c (t) =
1X
j=0

n

1 + n� �

�
1� �

1 + n� �

�j
c (t j t� j) ,

where c (t) denotes the per capita consumption t. Considering the same equation for c (t+ 1)
and using the Euler equation (I9:44) to write c (t+ 1 j t� j) in terms of c (t j t� j), we obtain
an Euler-like equation

c (t+ 1) =
n

1 + n� � c (t+ 1 j t+ 1) +
1� �

1 + n� � � [(1 + r (t+ 1)) (1� �) + �] c (t) . (I9.45)

Next, we characterize the consumption of the newborn cohort c (t j �) in terms of the
per capita variables and obtain an Euler-like equation only in per capita variables. As usual
log preferences imply that each cohort consumes a constant fraction of its lifetime wealth, in
particular we have7

c (t j �) = (1� � (1� �)) [! (t) + (1 + r (t)) a (t j �)] (I9.46)

where ! (t) =
P1

t0=t
w(t0)Qt0

s=t+1 1+r(s)+
�

1��
is the present discounted value of the future income of

an individual. Aggregating Eq. (I9:46) over all cohorts � � t+1 that are alive at time t+1,
we have

c (t+ 1) = (1� � (1� �)) [! (t+ 1) + (1 + r (t+ 1)) a (t+ 1)] . (I9.47)

Using Eq. (I9:46) for the newborn cohort t = � = t+ 1 and noting that a (t+ 1 j t+ 1) = 0,
we have

c (t+ 1 j t+ 1) = (1� � (1� �))! (t+ 1)
= c (t+ 1)� (1� � (1� �)) (1 + r (t+ 1)) a (t+ 1) ,

7To derive this expression, �rst note that the Euler equation (I9:44) implies

c
�
t0 j �

�
= c (t j �)�t

0�t
t0Y

s=t+1

[(1 + r (s)) (1� �) + �]

for all t0 > t. Second, note that summing the budget constraints (9:35) and using the transversality condition
leads to the lifetime budget constraint for cohort � at time t

1X
t0=t

c (t0 j �)Qt0
s=t+1 1 + r (s) + �

1��

=

1X
t0=t

w (t0)Qt0
s=t+1 1 + r (s) + �

1��

+ (1 + r (t)) a (t j �) .

Plugging the above expression for c (t0 j �) in this budget constraint and solving for c (t j �) leads to Eq.
(I9:46).
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where the second line uses Eq. (I9:47). Note that the individuals in the newborn cohort
consume less than average since they have no accumulated assets. Plugging the expression
for c (t+ 1 j t+ 1) in Eq. (I9:45), we have
c (t+ 1)

c (t)
= � [(1 + r (t+ 1)) (1� �) + �]� n (1� � (1� �))

1� � (1 + r (t+ 1))
a (t+ 1)

c (t)
, (I9.48)

which is an Euler-like equation that contains only aggregated variables. Intuitively, consump-
tion per capita grows at a slower rate than than what would be in a representative consumer
economy due to the fact that newborns consume less than old cohorts, captured by the second
term in Eq. (I9:48).

Next, we characterize the equilibrium path in per capita variables, [c (t) ; k (t)]1t=0. Plug-
ging in r (t+ 1) = f 0 (k (t))� 1 and a (t+ 1) = k (t+ 1), the previous displayed equation can
be rewritten as

c (t+ 1)

c (t)
= �

��
f 0 (k (t))

�
(1� �) + �

�
� n (1� � (1� �))

1� � f 0 (k (t))
k (t+ 1)

c (t)
.

Note also that we have the resource constraint

c (t) +
k (t+ 1)

1 + n� � = f (k (t))� k (t) .

The last two equations and a transversality condition uniquely characterizes the path
[c (t) ; k (t)]1t=0. Starting with any k (t) � 0, the equilibrium [c (t) ; k (t)]1t=0 converges to
the steady state (c�; k�) solved from

�
��
f 0 (k�)

�
(1� �) + �

�
� n (1� � (1� �))

1� � f 0 (k�)
k�

c�
= 1

and c� +
k�

1 + n� � = f (k�)� k�.

Exercise 9.32*

We �rst obtain the analogue of the Euler-like equation (9:48) in aggregated variables for
the case in which the labor income declines at rate � > 0. We do this in two steps. First, we
derive an equation that relates consumption growth _c (t) to consumption per capita c (t) and
the consumption of the newborn cohort c (t j t). Second, we characterize c (t j t) in terms of
the average per capita variables and obtain the analogue of Eq. (9:48).

To show the �rst step, note that the usual Euler equation applies for every cohort � and
gives

_c (t j �) = (r (t)� �) c (t j �) . (I9.49)

Moreover, we have

c (t) =

Z t

�1
c (t j �) L (t j �)

L (t)
d�

=

Z t

�1
c (t j �) lim

tinit!�1

n exp (�� (t� �) + (n� �) (� � tinit))
exp ((n� �) (t� tinit))

d�

=

Z t

�1
c (t j �)n exp [�n (t� �)] d� , (I9.50)

where the second and third lines derive that the relative population of cohort � ,
L (t j �) =L (t), is equal to n exp [�n (t� �)]. Di¤erentiating Eq. (I9:50) with respect to
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t, and using the Leibniz�and the chain rules, we have

_c (t) = nc (t j t) +
Z t

�1
_c (t j �)n exp (�n (t� �))� nc (t j �)n exp (�n (t� �)) d� .

= n (c (t j t)� c (t)) +
Z t

�1
_c (t j �)n exp (�n (t� �)) d�

= n (c (t j t)� c (t)) +
Z t

�1
(r (t)� �) c (t j �)n exp (�n (t� �)) d�

= n (c (t j t)� c (t)) + (r (t)� �) c (t) , (I9.51)

where the second and the fourth lines use Eq. (I9:50) and the third line uses Eq. (I9:49).
Eq. (I9:51) characterizes the evolution of consumption per capita, c (t), in terms of the
consumption of the newborn cohort, c (t j t), completing our step one. The usual Euler
equation is distorted in Eq. (I9:51) by the term (c (t j t)� c (t)), which takes into account
the fact the newborn cohort may consume di¤erently than the average cohort.

As our second step, we characterize c (t j t) in terms of aggregated (per capita) variables.
Let

! (t) =

Z 1

t
w (s) exp

�
�
Z s

t

�
r
�
t0
�
+ � + �

�
dt0
�
ds,

denote the net present discounted value of the newborn cohort, taking into account that the
wages are declining at rate �. Note that the net present discounted value of the wages of
cohort � � t is

exp (�� (t� �))! (t)
since the wages are declining at an exponential rate. The same arguments that leads to
Eq. (9:45) (in particular, combining log utility, the Euler equation and the lifetime budget
constraints) in this case imply

c (t j �) = (�+ �) (a (t) + exp (�� (t� �))! (t)) , (I9.52)

that is, the individuals of cohort � consume a constant fraction of their lifetime wealth.
Aggregating the previous displayed equation over all cohorts � � t and using L (t j �) =L (t)=
n exp [�n (t� �)], we have

c (t) = (�+ �)

�
a (t) +

�Z t

�1
n exp [�n (t� �)] exp (�� (t� �)) d�

�
! (t)

�
= (�+ �)

�
a (t) +

n

n+ �
! (t)

�
. (I9.53)

Considering Eq. (I9:52) for � = t, we have

c (t j t) = (�+ �)! (t)

= [c (t)� (�+ �) a (t)] n+ �
n

; (I9.54)

where the last line uses Eq. (I9:53). Eq. (I9:54) characterizes c (t j t) in terms of aggregated
variables, completing our step two. Note that in contrast with the text (and Exercise 9.24)
the comparison between c (t j t) and c (t) is ambiguous. On the one hand, the newborn cohort
has less accumulated wealth which tends to reduce c (t j t). On the other hand, the newborn
cohort has a higher present value of wage income (captured by � in Eq. (I9:54)) which tends
to increase c (t j t).
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We next combine our �ndings in steps one and two to obtain an Euler-like equation in
aggregated variables. Plugging this expression for c (t j t) in Eq. (I9:51) and substituting
a (t) = k (t), we obtain

_c (t)

c (t)
= f 0 (k (t))� � � �+ � � (n+ �) (�+ �) k (t)

c (t)
, (I9.55)

which is the analogue of Eq. (9:48) as desired. The intuition behind Eq. (I9:55) is similar to
the intuition for Eq. (9:48) provided in the text. The term with k (t) =c (t) on the right hand
side captures the decline in consumption growth due to the arrival of new cohorts that have
below-average asset holdings. The present model also features a counter force (captured by
�) which pushes up consumption growth.

The equilibrium path of (c (t) ; k (t))1t=0 in this model is characterized by Eq. (I9:55), the
capital accumulation equation (9:42), and the transversality condition (9:44). A steady state
equilibrium (c�; k�) is found by solving _c (t) = 0 and _k (t) = 0, hence it satis�es

f (k�)

k�
� (n+ � � �)� (n+ �) (�+ �)

f 0 (k�)� � � �+ � = 0, (I9.56)

which is a generalization of Eq. (9:50). Next, we claim that there exists � > 0 su¢ ciently
high such that k� > kgold, that is, overaccumulation of capital is possible in this model. Note
that we have f 0 (k�) > � + � � �, which shows k� < kmgr when � = 0. However, when
� > 0 it is possible to have kmgr < k�. More strongly, we claim that it is possible to have
k� > kgold > kmgr. To see this, let the production function take the Cobb-Douglas form
f (k) = k� and consider the parameters

� = 1=5; n = 0:01; � = 0; � = 10; � = 0:02; � = 0:01:

The solution to Eq. (I9:56) gives k� = 54:38, while we have kgold = f 0�1 (� + n� �) =
17:78; kmgr = f 0�1 (� + �) = 10:71, hence k� is larger than both the golden rule and the
modi�ed golden rule capital-labor ratios.

The economic intuition is as follows. With a large �, each household has a declining income
stream and thus a strong motive for saving. More speci�cally, an increase in the interest rate
reduces the lifetime wealth of the household which in turn (given the log utility) reduces
their consumption and increases their savings. With a strong motive to save and overlapping
generations, the equilibrium capital-labor ratio may increase beyond the dynamically e¢ cient
level. This exercise then emphasizes that, in the baseline OLG model, the assumption that
individuals work only when they are young plays an important role in generating dynamic
ine¢ ciency (see also Blanchard (1985) and Blanchard and Fischer (1989)).





Chapter 10: Human Capital and Economic Growth

Exercise 10.2

Exercise 10.2, Part (a). The basic tension in the case of credit market imperfections
is that the individual may have high wage payments in the future which she cannot borrow
against. The desire to smooth consumption can therefore a¤ect an individual�s schooling
choice. Hence, to provide a counterexample we have to �nd a solution to the individual�s
problem with credit constraints which does not maximize the lifetime budget set. Let us
again assume that the individual takes the process of wages [w(t)]Tt=0 as given. Furthermore
assume for simplicity that there is no non-human capital labor supply, i.e. !(t) = 0 for all t.
The problem the individual has to solve is the following:

max
f[c(t)]Tt=0;[s(t)]Tt=0g

Z T

0
exp(�(�+ �)t)u(c(t))dt

s.t. _h(t) = G(t; h(t); s(t))

s(t) 2 [0; 1]

_a(t) = ra(t)� c(t) + w(t)h(t)(1� s(t))
a(t) � 0:

Let us assume that the accumulation equation of human capital takes the form of the Ben-
Porath model, i.e.

_h(t) = �(h(t)s(t))� �hh(t): (I10.1)

We can characterize the solution by studying the current value Hamiltonian

ĤU (h; s; c; �; �) = u(c(t)) + �(t)(�(h(t)s(t))� �hh(t)) +
�(t)(ra(t)� c(t) + w(t)h(t)(1� s(t))) + �(t)a(t) + �(t)(1� s(t));

where we for simplicity ignored the s(t) � 0 constraint on schooling expenditures (by imposing
some Inada-type conditions on � this will be satis�ed automatically). Furthermore, �(t) and
�(t) are the multipliers on the two accumulation equations and �(t) and �(t) are the multiplier
on the borrowing constraint and the remaining constraint on schooling expenditures. The
necessary conditions for this problem are given by

ĤU
c = u0(c(t))� �(t) = 0 (I10.2)

ĤU
s = �(t)�0(h(t)s(t))h(t) = �(t)w(t)h(t) + �(t) (I10.3)

ĤU
a = r�(t) + �(t) = � _�(t) + (�+ �)�(t) (I10.4)

ĤU
h = �(t)(�0(h(t)s(t))s(t)� �h) + w(t)(1� s(t))) = � _�(t) + (�+ �)�(t): (I10.5)

155
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Now consider the problem of maximizing life time earnings. This problem is given by

max
f[s(t)]Tt=0g

Z T

0
exp(�rt)w(t)h(t)(1� s(t))dt

s.t. _h(t) = �(h(t)s(t))� �hh(t)
s(t) 2 [0; 1];

and the corresponding current value Hamiltonian

ĤLTI(h; s; �) = w(t)h(t)(1� s(t)) + �L(t)(�(h(t)s(t))� �hh(t)) + �L(t)(1� s(t));

where the superscript LTI indicates that this current value Hamiltonian refers to the prob-
lem of maximizing life-time earnings (instead of utility). Again we neglected the s(t) � 0
constraint for simplicity. The two multipliers �L(t) and �L(t) are the multipliers on the accu-
mulation equation and the constraint s(t) � 0 and the subscript L indicates that they refer
to the problem of maximizing life-time earning. The necessary conditions for this problem
are

ĤLTI
s = �w(t)h(t) + �L(t)�0(h(t)s(t))h(t)� �L(t) = 0 (I10.6)

ĤLTI
h = �L(t)(�

0(h(t)s(t))s(t)� �h) + w(t)(1� s(t)) = � _�L(t) + r�L(t): (I10.7)

To show that Theorem 10.1 does not necessarily hold in the case of credit constraints, suppose
to arrive at a contradiction that it does, i.e. that the two problems have the same solution
[ŝ(t)]Tt=0. Let us furthermore suppose that r = �+ n and that � is such that ŝ(t) < 1 so that
�L(t) = �(t) = 0. Note that given h(0) and [ŝ(t)]Tt=0 the entire path [h(t)]

T
t=0 is determined

by (I10.1). Then it follows from (I10.7) and (I10.5) that �(t) = �L(t), i.e. the multipliers on
the human capital accumulation constraints are the same. From and (I10.3) and (I10.6) we
get that

�(t) =
�(t)�0(h(t)ŝ(t))h(t)

w(t)h(t)
=
�L(t)�

0(h(t)ŝ(t))h(t)

w(t)h(t)
= 1;

so that consumption will be constant (see (I10.2)) and credit constraint will never bind, i.e.
�(t) = 0 (from (I10.4)). Note that this solution made no reference to the initial asset level
a(0).

But now suppose that wages are increasing over time. For consumption to be constant
and the budget constraint to be satis�ed, we then need that

c(0) > w(0):

In particular consider a solution where c(0) > w(0)h(0). This is clearly possible if h(0)
and w(0) are small enough. Assuming that initial assets are zero, the capital accumulation
equation implies that

_a(0) = w(0)h(0)(1� ŝ(0))� c(0) < w(0)h(0)� c(0) < 0;

so that the borrowing constraint is violated. This yields a contradiction and shows that the
conclusion of Theorem 10.1 does not apply in this example.

To see that this result does not hinge on the inability to borrow, let us now suppose that
credit market imperfections are such that the borrowing rate r0 exceeds the lending rate r.
In this case, the capital accumulation equation for the individual is given by

_a(t) = ra(t)� c(t) + w(t)h(t)(1� s(t)) + (r0 � r)a(t)1fa(t) < 0g;
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where 1f:g is an indicator variable. Using this constraint in the current value Hamiltonian
above, the corresponding �rst-order condition (I10.4) is now given by�

r + (r0 � r)1fa(t) < 0g
�
�(t) = � _�(t) + (�+ �)�(t).

Using the parametric assumption r = �+ �, this can be written as

(r0 � r)1fa(t) < 0g�(t) = � _�(t): (I10.8)

But this yields a similar contradiction. By the same argument as above, if the solution is
the same and involves 0 < ŝ(t) < 1, the multiplier on the asset accumulation �(t) should
be constant and non-zero. This however is inconsistent with (I10.8) as long as there exits
some t where along the solution the consumer needs to acquire debt. Hence, the example
above shows that Theorem 10.1 does not apply in case the lending rate does not equal the
borrowing rate.

Exercise 10.2, Part (b). To �nd an example where a nontrivial leisure choice violates
Theorem 10.1 is relatively easy. Let us denote leisure by l(t). Note �rst, that the solution to
the problem of maximizing life-time earnings will involve l(t) = 0, i.e. leisure �expenses�will
be set to zero throughout. But now suppose for concreteness that the instantaneous utility
function u(c(t); l(t)) takes the Cobb-Douglas form

u2(c; l) = c�l1��:

To arrive at the contradiction that the solution for schooling s(t) will be the same, note
that the necessary conditions for the problem to maximize lifetime earnings are still given
by (I10.6) and (I10.7), whereas for the consumer�s problem we now have the additional
intratemporal necessary condition, i.e. consumption and leisure are chosen to satisfy

uc(c(t); l(t)) = �(t) (I10.9)

ul(c(t); l(t)) = �(t)w(t)h(t) (1� s(t)) : (I10.10)

By the same argument as above, if the solutions to those problems are the same, �(t) needs
to be constant over time, i.e. �(t) = ��. From (I10.9) this implies that

�(t) = �� = uc(c(t); l(t)) = �

�
l(t)

c(t)

�1��
;

so that l(t)
c(t) needs be constant. But (I10.10) requires that

ul(c(t); l(t)) = (1� �)
�
c(t)

l(t)

��
= �(t)w(t)h(t) (1� s(t)) = ��w(t)h(t) (1� s(t)) ;

so that so that w(t)h(t) (1� s(t)) has to be constant. However, wages are exogenous so that
there is no reason why this should be true in general, i.e. irrespective of [w(t)]Tt=0 and the
functional form �. This yields the required contradiction and shows that Theorem 10.1 will
not be true once we allow for a nontrivial leisure choice.

Exercise 10.6

We are going to prove this result with a constructive proof, that is we are going to
show that the path conjectured in the exercise statement will indeed solve the necessary and
su¢ cient conditions of the problem. So let us �rst derive those conditions. The current value
Hamiltonian for this problem is given by

Ĥ(s; h; �) = (1� s(t))h(t) + �(t)[�(h(t))s(t)� �hh(t)] + �0(t)s(t) + �1(t)(1� s(t));
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where �0(t) and �1(t) are the multipliers on the constraints 0 � s(t) � 1. The necessary
conditions are then given by

Ĥs(s; h; �) = �h(t) + �(t)�(h(t)) + �0(t)� �1(t) = 0 (I10.11)

Ĥh(s; h; �) = 1� s(t) + �(t)(s(t)�0(h(t))� �h) = (r + �)�(t)� _�(t); (I10.12)

and the complementary slackness conditions

0 = �0(t)s(t) = �1(t)(1� s(t)) and �0(t); �1(t); s(t); (1� s(t)) � 0: (I10.13)

Together with the transversality condition

lim
T!1

[exp(�(r + �)T )�(T )h(T )] = 0

those conditions are also su¢ cient to characterize the solution.
Hence let us conjecture there exists T > 0 such that s(t) 2 (0; 1) for all t � T , i.e. starting

at T the schooling choice will be interior. Along such a solution (I10.13) implies that

�0(t) = �1(t) for all t � T

so that (I10.11) yields
h(t) = �(t)�(h(t)) for all t � T . (I10.14)

Di¤erentiating this condition with respect to time and using the law of motion
_h (t) = s (t)� (h (t))� �hh (t) (I10.15)

we get that for all t � T

_�(t)

�(t)
=

_h(t)

h(t)

�
1� �0(h(t))h(t)

�(h(t))

�
=

s (t)� (h (t))� �hh (t)
h(t)

�
1� �0(h(t))h(t)

�(h(t))

�
=

s (t)� (h (t))

h(t)
� s(t)�0(h(t))� �h + �h

�0(h(t))h(t)

�(h(t))
: (I10.16)

Furthermore, (I10.12) implies that

_�(t)

�(t)
= �h + r + v �

1� s(t)
�(t)

� s(t)�0(h(t))

= �h + r + v �
(1� s(t))� (h (t))

h(t)
� s(t)�0(h(t)); (I10.17)

where the second lines used (I10.14). From (I10.16) and (I10.17) we therefore get

�h

�
1� �0(h(t))h(t)

�(h(t))

�
=
�(h(t))

h(t)
� (�h + r + v) for all t � T: (I10.18)

Note that any interior solution of s(t) has to satisfy the relationship contained in (I10.18).
Obviously, the above does not depend on s(t) directly. And as (I10.18) has to hold for
all t � T , under regularity conditions on h(:) there exists a unique h(t) = h�, i.e. h(t) is
constant for all t � T . Using _h(t) = 0 however, we can directly pin down the level of schooling
expenditures s(t) from the law of motion. Using (I10.15), it is given by

s (t) =
�hh (t)

� (h (t))
=

�hh
�

� (h�)
= s�; (I10.19)

where we assume that �h and the function � are such that s� < 1. This shows that whenever
s(t) is interior it actually has to be constant and equal to s�.
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Let us now turn to the behavior of the system for t 2 [0; T ). We conjecture the following
solution. Starting from h(0) < h� the path [h(t); �(t); s(t)]Tt=0 satis�es the necessary condi-
tions above and satis�es h(T ) = h� and �(T ) = ��, where h� solves (I10.18) and �� is given
by (see (I10.14))

�� =
h�

�(h�)
(I10.20)

and has s(t) = 1 for all t 2 [0; T ). Using (I10.11), (I10.12), (I10.13) and (I10.15) this path is
characterized by

0 = �h(t) + �(t)�(h(t))� �1(t) < �h(t) + �(t)�(h(t)) (I10.21)
_�(t)

�(t)
= �h + r + v � �0(h(t)) (I10.22)

_h (t) = � (h (t))� �hh (t) : (I10.23)

So what is the joint evolution of h(t) and �(t) as implied by (I10.21)-(I10.23)? Let us
suppose that h(0) = h0 < h� and consider �rst (I10.23) which determines the evolution of
h(t) irrespective of [�(t)]Tt=0. Note especially that (I10.23) has exactly the same structure
as the capital accumulation equation of the Solow growth model. Hence [h(t)]1t=0 as implied
by (I10.23) will be monotonically increasing towards its steady state value ~h, where ~h is
implicitly de�ned by

�
�
~h
�

~h
= �h: (I10.24)

We now claim that ~h > h�. To see this, simply observe from (I10.19) and (I10.24) that

� (h�)

h�
=
�h
s�
=
1

s�

�
�
~h
�

~h
>
�
�
~h
�

~h
;

where the last inequality follows from the fact that s� < 1. But as �(:) is concave, it is clear
that �(h)

h is decreasing in h so that h� < ~h as required. It then follows that we can choose T
such that [h(t)]Tt=0 is governed by (I10.23) and satis�es

h(T ) = h�:

Note in particular that h(t) increases over time.
Let us now turn to the behavior of [�(t)]1t=0 as governed by (I10.22). First of all observe

that we can solve for �(t) as

�(t) = �(0) exp

�Z t

0

�
�h + r + v � �0(h(s))

�
ds

�
:

This shows that �(t) is a decreasing function of the initial starting value �(0), which is a
free variable. Hence for any [h(t)]Tt=0, there exists a unique �(0) such that �(T ) = ��. In
particular, this �(0) is given by

�(0) = �� exp

�
�
Z T

0

�
�h + r + v � �0(h(s))

�
ds

�
:

The two paths [h(t); �(t)]Tt=0 therefore satisfy h(T ) = h� and �(T ) = �� and the initial
condition h(0) = h0. We therefore just have to establish that [h(t); �(t)]Tt=0 also satisfy the
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�rst-order condition (I10.21), i.e. satisfy

�h(t) + �(t)�(h(t)) = h(t)

�
�(h(t))

h(t)
�(t)� 1

�
� 0.

First of all note that

�(T )
�(h(T ))

h(T )
= ��

�(h�)

h�
= 1 (I10.25)

as seen in (I10.20). But now note that using (I10.22) and (I10.23) we get that

d

dt

�
�(t)

�(h(t))

h(t)

�
= _�(t)

�(h(t))

h(t)
+ �(t)

�0(h(t))h(t)� �(h(t))
h(t)2

_h(t)

= �(t)
�(h(t))

h(t)

"
_�(t)

�(t)
+
�0(h(t))h(t)� �(h(t))

�(h(t))

_h(t)

h(t)

#

= �(t)
�(h(t))

h(t)

�
�h + r + v �

�(h(t))

h(t)
+ �h

�
1� �0(h(t))h(t)

�(h(t))

��
:

From (I10.18) we know that

�h + r + v =
�(h�)

h�
� �h

�
1� �0(h�)h�

�(h�)

�
:

Substituting this above yields

d

dt

�
�(t)

�(h(t))

h(t)

�
= �(t)

�(h(t))

h(t)

�
�(h�)

h�
� �(h(t))

h(t)
+ �h

�
�0(h�)h�

�(h�)
� �0(h(t))h(t)

�(h(t))

��
:

(I10.26)
Now note that

�(h�)

h�
<
�(h(t))

h(t)

as �(h)
h is decreasing in h and h(t) � h� for all t � T . Additionally let us assume that �0(h)h

�(h)

is also nonincreasing in h. Note that this does not follow from concavity of �, but is for
example satis�ed if �(h) = h . Under this assumption (I10.26) implies that

d

dt

�
�(t)

�(h(t))

h(t)

�
� 0;

i.e. for all t � T

�(t)
�(h(t))

h(t)
� ��

�(h�)

h�
= 1;

where the last equality uses (I10.25). This shows that the paths [h(t); �(t)]Tt=0 also satis�es
the �rst-order condition in (I10.21).

These two characterizations also describe the entire solution. We found paths
[h(t); �(t); s(t)]1t=0 with the following properties. h(t) is increasing for t 2 [0; T ], satis�es
h(T ) = h� and stays constant at h� thereafter. �(t) is decreasing for t 2 [0; T ], satis�es
�(T ) = �� and stays constant thereafter. And s(t) is given by

s(t) =

�
1 if t < T
s� if t � T

:

We showed that this part satis�ed all the necessary conditions of the problem. Additionally
we have that

lim
T!1

[exp(�(r + �)T )�(T )h(T )] = ��h� lim
T!1

[exp(�(r + �)T )] = 0
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so that the transversality condition is also satis�ed along the conjectured path. Hence the
conjectured path satis�es the necessary and su¢ cient conditions for this problem and there-
fore is a solution as required.

Note we made the assumption (which seems natural in this context) that h(0) < h�.
The case h(0) > h� would be similar in the sense that the optimal plan would involve some
period [0; T ] where no schooling investment would be conducted so that human capital h(t)
would depreciate over time. Once the critical level of human capital h� is reached, schooling
investment would again be constant. In the context of human capital accumulation however,
this seems to be a counterfactual case (as you would have been able to solve this problem
in elementary school but then decided to let your optimal control skills depreciate to make
grad school a more thrilling experience).

Exercise 10.7

Exercise 10.7, Part (a). If we modify the Ben-Porath (1967) model along the lines
suggested in the exercise, the maximization problem is given by

max
[s(t)]Tt=0

Z T

0
exp(�(r + �)t)(1� s(t))h(t)dt (I10.27)

s.t. _h(t) = �(s(t)h(t))� �hh(t)
s(t) 2 [0; 1]:

To characterize the solution of this problem, we can directly apply the Maximum Principle,
which we encountered in Chapter 7. In Theorem 7.4 we saw that the necessary conditions
could be derived from the Hamiltonian, which in this example takes the form

H(t; s(t); h(t); �(t)) = exp(�(r + �)t)(1� s(t))h(t) + �(t)(�(s(t)h(t))� �hh(t))
+�0(t)s(t) + �1(t)(1� s(t))

where �0(t) and �1(t) are the respective multipliers on the constraint s(t) 2 [0; 1]. As s(t)
refers to the control and h(t) to the state variable, the necessary conditions are given by

Hs = � exp(�(r + �)t)h(t) + �(t)�0(s(t)h(t))h(t) + �0(t)� �1(t) = 0 (I10.28)

Hh = exp(�(r + �)t)(1� s(t)) + �(t)(�0(s(t)h(t))s(t)� �h) = � _� (t) ; (I10.29)

and the complementary slackness condition

0 = �0(t)s(t) = �1(t)(1� s(t)) and �0(t); �1(t); s(t); (1� s(t)) � 0:
Together with the boundary condition

�(T )h(T ) = 0 (I10.30)

these conditions are necessary and su¢ cient. An interior solution 0 < s(t) < 1 is then
characterized by (I10.28) and (I10.29) with �0(t) = �1(t) = 0.

Exercise 10.7, Part (b). In contrast to formally introduce such multiplier and solve
the problem explicitly we will take another route that turns out to be convenient in many
economic problems. In order to characterize the behavior of the solution we will show that
assuming an interior solution throughout will lead to a contradiction. Another way would
be to consider a constructive proof, i.e. to show that there exists a plan with the required
properties that would satisfy the necessary and su¢ cient conditions for an optimum. For a
formal analysis along that route we refer to Exercise 10.6.
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To achieve the desired contradiction, suppose there was an interior solution. If so, then
the conditions provided above would be satis�ed with �0(t) = �1(t) = 0. The �rst necessary
condition (I10.28) can then be solved for

exp(�(r + �)t) = �(t)�0(s(t)h(t)): (I10.31)

Substituting this into the second one (I10.29), we get that
_� (t) = � exp(�(r + �)t)(1� s(t))� �(t)(�0(s(t)h(t))s(t)� �h)

= � exp(�(r + �)t)(1� s(t))� �(t)(exp(�(r + �)t)
�(t)

s(t)� �h)

= � exp(�(r + �)t) + �(t)�h: (I10.32)

Solving the di¤erential equation yields

exp(��hT )�(T )� �(0) =
1

�h + r + �
[exp(�(�h + r + �)T )� 1] :

Using the boundary condition �(T ) = 0 (which follows from (I10.30)) we get that

�(0) =
1

�h + r + �
[1� exp(�(�h + r + �)T )] : (I10.33)

Note however that the set of necessary conditions has to hold at all t, in particular at t = 0.
Hence, (I10.33) and (I10.31) together imply that

1

�h + r + �
[1� exp(�(�h + r + �)T )]�0(s(0)h(0))) = 1;

which yields

�0(s(0)h(0))) =
�h + r + �

[1� exp(�(�h + r + �)T )]
: (I10.34)

Now note that � is concave so that (I10.34) implies that

�h + r + �

[1� exp(�(�h + r + �)T )]
= �0(s(0)h(0))) > �0(h(0)));

which contradicts the parametric assumption1

�0(h(0))) >
�h + r + �

[1� exp(�(�h + r + �)T )]
: (I10.35)

The necessary condition for an interior solution is therefore not satis�ed at t = 0 contradicting
our assumption that s(t) is interior throughout. To argue that schooling expenditures s(t)
will actually be zero for some time before T , suppose that this is not the case. This implies
that the necessary condition (I10.28) holds at T ��, i.e.

�(T ��) = exp(�(r + �)(T ��))
�0(s(T ��)h(T ��)) > 0;

which follows from our assumption that �0(s(T ��)h(T ��)) <1. As this inequality holds
for � and � is continuous, this also implies that

lim
�!0

�(T ��) = �(T ) = lim
�!0

exp(�(r + �)(T ��))
�0(s(T ��)h(T ��)) =

exp(�(r + �)T )
�0(0)

> 0;

which violates the boundary condition in (I10.30). Hence there exists some " > 0 such that
s(t) = 0 for all t 2 (T �"; T ]. Up to now we have shown that schooling will necessarily be set

1Note that there is a little typo in the exercise statement. The appropriate discount rate is given by
�h + r + v and not �h so that the right parametric condition is given in (I10.35).
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at a corner solution at the beginning of life and at the end. Now it only remains to be shown
the s(t) takes intermediate values in some time interval [t1; t2]. From (I10.28) we know that

� exp(�(r + �)t)h(t) + �(t)�0(s(t)h(t))h(t) + �0(t)� �1(t) = 0:

Now suppose s(t) is always chosen to be at a corner. In that case there is some t0 such that
s(t) = 1 for t � t0 and s(t) = 0 for t > t0. The respective multipliers are strictly positive in
case the constraint binds and zero otherwise. Hence this implies

0 < � exp(�(r + �)t0)h(t0) + �(t0)�0(h(t0))h(t0)
0 > � exp(�(r + �)(t0 +�))h((t0 +�)) + �((t0 +�))�0(0)h((t0 +�))

Taking the limit �! 0, these two conditions yield

�0(h(t0))h(t0) > �0(0)h(t0):

This however is a contradiction as h(t0) > 0 so that

�0(0) > �0(h(t0))

by the concavity of �. Hence there is some interval [t1; t2] where schooling s(t) is interior.

Exercise 10.7, Part (c). As wages are normalized to w = 1, per period earnings are
given by y(t) = (1� s(t))h(t). The law of motion of earnings is therefore given by

_y(t) = (1� s(t)) _h(t)� _s(t)h(t)

= (1� s(t))�(s(t)h(t))� (1� s(t))�hh(t)� _s(t)h(t);

where s(t) is the solution of the consumer�s problem. We showed above that there are three
cases to consider. In the beginning of life, the individual will invest her entire time endowment
into her schooling choice so that s(t) = 1 for all t 2 [0; t0). Hence it is clear that y(t) = 0
for all t 2 [0; t0). Secondly we showed that there is some " > 0 such that s(t) = 0 for all
t 2 (T � "; T ] so that the above yields y(t) = h(t) for all t 2 (T � "; T ] Hence,

_y(t) = _h(t) = �(0)� �hh(t) for all t 2 (T � "; T ];

i.e. during this last time interval (T � "; T ], earnings (and human capital) depreciate. If
we assume that �(0) = 0 (i.e. you need some schooling or training to accumulate human
capital), earnings depreciate geometrically at the rate �h. So what about the middle interval
[t0; T � "] where the schooling choice is interior? Clearly for all t 2 [t0; T � "], the two
necessary conditions (I10.28) and (I10.29) have to hold. From (I10.32) we can again solve
the di¤erential equation for � to arrive at

�(t) =
1

�h + r + �
exp(�(r + �)(t� t0)) + exp(�h(t� t0))

�
�(t0)� 1

�h + r + �

�
,

whenever t 2 [t0; T � "]. By using (I10.28) again, an interior solution satis�es

1 =

�
1

�h + r + �
+ exp((r + � + �h)(t� t0))

�
�(t0)� 1

�h + r + �

��
�0(s(t)h(t)): (I10.36)

To simplify the notation, let us de�ne x(t) = s(t)h(t). As (I10.36) has to hold for all
t 2 [t0; T � "] we can di¤erentiate with respect to time to get

_x(t) = ��
0(x(t)) exp(�(t� t0))�

�00(x(t))

�(t0)� ��1
��1 + exp(�(t� t0)) (�(t0)� ��1) ; (I10.37)
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where � � r + � + �h. We are now going to show that _x(t) < 0 for all t 2 [t0; T � "]. To see
this, note �rst that � is assumed to be concave and we therefore have

��
0(x(t)) exp(�(t� t0))�

�00(x(t))
> 0 for all t 2 [t0; T � "]:

Furthermore we will now argue that

�(t0)� ��1 = �(t0)� 1

�h + r + �
< 0.

To see this, suppose this is not the case. This implies that

�(t0)� ��1
��1 + exp(�(t� t0)) (�(t0)� ��1) > 0 for all t 2 [t0; T � "]

so that
_x(t) > 0 for all t 2 [t0; T � "]:

This however cannot be the case as s(t) is continuous and satis�es

lim
t!T�"

s(t) = 0 (I10.38)

so that x(t) goes to zero too. With �(t0)���1 < 0 however, (I10.37) shows that x(t) declines
over time.2, i.e.

_x(t) < 0 for all t 2 [t0; T � "]:
But now note that we can write personal income as

y(t) = (1� s(t))h(t) = h(t)� x(t)
so that

_y(t) = _h(t)� _x(t).

As _h(t) = �(h(t)s(t))��hh(t) = �(x(t))��hh(t) it will typically be the case that h(t) will �rst
increase for a while and then decrease. Note that individuals continue their training while
already starting working, i.e. s(t) 2 (0; 1) in t 2 [t0; T � "]. Earnings have therefore a similar
shape. In the beginning we have that _h(t) > 0 and � _x(t) > 0 so that earning increase.
This is a time where the individual still spends substantial time resources on training on
the job. Over time, schooling expenditures are reduced so that the stock of human capital
deteriorates. This puts downward pressure on income growth as _h(t) < 0. At T � ", no
resources are spent on training (or schooling) so that x(t) = _x(t) = 0 and earnings decrease
over time.

Exercise 10.7, Part (d). In order to think about an empirical analysis of the testable
implications of this model, it is important to be precise about which aspect of theory one is
interested in testing. There are two broad directions one could go for. On the one hand there
is the connection between wages and the stock of an individual�s human capital, on the other
hand there are the implications on individual earning dynamics. Whereas clearly both are
very important, the center of interest in Ben-Porath�s model of human capital accumulation
is the second one. The major implication of this approach to understand human capital is
that its accumulation is an ongoing process which has the �avor of investment. Hence it is
this aspect that o¤ers the most fruitful chance to test its implications.

2Note that t0; T � " and �(t0) will be such that ��1 + exp(�(t� t0))
�
�(t0)� ��1

�
> 0: This follows from

the following argument. Suppose there was t̂ < T � " such that ��1 + exp(�(t̂� t0))
�
�(t0)� ��1

�
< 0: Then

this would imply that ��1+exp(�(t̂� t0))
�
�(t0)� ��1

�
< 0 for all t 2 [t̂; T � "], i.e. x(t) would be increasing

towards the end of the working life. This however contradicts (I10.38).
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One important determinant in the maximization problem above is the time horizon t.
Especially it is clear that human capital investment (i.e. schooling or rather training s(t))
should decrease as T comes closer. To empirically investigate this property one could either
try to exploit regional variations in retirement laws (or the execution thereof) or focus on
changes in such laws over time. E.g. the change in the minimum age of retirement could be
exploited in a regression-discontinuity design if there is a well-de�ned group of people a¤ected
by the change of the law. There is also the casual observation that, both historically and across
countries, schooling is longer when life expectancy increases. This could however be driven
by many other mechanisms. If, for example, schooling and human capital accumulation
fosters economic growth which in turn increases the average life expectancy we would see
that countries where life expectancy is higher have also higher schooling expenditures. The
Ben-Porath model however posits a causal e¤ect of the time horizon on individual schooling
expenditures.

Another potential candidate to test this model of human capital accumulation is the
return to human capital, i.e. the wage rate. Note however that the level of the wage rate will
not in�uence the accumulation decision - the solution to the individuals�problem (I10.27) is
invariant with respect to a di¤erent scale (i.e. multiplying wages by a constant). The time-
pro�le of wages however will matter a great deal for the investment decision as it determines
the marginal costs of doing so. So if we hypothetically had two di¤erent life-cycle wage
pro�les (as a function of time!) for two identical individuals, this model would predict that
their human capital accumulation decision would be responsive to those di¤erences. It is far
from clear however, how this should be tested in practice. The reason is that wage changes
occur mostly together with promotions or job changes that are likely to be correlated with
prior investments in human capital. The higher wage would therefore be caused by the
human capital investment itself. Furthermore - and this is probably the biggest challenge in
examining this model empirically - note that the assumption of individuals either investing
in human capital or earning wages is highly questionable once we are trying to analyze the
part of the interior solution of the model, i.e. the case of non-formal schooling. In reality
such a distinction is mostly unclear and very hard to observe.

Exercise 10.14*

The discussion following Proposition 10.1 in Section 10.4 shows already how the non-
negativity constraints will a¤ect the solution. Let us now study this claim formally. To do
so, we have to introduce additional multipliers in the Hamiltonian given in (10.24) to account
for the constraints on physical and human capital investment. Letting �h(t) and �k(t) be the
respective multipliers, the new Hamiltonian is given by (we omit the time arguments in the
de�nition of the Hamiltonian to save some notation)

H (k; h; ik; ih; �k; �h; �k; �h) = u (f (k (t) ; h (t))� ih (t)� ik (t)) + �h (t) (ih (t)� �hh (t))
+�k (t) (ik (t)� �kk (t)) + �k(t)ik(t) + �h(t)ih(t):

The necessary conditions are given by

Hk = u0 (c (t)) fk (k (t) ; h (t))� �k(t)�k = ��k(t)� _�k(t) (I10.39)

Hh = u0 (c (t)) fh (k (t) ; h (t))� �h(t)�h = ��h(t)� _�h(t)

Hik = �u0 (c (t)) + �k (t) + �k(t) = 0 (I10.40)

Hih = �u0 (c (t)) + �h (t) + �h(t) = 0;
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and the two complimentary slackness conditions

�k(t)ik(t) = 0; �k(t) � 0 and �h(t)ih(t) = 0; �h(t) � 0; (I10.41)

which just state that the multipliers �h(t) and �k(t) are positive only if the respective con-
straints bind. Together with the transversality condition the su¢ ciency theorem encountered
in Chapter 7 implies that any path that satis�es these conditions is optimal. To characterize
the transitional dynamics of this economy we will therefore provide a constructive proof, i.e.
we will conjecture a path [k(t); h(t); ik(t); ij(t)]1t=0 and then show that this particular path
satis�es the su¢ cient conditions above so that this will indeed be the optimal path.

From the discussion following Proposition 10.1 it is clear that we only have an interior
solution (i.e. have �h(t) = �h(t) = 0 for all t) when the initial levels of physical and human
capital are exactly "aligned" in the sense that they satisfy the equation

fk (k (0) ; h (0))� fh (k (0) ; h (0)) = �k � �h: (I10.42)

Recall that (I10.42) implicitly de�nes a mapping

h = �(k);

where �(:) is strictly increasing and di¤erentiable.
Suppose that

k(0) < ��1(h(0)) and k(0) < k� and h(0) < h�;

i.e. both physical and human capital are below their steady states value and k(0) is too low
for (k(0); h(0)) to be balanced in the sense of satisfying (I10.42) (the other cases are similar).
We then conjecture the following solution. Suppose that ik(t) > 0 for all t and that ih(t) = 0
for t 2 [0; T ], where T > 0. Along such a path (I10.40) implies that

u0 (c (t)) = �k (t) (I10.43)

as �k(t) = 0 from (I10.41). Substituting (I10.43) into (I10.39) yields

fk (k (t) ; h (t))� �k � � = �
_�k(t)

�k(t)
:

Upon di¤erentiating (I10.43) with respect to time we therefore get for t 2 [0; T ] the system
_c(t)

c(t)
=

1

"u(c(t))
(fk(k(t); h(t))� �k � �)

_k(t) = f(k(t); h(t))� c(t)� �kk(t)
_h(t) = ��hh(t): (I10.44)

Note that (I10.44) together with the initial condition h(0) implies that

h(t) = h(0) exp(��ht) for all t 2 [0; T ]:
Hence h(t) deteriorates over time along the conjectured path. Let us now choose T such that

h(T ) = ��1(k(T )): (I10.45)

Note that such a T <1 exits. Suppose this is not the case. As k(t) > 0 along a solution path
(otherwise feasibility would be violated), Eq. (I10.42) and the Inada condition on f imply
that ��1(k(t)) > 0 for all t. But limT!1 h(T ) = 0 and h(t) is strictly decreasing. Hence,
there exists T <1 such that (I10.45) is satis�ed along the conjectured path.

Then suppose that ih(t) is such that h(t) = ��1(k(t)) for all t � T . Given this construction
we can therefore capture the behavior of h(t) by the function �(k(t)) which is de�ned by

h(t) = �(k(t)) � maxf��1(k(t)); h(0) exp(��ht)g:
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Note that �(k(t)) is de�ned for all t and not only for t 2 [0; T ]. Hence, the system we have
to solve is given by

_c(t)

c(t)
=

1

"u(c(t))
(fk(k(t); �(k(t)))� �k � �)

_k(t) = f(k(t); �(k(t)))� c(t)� �kk(t)
and the transversality condition. Note that �(k(t)) is weakly increasing in k(t) as

@��1(k)

@k
=

1

�0(��1(k))
> 0:

This is a system of two di¤erential equations in two unknowns (i.e. c(t) and k(t)) with two
terminal conditions (namely k(0) and the transversality condition). Although this system
is non-autonomous (note that the �(k(t)) term introduces a dependence on time), it is very
similar to the neoclassical growth model. Therefore there exists a unique level of c(0) such
starting with c(0) the transversality condition will be satis�ed, i.e. the system is saddle-path
stable. Hence, this path satis�es the transversality conditions, the initial conditions and all
the necessary conditions (I10.39)-(I10.41) so that by the su¢ ciency theorem this path will
indeed be the solution characterizing the transitional dynamics.

Economically speaking the transitional dynamics will take the following form. If k(0)
and h(0) are aligned in the sense of (I10.42), i.e. h(0) = �(k(0)), the transitional dynamics
are like in the neoclassical growth model as shown in Proposition 10.1. If h(0) 6= �(k(0)),
there is no interior solution for all t. In particular it will be the constraint of the excessively
abundant factor which will be binding and there will be accumulation of the scarce factor
until both are balanced in the sense of (I10.42). Due to depreciation and positive investment
into the initially scarce factor, (I10.42) will be satis�ed at some T < 1. From then on, the
economy will again look like a neoclassical economy as Proposition 10.1 applies starting at
T .

Exercise 10.18

In (10.37), the capital accumulation equation was given as

�(t+1)0�1[a(f(�(t+1)��(t+1)f 0(�(t+1)))] = (1��)f(�(t))0�1[a(f(�(t)��(t)f 0(�(t)))]:
(I10.46)

To study the local stability, let us de�ne the functions

m(�) = a(f(�)� �f 0(�))
g(�) = �0�1[m(�)]

h(�) = (1� �)f(�)0�1[m(�)]:
In particular let us assume that

0(0) = 0 and lim
k!1

0(k) =1; (I10.47)

so that there is an interior solution with 0�1[m(�)] > 0. Then we get that

g0(�) = 0�1[m(�)] + �
m0(�)

00(0�1(m(�)))
> 0;

where the inequality follows as f is concave so that

m0(�) = �a�f 00(�) > 0;
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and  is convex (so that 0�1[m(�)] > 0 and 00(0�1(m(�))) > 0). Since g is increasing, it is
invertible. Applying g�1 to both sides of (I10.46) yields

�(t+ 1) = g�1(h(�(t))): (I10.48)

To study the local stability system we can now consider the linear approximation of (I10.48)
around the steady state ��. This yields

�(t+ 1) = g�1(h(�(t))) � g�1(h(��)) +
d

d�
g�1(h(�))

��
�=��

� (�(t)� ��):

As this is just a linear system, local stability requires that���� dd� g�1(h(�))���=��
���� < 1: (I10.49)

Doing the di¤erentiation yields

d

d�
g�1(h(�))

��
�=��

=
h0(��)

g0(g�1(h(��)))
=
h0(��)

g0(��)
;

where the �rst equality follows from the derivative of the inverse function and the second
equality follows from (I10.48) where by de�nition of �� we have

g�1(h(��)) = ��:

Hence we get that

d

d�
g�1(h(�))

��
�=��

=
(1� �)f 0(��)0�1[m(��)] + (1� �)f(��) 1

00(0�1(m(��)))m
0(��)

0�1[m(��)] + �� 1
00(0�1(m(��)))m

0(��)
:

As both the numerator and the denominator are positive, (I10.49) requires that

(1� �)f 0(��)0�1[m(��)] + (1� �)f(��) 1
00(0�1(m(��)))m

0(��)

0�1[m(��)] + �� 1
00(0�1(m(��)))m

0(��)
< 1;

which we can also express as�
(1� �)f 0(��)� 1

�
0�1[m(��)]] + [(1� �)f(��)� ��] 1

00(0�1(m(��)))
m0(��) < 0: (I10.50)

Now note that in the steady state we have from (10.38) that

(1� �)f(��) = ��; (I10.51)

so that (I10.50) reduces to �
(1� �)f 0(��)� 1

�
0�1[m(��)] < 0:

As 0�1[m(��)] > 0, we require that

(1� �)f 0(��) < 1;
which, using (I10.51), is equivalent to

f 0(��) <
f(��)

��
:

When f(0) = 0, this condition is satis�ed since f being concave implies

f 0(��) <
f(��)� f(0)

��
:

Hence, the system is locally stable as long as f is concave, satis�es f(0) = 0,  is convex and
the Inada-type conditions in (I10.47) hold true.
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Exercise 10.20

To prove Proposition 10.5, recall from Proposition (10.3) that workers�human capital
decision hi(k̂; �) was de�ned by the condition

�ai
@F
�
k̂; hi(k̂; �)

�
@hi

= 0

 
hi(k̂; �)

ai

!
: (I10.52)

For given ai; hi(k̂; �) is increasing in k̂, as from (I10.52) we get that

@h(k̂)

@k
=

�a2i
@2F(k̂;hi(k̂;�))

@hi@k

00
�
hi(k̂;�)
ai

�
� �a2i

@2F(k̂;hi(k̂;�))
@hi2

> 0;

where the inequality follows from (:) being strictly convex and F (:) being strictly concave.
The intuition is the complementarity between physical and human capital. As a higher level
of physical capital increases the marginal return to human capital, workers�human capital
investment will increase as they still receive a share � of this increase in total output.

Additionally we get that for given k̂, hi(k̂; �) is increasing in �, as

@hi(k̂; �)

@�
=

a2i
@F(k̂;hi(k̂;�))

@hi

00
�
hi(k̂;�)
ai

�
� �a2i

@2F(k̂;hi(k̂;�))
@hi2

> 0:

This is also sensible. As � denotes the workers�output share (or their bargaining power), a
higher level of � induces higher human capital investment as workers receive a bigger share
of the bene�ts of this investment. Firms choose their capital stock k̂(�) according to

(1� �)
Z 1

0

@F
�
k̂(�); ĥi

�
@k

di = R�; (I10.53)

where ĥi = hi(k̂(�); �). Recall that R� is the interest rate �xed by international capital
markets. For future reference note that the optimal capital stock k̂(�) is decreasing in � as

dk̂(�)

d�
=

R 1
0

@F(k̂(�);ĥi)
@k di

@
@k

�R 1
0

@F(k̂(�);ĥi)
@k di

�
(1� �)

=
R�=(1� �)

@
@k

�R 1
0

@F(k̂(�);ĥi)
@k di

�
(1� �)

< 0:

That the denominator is negative follows from the second order condition of �rms, i.e. from
the fact that at the �rms�solution k̂(�) we need

(1� �) @
@k

24Z 1

0

@F
�
k̂(�); ĥi

�
@k

di

35 < 0:
The intuition is exactly the same as above: an increase in � represents a decrease in the
bargaining power of the �rms so that their investment level will decrease.

Now suppose that � = 1. Then (I10.53) implies that

k̂ = 0:

The intuition is the following. Knowing that ex-post, workers will receive the entire surplus
of the match, there will be no up-front investment into capital by the �rms. But as capital
is essential in production, i.e. F (0; h) = 0, output will be zero. Similarly, if � = 0, (I10.52)
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implies that hi(k) = 0 for all i. The reason is similar: given that workers incur costs ( hai )

when choosing a level of human capital equal to h, and 0( hai ) � 0, for all h, but do not receive
any compensation ex-post, there will be no investment in human capital. By the essentiality
of human capital we have that F (k; 0) = 0, so that output is zero.

To see that there is an optimal level of �, note �rst that output in this economy is given
by

Y (�) =

Z 1

0
yidi =

Z 1

0
F (k̂(�); hi(k̂(�); �))di: (I10.54)

As the objective function in (I10.54) is continuous and the maximization takes place over
a compact set (i.e. � 2 [0; 1]), Weierstrass�Theorem implies that there exists a maximum
�� 2 [0; 1]. Above we established that Y (� = 0) = Y (� = 1) = 0. Furthermore there exits
� 2 (0; 1) such that Y (�) > 0. This follows simply from the fact that for 0 < � < 1, (I10.52)
and (I10.53) shows that both k̂(�) and hi(k̂(�); �) will be positive. Hence neither � = 1 nor
� = 0 maximize Y (�). This shows that the maximizing argument �� will in fact be interior.



Chapter 11: First-Generation Models of Endogenous Growth

Exercise 11.4

Exercise 11.4, Part (a). A competitive equilibrium is a path of allocations and prices
[k (t) ; c (t) ; a (t) ; r (t) ; w (t)]1t=0 such that the representative consumer solves

max
[c(t);a(t)]t

Z 1

0
exp (� (�� n) t) c (t)

1�� � 1
1� � dt,

s.t. _a (t) = (r (t)� n) a (t) + w (t)� c (t) , and lim
t!1

a (t) exp

�
�
Z t

0
r (s) ds

�
� 0,

competitive �rms maximize pro�ts, that is

r (t) = f 0 (k (t))� �, w (t) = f (k (t))� k (t) f 0 (k (t)) , (I11.1)

where

f (k (t)) = F (k (t) ; 1) = A
h
k (t)

��1
� + 1

i �
��1

;

and asset and �nal good markets clear.
We next characterize the competitive equilibrium. The factor prices in (I11:1) can be

calculated as

r (t) = Ak (t)�1=�
�h
1 + k (t)(��1)=�

i�=(��1)�1=�
� �, (I11.2)

w (t) = A

�h
1 + k (t)(��1)=�

i�=(��1)�1=�
.

The current value Hamiltonian for the consumer optimization is

Ĥ (t; a; c; �) =
c1�� � 1
1� � + � ((r (t)� n) a+ w (t)� c)

and the necessary conditions are

Ĥc = 0 =) c�� = �

Ĥa = (�� n)�� _� =) _�

�
= � (r (t)� �) .

Combining these conditions, we get the Euler equation

_c (t)

c (t)
=

1

�
(r (t)� �)

=
1

�

 
Ak (t)�1=�

�h
1 + k (t)(��1)=�

i�=(��1)�1=�
� � � �

!
; (I11.3)

where the second line substitutes for r (t) from Eq. (I11:2). The strong form of the transver-
sality condition limt!1 exp (� (�� n) t)� (t) a (t) = 0 is also necessary for this problem.

171
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Solving the di¤erential equation _�(t)
�(t) = � (r (t)� �) and substituting for r (t) from Eq.

(I11:2), this condition can be written as

lim
t!1

exp

�Z t

0
�
�
f 0 (k (s))� � � n

�
ds

�
k (t) = 0. (I11.4)

Finally, using the asset market clearing condition a (t) = k (t) and substituting factor prices
from Eq. (I11:2), the agent�s budget constraint gives the resource constraints

_k (t) = f (k (t))� (� + n) k (t)� c (t) . (I11.5)

The di¤erential equations (I11:3) and (I11:5), along with the transversality condition (I11:4)
and the initial condition k (0) uniquely characterize the equilibrium allocation [k (t) ; c (t)]1t=0.
Note also that every plan that satis�es these conditions is optimal by Theorem 7.14.

Exercise 11.4, Part (b). The social planner solves the following optimal growth prob-
lem

max
(c;k)

Z 1

0
exp (� (�� n) t) c (t)

1�� � 1
1� � dt, (I11.6)

s.t. _k (t) = f (k (t))� (� + n) k (t)� c (t) , and k (t) � 0.
The current value Hamiltonian of this problem is

Ĥ (k; c; �) =
c1�� � 1
1� � + � (f (k)� (� + n) k � c)

and the �rst-order conditions yield the Euler equation (I11:3). Since the maximized Hamil-
tonian is strictly concave, the path that satis�es the resource constraints Eq. (I11:5), the
Euler equation (I11:3), and the transversality condition Eq. (I11:4) is the unique solution
to Problem (I11:6). Hence the per capita variables [k (t) ; c (t)]1t=0 chosen by the planner
are identical to the corresponding equilibrium values, proving that the equilibrium is Pareto
optimal.

Exercise 11.4, Part (c). First, we consider the case � = 1. In this case, the production
function takes the Cobb-Douglas form f (k) = Ak1=2, which satis�es Assumption 2 and �ts
the framework studied in Chapter 8. Hence the equilibrium [k (t) ; c (t)]t converges to a steady
state (k�; c�) and there is no sustained growth.

Second, we consider the case � < 1. In this case, using the expression in (I11:2) for the
marginal product of capital, we have that f 0 (k (t)) is decreasing and

lim
k(t)!0

f 0 (k (t)) = A and lim
k(t)!1

f 0 (k (t)) = 0. (I11.7)

In particular, Assumption 2 is violated for k (t) ! 0. There are two subcases to consider.
First suppose

A < � + �. (I11.8)
Then, we have f 0 (k (t))� � � n < 0 regardless of the level of the capital-labor ratio, and the
Euler equation implies _c (t) =c (t) < 0 for all t and thus limt!1 c (t) = 0. From Eq. (I11:5),
it follows that limt!1 k (t) = 0, since otherwise k (t) would grow at ever increasing rates and
would violate the transversality condition (I11:4). Hence, in this case both the capital-labor
ratio and consumption per capita asymptotically converge to 0. In particular, there is no
sustained growth. As the second subcase, suppose Condition (I11:8) is not satis�ed, that is
A � � + �. In this case, there exists a steady state equilibrium (k�; c�) characterized by

k� = f 0�1 (� + �) and c� = f (k�)� (� + n) k�.
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Moreover, as in the baseline case analyzed in Chapter 8, given k (0) there exists a unique
path [k (t) ; c (t)]1t=0 that converges to (k

�; c�) along the stable arm, which is the equilibrium
path. In particular, the capital-labor ratio is constant in the limit and sustained growth is not
possible. Intuitively, sustained growth is not possible in this case since the Inada condition
as k (t)!1 is satis�ed (cf. (I11:7)). As the capital-labor ratio increases, the economy runs
into diminishing returns and growth cannot be sustained by capital accumulation alone.

Exercise 11.4, Part (d). Next suppose � > 1. Using the expression in (I11:2) for the
marginal product of capital, we have

lim
k(t)!0

f 0 (k (t)) =1 and lim
k(t)!1

f 0 (k (t)) = A. (I11.9)

In particular, Assumption 2 (the Inada condition) is violated as k (t) ! 1 so there is a
possibility of sustained growth. Once again, we distinguish between two cases. First, suppose
that Condition (I11:8) is satis�ed. Then, since f 0 (k (t)) is a decreasing function, there exists
a unique steady state equilibrium (k�; c�) given as the solution to

f 0 (k�) = � + � and c� = f (k�)� (� + n) k�.

Moreover, it can be seen in the phase diagram that the steady state equilibrium in this case
is saddle path stable just like in the baseline neoclassical economy. Hence, the equilibrium
path [k (t) ; c (t)]t converges to the steady state (k

�; c�) along the stable arm. In particular,
sustained growth is not possible since capital-labor ratio limits to a constant.

Next, suppose Condition (I11:8) is not satis�ed, that is A � �+ �. In this case, from the
Euler equation we have _c (t) =c (t) > 0 for any k (t) > 0. It follows that limt!1 c (t) = 1.
By the resource constraint (I11:5), this can only hold if limt!1 k (t) = 1. Given that the
capital-labor ratio limits to in�nity, the Euler equation further implies that

lim
t!1

_c (t)

c (t)
=

1

�

�
lim

k(t)!1
f 0 (k (t))� � � �

�
=

1

�
(A� � � �) .

Hence, consumption per capita and the capital-labor ratio limit to in�nity, and consumption
per capita asymptotically grows at rate (A� � � �) =�, proving that the model generates
asymptotically sustained growth. In Part (e), we will characterize the transitional dynamics
and we will also show that limt!1 _k (t) =k (t) = (A� � � �) =�.

Intuitively, there is sustained growth since the Inada condition is violated [cf. Eq. (I11:9)]
so that the returns to capital does not run into strong diminishing returns, that is, the
marginal product of capital remains bounded away from zero even with abundant levels of
capital. With a su¢ ciently large marginal product of capital (i.e. if A � � + �), the interest
rate is always higher than the discount rate and the representative consumer chooses to save
some of her wealth rather than consume immediately, generating sustained growth.

Exercise 11.4, Part (e). In this part, we consider the case A � � + � and � > 1, since
we have completely characterized the equilibrium path in all of the remaining cases. Since
the variables in this economy grow, we will analyze the equilibrium in normalized variables.
To come up with the appropriate normalization, we rewrite the system in Eqs. (I11:3) and



174 Solutions Manual for Introduction to Modern Economic Growth

(I11:5) as

_c (t)

c (t)
=

1

�

 
A(��1)=�

�
k (t)

f (k (t))

��1=�
� � � �

!
(I11.10)

_k (t)

k (t)
=

f (k)

k (t)
� � � n� c (t)

k (t)
, k (0) given.

These expressions show that the growth rate of consumption and capital only depends on
the normalized variables z � f (k) =k and � � c=k and suggests that we consider the system
in these variables.

Note that, in normalized variables (�; z), we have the di¤erential equation system

_�

�
=

_c

c
�
_k

k
=
1

�

�
A
� z
A

�1=�
� � � �

�
� z + �+ � + n (I11.11)

_z

z
=

�
f 0 (k) k

f (k)
� 1
� _k

k
=

"�
A

z

�(��1)=�
� 1
#
(z � �� � � n) ,

z (0) = f (k (0)) =k (0) > A given and z (t) > A for all t.

Here, the �rst di¤erential equation follows by substituting for _c=c and _k=k from Eq. (I11:10).
The second di¤erential equation substitutes for _k=k and uses

f 0 (k) = A(��1)=�z1=�: (I11.12)

The inequality z (t) > A follows since

f (k) = A
�
1 + k(��1)=�

��=(��1)
> A

�
k(��1)=�

��=(��1)
= Ak.

We have added the restriction z (t) > A to the normalized system since the normalized
system might have some solutions with z (t) < A that do not correspond to a solution in
the original system. Note also that limk!1 f (k) =k = A thus the equilibrium will feature
limt!1 z (t) = A even though z (t) > A for all t.

Conversely, note that for any given path [� (t) ; z (t)]1t=0 that satis�es the system in
(I11:11) and satis�es z (t) > A for all t, we can construct a path of [k (t) ; c (t)]1t=0 that
satis�es our original system in Eq. (I11:10). To see this, note that z (t) = f (k (t)) =k (t)
is one-to-one in the range z (t) 2 (A;1) since f (k (t)) =k (t) is decreasing and satis�es
limk(t)!0 f (k (t)) =k (t) = 1 and limk(t)!1 f (k (t)) =k (t) = A. Then, given [z (t) ; � (t)]t
that solves the normalized system, k (t) is uniquely solved from the previous displayed equa-
tion and c (t) is given by � (t) k (t). It follows that the normalized system in (I11:11) is
equivalent to the original system.

Note also that the normalized system in (I11:11) [in the relevant range z � A] has a
unique steady state given by z� = A and �� = A � � � n � 1

� (A� � � �). As we will show
below, this system is saddle path stable, that is, for any given z (0), there exists a unique
� (0) such that the path [z (t) ; � (t)]t starts on the saddle path and converges to the steady
state (z�; ��). Then, the corresponding path [k (t) ; c (t)]t is an equilibrium whenever the
parametric restriction

(1� �) (A� �) < �

which ensures that the transversality condition holds, since [k (t) ; c (t)]t constructed in this
way satisfy all the equilibrium conditions (I11:3)� (I11:4).

We next analyze the phase diagram in the (�; z) space. First, note that the _z = 0 locus
is the union of the line z = A and the line z � � = � + n. These lines and the arrows that
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Figure I11.1. Transitional dynamics for the normalized variables z (t) =
f (k (t)) =k (t) and � (t) = c (t) =k (t). The left hand side corresponds to the
sub-case � > 1=� and the right hand side to � < 1=�.

represent the behavior of z are drawn in Figure I11.1. Second, to analyze the _� = 0 locus,
we de�ne

g (z) = z � 1
�

�
A
� z
A

�1=�
� � � �

�
� � � n,

and note that _�=� = �� g (z). Note that

g0 (z) = 1� 1

��

�
A

z

�(��1)=�
is decreasing in z (since we are analyzing the � > 1 case) and g0 (z) = 0 for z = A (��)��=(��1).
Hence, the _� = 0 locus is U shaped and there are two cases to distinguish depending on
whether the minimum is to the left or to the right of the z = A locus. When � > 1=�, the
minimum of the _� = 0 locus is to the left of z = A. As shown in Figure I11.1, in this case,
there is a stable arm in which (z (t) ; � (t))! (z�; ��) and z (t) and � (t) are both decreasing
on the stable arm. When � < 1=�, the minimum of _� = 0 locus is to the right of z = A. As
shown in Figure I11.1, in this case, there is a stable arm on which (z (t) ; � (t)) ! (z�; ��)
and z (t) is decreasing along the transitional path while � (t) is increasing. Combining the
two cases, the capital output ratio k (t) =f (k (t)) = 1=z (t) is always increasing along the
transition path (i.e. there is always capital deepening) while the consumption capital ratio
c (t) =k (t) = � (t) is increasing (resp. decreasing) if � < 1=� (resp. if � > 1=�).

Exercise 11.4, Part (f). The share of capital in this economy is

kr

y
=
kf 0 (k)

f (k)
=
kf 0 (k)

f (k)
=

�
A

z

�(��1)=�
,

where we have used Eq. (I11:12). Since z is decreasing towards A, the capital�s share is
increasing towards 1 and limits to 1. Consequently, the share of labor is decreasing and
limits to 0. This is not plausible since it is not consistent with the Kaldor facts, which
suggest that the share of labor roughly remains constant around 2=3.
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We can modify the model by introducing di¤erent production functions for consumption
and capital goods as in Rebelo (1991). Consider the variant of the model in which investment
goods are produced with the CES technology given in the problem

I = A
h
L
(��1)=�
I +K

(��1)=�
I

i�=(��1)
and consumption goods are produced with the technology

C = BK�
CL

1��
C . (I11.13)

The capital accumulation technology is given by

_K = I � �K.

For simplicity, suppose that there is no population growth. Aside from the two sector struc-
ture, this model is very similar to the model we have analyzed in this exercise. A similar
analysis as above shows that the equilibrium in this economy will approximate a BGP as in
the baseline model in Rebelo (1991), so we have

LI (t) ! 0, LC (t)! L, � (t) � KI (t)

K (t)
! ��,

_K

K
! gK ,

_C

C
= �gK ,

_pI
pI
= � (1� �) gK .

More importantly, in this version of the model, we have that the share of labor limits to a
constant in (0; 1), which is in line with the Kaldor facts. Intuitively, the necessary ingredient
to generate sustained growth is a linear production technology in the accumulating factor
(which is capital in this model). This implies that the share of labor in the capital sector
must go to zero, but the share of labor in aggregate output need not necessarily go to zero.
In particular, as long as labor is essential for the consumption sector [which is ensured by the
functional form in (I11:13)], the share of labor in aggregate output remains bounded away
from zero as the economy develops.

Another way to modify the model is to add human capital into the production of the �nal
good and allow for human capital to accumulate also with a linear technology. As shown in
Section 11.2, this model generates AK-like growth that is driven by factor accumulation, but
it also keeps the share of labor and capital constant. Intuitively, both factors accumulate in
balance and remain equally important in production.

Exercise 11.4, Part (g). We assume that the returns from assets are taxed at rate �
and redistributed to consumers as lump sum transfers (alternatively, without any qualitative
change in results, we can assume that the collected taxes are wasted). In this case, the Euler
equation takes the form

_c

c
=
1

�
((1� �) r � �)

which, after substituting competitive prices, implies

_c

c
=
1

�

�
(1� �)

�
Ak�1=�

h
1 + k(��1)=�

i1=(��1)
� �
�
� �
�
.

The same analysis as above now establishes the following:

� If � < 1 or (1� �) (A� �) < �, the economy converges to a steady state and there
is no sustained growth.
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� If � > 1 and (1� �) (A� �) > �, (under the parametric restriction
(1� �) (A� �) (1� �) < �), the equilibrium features sustained growth for c and
k at rate 1

� ((1� �) (A� �)� �).
We conclude that, in the case of sustained growth, taxes reduce the growth rate of the

economy.

Exercise 11.8

Exercise 11.8, Part (a). The representative consumer chooses the path of asset hold-
ings and human capital investments, [a (t) ; ih (t)]

1
t=0, to maximize (11:1) subject to constraints

(11:22), (11:23) and the no-Ponzi scheme condition limt!1 exp
�
�
R t
0 r (s) ds

�
a (t) � 0. The

current value Hamiltonian is given by

H (t; a; h; c; ih; �a; �k) =
c1�� � 1
1� � + �a [(r (t) a+ w (t)h� c� ih]

+�h [ih � �hh] :
We verify Assumption 7.1 to show that Theorem 7.13 can be applied to this problem. We
have that f (c) �

�
c1�� � 1

�
= (1� �) and

ga (t; a; h; c; ih) = r (t) a+ w (t)h� c� �a,
gh (t; a; h; c; ih) = ih � �hh,

which are weakly monotone in a; h; c; ih, hence Part 1 of Assumption 7.1 is satis�ed. We
also have j@ga=@cj = j@gh=@ihj = 1 > 0, hence Part 2 of Assumption 7.1 is satis�ed. Since
limc!0 c�� =1, Part 3 of Assumption 7.1 is not satis�ed, but an analysis similar to Exercise
7.25 shows that the choice of consumption can be restricted to c (t) � " for su¢ ciently
small " > 0 without loss of generality, and Part 3 of Assumption 7.1 is also satis�ed for
this restricted problem. Hence Theorem 7.13 applies and hence shows that the following
�rst-order conditions and the strong form of the transversality conditions are necessary

Hc = 0 =) �a (t) = c (t)�� (I11.14)

Hih = 0 =) �a (t) = �h (t)

Ha = ��a (t)� _�a (t) =)
_�a (t)

�a (t)
= �� r (t)

Hh = ��h (t)� _�h (t) =)
_�h (t)

�h (t)
= �+ �h � w (t)

�a (t)

�h (t)

lim
t!1

exp (��t) a (t)�a (t) = 0 and lim
t!1

exp (��t)h (t)�h (t) = 0.

When the parametric condition in Proposition 11.3 is satis�ed, there exists a path
[a (t) ; h (t) ; c (t) ; ih (t)]

1
t=0 that satis�es these conditions and the constraints (11:22) and

(11:23). We next claim that Theorem 7.14 applies and shows that this path is optimal.
To see this, �rst note that H (t; a; h; c; ih; �a; �k) is jointly concave in a; h; c; ih. Moreover,
note that, for any feasible path

h
~a (t) ; ~h (t) ; ~c (t) ;~{h (t)

i1
t=0
, we have

lim
t!1

exp (��t)�a (t) ~a (t) = lim
t!1

exp

�
�
Z t

0
r (s) ds

�
~a (t) � 0,

where the equality uses the �rst-order condition _�a(t)
�a(t)

= � � r (t), and the inequality fol-
lows since any feasible path ~a (t) satis�es the no-Ponzi scheme condition. We also have
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limt!1 exp (��t)�h (t)h (t) � 0 since h (t) � 0 and �h (t) = �a (t) = c (t)�� � 0.
Then the conditions of Theorem 7.14 are satis�ed, and the theorem implies that the path
[a (t) ; h (t) ; c (t) ; ih (t)]

1
t=0 is optimal.

Exercise 11.8, Part (b). Using the second condition in (I11:14), we de�ne � (t) �
�a (t) = �h (t). Combining the �rst and the third conditions, we obtain the Euler equation

_c (t)

c (t)
=
1

�
(r (t)� �) for all t.

Using �a (t) = �h (t) in the third and the fourth equation in (I11:14), we have r (t) = w (t)��h,
proving that the conditions in (11:25) hold.

Exercise 11.14

Exercise 11.14, Part (a). As in the baseline model, we use pC (t)
and pI (t) to denote the prices of the consumption and the investment
good in this economy. A competitive equilibrium is a sequence of ag-
gregate allocations [C (t) ; I (t) ;K (t) ; LC (t) ; LI (t) ;KC (t) ;KI (t)]t and prices
[pI (t) ; pC (t) ; rC (t) ; rI (t) ; R (t) ; w (t)]t such that the representative consumer maxi-
mizes (11:1) subject to the budget constraints (with interest rate rC (t)), consumption and
investment good producers choose inputs [LC (t) ; LI (t) ;KC (t) ;KI (t)]t to maximize pro�ts
given prices [pI (t) ; pC (t) ; w (t) ; R (t)]t, and factor and goods markets clear.

Exercise 11.14, Part (b). We normalize pC (t) = 1 for all t without loss of generality.
First we claim that the steady state equilibrium does not involve sustained growth. Suppose,
to reach a contradiction, that there is a BGP equilibrium in which K (t) grows at a constant
rate gK > 0. Note that

_K (t) = I (t)� �K (t) , (I11.15)

which implies that I (t) must also grow at the constant rate gK . Let

� (t) = KI (t) =K (t) and � (t) = LI (t) =L (t)

denote the share of capital and labor employed in the investment sector. Then, considering
the growth of the terms in the production of the investment good

I (t) = A (KI (t))
� (LI (t))

1�� ,

we have
gK = gI = � (gK + g� (t)) + (1� �) g� (t) ,

which implies
(1� �) gK = �g� (t) + (1� �) g� (t) . (I11.16)

Note that the right hand side is the growth rate of � (t)� � (t)1��. Hence the previously dis-
played equation suggests that this term should be growing at the constant rate (1� �) gK > 0.
In particular, it eventually exceeds 1, which yields a contradiction since � (t) 2 [0; 1] and
� (t) 2 [0; 1]. This proves our claim that there is no steady state equilibrium in which K (t)
grows at a constant rate. Intuitively, since the investment sector has diminishing returns to
capital, the economy runs into diminishing returns and cannot sustain growth by only capital
accumulation.

We next claim that there exists a steady state equilibrium in which capital and consump-
tion remain at constant levels K� and C�, and the price of the investment good pI (t) = p�I
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is constant. First, note that since the relative price of the investment and the capital good
remains constant, the no arbitrage condition implies that

rC (t) = rI (t) =
d

dKI (t)

�
A (KI (t))

� (LI (t))
1��
�
� �

=
�I (t)

KI (t)
� �.

Second, note that in a steady state, Eq. (I11:15) satis�es I (t) = �K (t). From the previous
equation, this implies

rC (t) =
��

� (t)
� �. (I11.17)

Third, note that since consumption is constant, the Euler equation implies rC (t) = �. Using
this in the previous equation, we have

� (t) = �� =
��

�+ �
, (I11.18)

that is, the steady state allocation of capital to the investment sector is also constant. Note
that a higher depreciation rate, a lower discount rate, and a higher share of capital in the
accumulation technology increase the allocation of resources to the accumulation sector, which
is intuitive.

Next, we characterize the allocation of labor between the two sectors. Optimization by
investment and consumption good producers implies

pI (t)A�

�
� (t)

� (t)

K (t)

L

���1
= B�

�
1� � (t)
1� � (t)

K (t)

L

���1
= R (t) (I11.19)

pI (t)A (1� �)
�
� (t)

� (t)

K (t)

L

��
= B (1� �)

�
1� � (t)
1� � (t)

K (t)

L

��
= w (t) .

Dividing these two equations, we get

1� �
�

� (t)

� (t)
=
1� �
�

1� � (t)
1� � (t) , (I11.20)

which de�nes � as a function of �

� (�) =
�

�+ (1� �) 1���
�
1��

. (I11.21)

Note that � (�) is increasing in �, that is, resources are allocated together in the sense that
relatively more capital is allocated to the investment sector if and only if relatively more labor
is also allocated to that sector. Given the level of �� in Eq. (I11:18), the previous equation
determines �� and the allocation of labor between sectors.

Next, we characterize the steady state level of capital, K�. Using �K� = I (t), we have

�K� = A (��K�)� (� (��)L)1�� .

Solving for K� and plugging in Eq. (I11:21), we have

K� =

�
A

�

�1=(1��)
L� (��) (��)�=(1��) (I11.22)

=

�
A

�

�1=(1��)
L

(��)1=(1��)

1��
�

�
1�� � ��

�
1��
�

�
1�� � 1

� . (I11.23)
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Note that K� is unambiguously increasing in ��. This is intuitive: if more resources are
allocated to the investment sector, investment is greater and the steady state level of capital
is greater.

Next, we characterize the level of p�I that is consistent with this allocation of resources
between sectors. Combining Eq. (I11:20) with Eq. (I11:19), we have

p�IA�

�
��

��
K�

L

����
= B�

�
1� �
�

�

1� �

���1
, (I11.24)

which solves for the level of p�I . The prices R
� and w� are also uniquely determines from Eq.

(I11:19). Finally, the equilibrium level of consumption can be solved from (11:27) as

C� = B ((1� ��)K�)� ((1� � (��))L)1�� . (I11.25)

It then follows that the allocation (K�; I�; C�; ��; � (��)) along with prices
(p�I ; r

�
I = r�C = �;R�; w�) constitutes a steady state equilibrium.

Exercise 11.14, Part (c). We have shown that, in this case, the only BGP equilibrium
is a steady state equilibrium, that is, di¤erent from the baseline case with � = 1, there
is no growth and the equilibrium converges to a steady state. The analysis in this exercise
emphasizes the role of � = 1 in generating sustained growth. Without a linear accumulation
technology, the economy runs into diminishing returns for su¢ ciently large levels of capital
and growth cannot be sustained forever (cf. Eq. (I11:16)).

Exercise 11.14, Part (d). Suppose that the government taxes the returns from assets
at rate � and redistributes the returns lump-sum to the consumer (without changing any
of the qualitative results, we could also assume that the government consumes the returns).
Then, the after-tax return on assets is given by rC (t) (1� �). The steady state equilibrium
is solved as in Part 2. In particular, Eq. (I11:17) continues to apply for before-tax returns
rC (t) but the Euler equation in this case implies rC (t) (1� �) = �, which yields

�� (�) =
��
�
1�� + �

. (I11.26)

Moreover, conditional on ��, the allocation of the remaining variables are characterized as
before, that is, Eqs. (I11:21), (I11:23), (I11:24) and (I11:25) continue to apply in this case,
characterizing the equilibrium.

Note that �� (�) is decreasing in � . Since K� given in Eq. (I11:23) is increasing in ��, it
follows that the steady state level of capital is decreasing in the tax rate. These results are
intuitive: taxing capital income reduces the share of resources allocated to the investment
sector and reduces the steady state level of capital.

We next claim that taxing capital income also reduces the steady state level of con-
sumption, C�. Note that K� decreases with taxes, but the share of resources allocated to
the consumption sector increases. Thus, from Eq. (I11:25), it seems at �rst glance unclear
which e¤ect dominates. However, we know, a priori, that the steady state consumption level
with taxes must be lower than without taxes, since the �rst welfare theorem applies to the
economy.1 This suggests that the reduction in K� should dominate the increased resource

1To see this more formally, suppose, to reach a contradiction, that C� (�) > C� (0) for some � > 0. Then,
a social planner could reallocate the production and consumption decisions in the original economy to move
the economy immediately to the steady state of the economy with � > 0, and she would have leftover capital
at time 0 since K� (�) < K� (0). Hence, consumers would strictly prefer the latter allocation, which provides
a contradiction to the fact that the economy with � = 0 is Pareto optimal. It follows that C� (�) is decreasing
in � in a neighborhood of � = 0.
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allocation to the consumption sector and C� should also decrease in response to taxes. With
some algebra, we can indeed prove that this is the case. To see this, note that

C� (��) = B

�
A

�

��=(1��)
L (1� ��)� (��)��=(1��) � (��)� (1� � (��))1��

= B

�
A

�

��=(1��)
L (1� ��)� (��)��=(1��) (��)� (1� ��)1��

�� + (1� ��) 1���
�
1��

�
1� �
�

�

1� �

�1��
= B

�
A

�

��=(1��)�1� �
�

�

1� �

�1��
Lg (��) ,

where the �rst line plugs Eq. (I11:22) into Eq. (I11:25), the second line uses Eq. (I11:21)
and the third line de�nes the function

g (��) =
(��)�=(1��)

��
1��� +

1��
�

�
1��

.

Next note that

@

@��
(g (��)) =

�
1�� (�

�)�=(1��)�1�
��
1��� +

1��
�

�
1��

�2 � ��

1� �� +
1� �
�

�

1� � �
1� �
�

��

(1� ��)2

�

=

�
1�� (�

�)�=(1��)�1�
��
1��� +

1��
�

�
1��

�2 � ��

1� ��

�
1� 1� �

� (1� ��)

�
+
1� �
�

�

1� �

�

>

�
1�� (�

�)�=(1��)�1�
��
1��� +

1��
�

�
1��

�2 � ��

1� ��
�� 1
�

+
1� �
�

�

1� �

�
> 0,

where the last two inequalities follow using �� < � from Eq. (I11:26). Hence, we have
@C� (��) =@�� > 0. Since �� (�) is decreasing in � , this proves our claim that C� (�) is
decreasing in � .

This analysis establishes that taxing capital income reduces relative resources allocated
to the accumulation sector and consequently reduces the capital stock and consumption
levels in equilibrium. From Eqs. (I11:26) and (I11:23), note that the magnitude of the
e¤ect of � on �� (�) and K� (�) is mostly determined by � while � playing a minor role
through the allocation of labor force between the sectors. In particular, with higher � capital
declines more in response to taxes. Intuitively, the investment and capital falls in response to
taxes, and with a high � (which recall denotes the share of capital in the production of the
investment good) the output of the investment sector is more sensitive to the level of capital
in the economy, which reduces investment and slows down capital accumulation further. In
contrast, � mostly controls how a decline in K� a¤ects the steady state level of consumption
C�. Intuitively (ignoring the resource reallocation), the larger the share of capital in the
consumption sector, the more consumption will fall in response to capital income taxes (cf.
Eq. (I11:25)).

Note also that the implied magnitudes for income di¤erences are di¤erent than in one-
sector neoclassical growth model. The one sector neoclassical model essentially corresponds
to the case � = � in the present model. Since � and � play di¤erent roles in generating income
di¤erences, the implied magnitudes will be di¤erent as long as � < �. The magnitudes di¤er
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since, as argued above it is mostly the production technology of the investment sector (and
hence �) that determines the response of the capital stock to taxes and other distortions
to investment. One puzzle of the neoclassical model is that � = 1=3, which is the common
estimate for the share of capital in output, is too low to generate the observed di¤erences in
income levels in response to distortions. If we calibrate the present model with a relatively
low � (say � � 1=3) while allowing � to be larger (say � � 2=3), then this model could
generate larger di¤erences in capital stock and income, while still being consistent with the
estimates for the share of capital in output.

Exercise 11.15

Recall that the growth rate of consumption is characterized by Eq. (11:39), which we
reproduce here for convenience

g�C =
1

�

�
~f (L)� L ~f 0 (L)� � � �

�
. (I11.27)

Let g� denote the equilibrium growth rate of output which is also the growth rate of capital
since Y (t) =K (t) = ~f (L) is constant. If g�C > g�, the resource constraint C (t) � Y (t) would
be violated for su¢ ciently large t. Conversely, if g�C < g�, we claim that the transversality
condition would be violated. First note that the transversality condition implies

lim
t!1

exp (��t)C (t)��K (t) = lim
t!1

C (0)��K (0) exp ((��� �g�C + g�) t) = 0.

For this condition to be violated, all we need to show is

g� > �+ �g�C : (I11.28)

Using the resource constraint and taking limits, we have

g� = lim
t!1

_K (t)

K (t)
=
Y (t)

K (t)
� lim
t!1

C (t)

K (t)
� �

= ~f (L)� �,

where the second line uses Y (t) =K (t) = ~f (L) and the fact that g�C < g� so that
C (t) =K (t)! 0. Then, we have

g� = ~f (L)� � > �+ �

�
1

�

�
~f (L)� L ~f 0 (L)� � � �

��
= �+ �g�C ,

where the inequality follows since L ~f 0 (L) > 0 and the last equality follows from Eq.
(I11:27).This implies Eq. (I11:28) and shows that g�C < g� would violate the transversal-
ity condition.

Exercise 11.16

Consider the allocation in Proposition 11.5 in which K (t) ; C (t) and Y (t) grow at the
constant rate g�C in Eq. (I11:27). Using the resource constraints, we have

g�C =
_K (t)

K (t)
=
Y (t)

K (t)
� C (t)

K (t)
� � = ~f (L)� C (t)

K (t)
� �.

Hence C (t) =K (t) is uniquely pinned down as

C (t)

K (t)
= ~f (L)� � � g�C = ~f (L)� � � 1

�

�
~f (L)� L ~f 0 (L)� � � �

�
;
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where the second equality uses Eq. (I11:27). In particular, C (0) =K (0) and hence the initial
level of consumption C (0) is also uniquely pinned down, showing that the allocation in
Proposition 11.5 is unique. To show that this allocation satis�es the transversality condition,
�rst note that

g�C (1� �)� � =
1� �
�

�
~f (L)� L ~f 0 (L)� � � �

�
� �

=
(1� �)

�
~f (L)� L ~f 0 (L)� �

�
� �

�
< 0,

where the inequality follows from the condition in Eq. (11:41). The transversality condition
is then satis�ed since

lim
t!1

exp (��t)C (t)��K (t) = lim
t!1

C (0)��K (0) exp ((��� �g�C + g�C) t) = 0.

This proves that the unique path described also satis�es the transversality condition and
hence is an equilibrium. Finally, there are no transitional dynamics, since starting with any
K (0), C (0) is uniquely determined so that K (t) ; C (t) ; Y (t) all grow at rate g�C for any t,
in particular, starting at time t = 0.

Exercise 11.17

The representative household�s problem in this economy can be written as

max
[c(t);a(t)]1t=0

Z 1

0
exp (��t) c (t)

1�� � 1
1� � dt

s.t. _a (t) = r (t) a (t) + w (t)� c (t) and lim
t!1

exp

�
�
Z t

0
r (s) ds

�
a (t) = 0,

where a (t) denotes the level of per capita assets, which is equal to k (t) in equilibrium. Since
the representative consumer�s problem is identical to the one in the standard neoclassical
model, the analysis in Chapter 8 shows that Theorems 7.13 and 7.14 apply and the optimal
path satis�es the Euler equation (11:39).

The social planner�s problem can be written as

max
[c(t);k(t)�0]1t=0

Z 1

0
exp (��t) c (t)

1�� � 1
1� � dt (I11.29)

s.t. _k (t) = ~f (L) k (t)� c (t)� �k (t) .
To show that Theorem 7.13 applies to this problem, we verify that Assumption 7.1 holds.
First, note that f (c) �

�
c1�� � 1

�
= (1� �) and g (k; c) = ~f (L) k�c��k are weakly monotone

in c and k, hence Part 1 of Assumption 7.1 is satis�ed. Second, note that jgcj = 1 > 0, hence
Part 2 of Assumption 7.1 is satis�ed. Third, since limc!0 c�� =1, Part 3 of Assumption 7.1
is not satis�ed, but an analysis similar to Exercise 7.25 shows that the choice of consumption
can be restricted to c (t) � " for su¢ ciently small " > 0 without loss of generality, and Part
3 of Assumption 7.1 is also satis�ed for this restricted problem. Hence Theorem 7.13 applies
and shows that the following �rst-order conditions and the strong form of the transversality
condition are necessary

Ĥc (k; c; �) = c (t)�� � � (t) = 0 (I11.30)

Ĥk (k; c; �) = � (t)
h
~f (L)� �

i
= � _� (t) + �� (t) ;

lim
t!1

[exp (��t)� (t) k (t)] = 0:
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When the parametric conditions (1� �)
�
~f (L)� �

�
< � and ~f (L)� � > � are satis�ed,

there exists a unique path [k (t) ; c (t)]1t=0 that satis�es the �rst-order conditions in (I11:30)
and the constraints of Problem (I11:29). We next claim that Theorem 7.14 applies and shows
that this path is optimal. To see this, �rst note that the current value Hamiltonian

Ĥ (t; k; c; � (t)) =
c1�� � 1
1� � + � (t)

h
~f (L) k � c� �k

i
is jointly concave in c and k since � (t) = c (t)�� > 0. Note also that, for any feasible

path
h
~k (t) ; ~c (t)

i1
t=0
, we have limt!1 exp (��t)� (t) ~k (t) � 0 since ~k (t) � 0, hence the path

[k (t) ; c (t)]1t=0 that is feasible and satis�es (I11:30) is optimal by Theorem 7.14.

Exercise 11.18

The labor market clearing condition now takes the form
R
Li (t) di = L (t). As in the

baseline Romer (1987) model, �rms choose the same capital-labor ratio (although the scale
of each �rm is indeterminate), thus we have

Y (t) =

Z 1

0
Yi (t) di =

Z 1

0
F (Ki (t) ; A (t)Li (t)) di

= F (K (t) ; A (t)L (t))

= F (K (t) ; BK (t)L (t))

= K (t) ~f (L (t)) ,

where the second line uses A (t) = BK (t) and the last line de�nes ~f (L (t)) = F (1; BL (t)).
Wages and the rental rate of capital are given by

w (t) = K (t) ~f 0 (L (t))

R (t) = ~f (L (t))� L (t) ~f 0 (L (t)) :

Note that R (t) is an increasing function of L (t) with limL(t)!1R (t) =1.
On the consumer side, we assume dynastic preferences as in Section 11.1. Hence the

consumer maximizes (11:1) subject to (11:2). Any interior solution to this problem satis�es
the Euler equation

_c (t)

c (t)
=
1

�
(r (t)� n� (�� n)) = 1

�
(R (t)� � � �) .

As L (t) increases, R (t) grows unbounded and thus consumption grows at an ever increasing
rate. If c (0) 6= 0, after some T consumption will grow faster than � � n which implies that
the representative household�s utility

R1
0 exp (� (�� n) t) c (t)1�� = (1� �) limits to in�nity.

That is, in this economy any interior solution to the consumer�s problem results in in�nite
utility. Then, the analysis in Chapter 7 does not apply, in particular Theorem 7.13 and
Theorem 7.14 cannot be used to characterize the solution to the consumer�s problem since
the value function is in�nite. Intuitively, the knowledge externalities in the Romer (1987)
economy are too potent and there are increasing returns to capital accumulation. Hence
output per capita and consumption per capita increase at ever increasing rates, violating the
�niteness of utility and the transversality condition.
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Exercise 11.21*

Exercise 11.21, Part (a). The second resource constraint implies that part of the
human capital in this economy can be used for further human capital accumulation. This
essentially captures the technology of the economy to generate human capital (school system,
training etc.). It can also be viewed from each individual�s perspective as allocating a �xed
amount of time between work and further human capital allocation.

Exercise 11.21, Part (b). Replacing HP (t) = h (t)H (t) in the �nal good production
function, we have

Y (t) = AK (t)� (h (t)H (t))1��

hence, output growth is given by
_Y (t)

Y (t)
= �

_K (t)

K (t)
+ (1� �)

_H (t)

H (t)
+ (1� �)

_h (t)

h (t)
.

Exercise 11.21, Part (c). We �rst characterize the solution to the representative con-
sumer�s problem in this economy. The consumer solves

max
[C(t);h(t);A(t);H(t)]t

Z 1

0
exp (��t) C (t)

1�� � 1
1� � dt;

s.t. _A (t) = r (t)A (t) + w (t)h (t)H (t)� C (t)
_H (t) = (B (1� h (t))� �)H (t) , (I11.31)

which is an optimal control problem with two state and two control variables. The current
value Hamiltonian is

Ĥ (t; C; h;A;H; �A; �H)

=
C1�� � 1
1� � + �A (r (t)A+ w (t)hH � C) + �H ((B (1� h)� �)H) .

The �rst-order conditions (assuming there is an interior solution for h, which we will verify
in equilibrium) are

ĤC = 0 =) C (t)�� = �A (t) (I11.32)

Ĥh = 0 =) �A (t) = �H (t)
B

w (t)
(I11.33)

ĤA = ��A (t)� _�A (t) =)
_�A (t)

�A (t)
= �� r (I11.34)

ĤH = ��H (t)� _�H (t) =)
�A (t)

�H (t)
w (t)h+B (1� h (t))� � = �� _�H (t)

�H (t)
.(I11.35)

Conditions (I11:32) and (I11:34) give the usual Euler equation

_C (t)

C (t)
=
1

�
(r (t)� �) . (I11.36)

Substituting for �H (t) from Condition (I11:33) in Condition (I11:35) and using Condition
(I11:34), we get

B � � + _w (t)

w (t)
= r (t) for all t. (I11.37)

Intuitively, for an interior solution to the consumer�s problem, the rate of return from investing
in human capital, which is B � � plus the depreciation of wages, should be equal to the rate
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of return from investing in physical capital, which is r (t). If this condition was not satis�ed,
then consumers would invest either only in human capital or only in physical capital, and
there would be a corner solution. If this condition is satis�ed, the consumer is indi¤erent
between investing in assets and human capital and the level of h (t) is not uniquely pinned
down from the consumer�s problem. In this case, the level of h (t) will be determined such
that the condition in Eq. (I11:37) holds with equilibrium prices. The consumer�s optimal
allocation also satis�es the transversality condition, given by

lim
t!1

H (t) exp

�
�
Z t

0
r (s) ds

�
= 0, (I11.38)

lim
t!1

A (t) exp

�
�
Z t

0
r (s) ds

�
= 0.

We next conjecture that Condition (I11:37) holds (so that there is an interior solution to
the consumer�s problem) and characterize the equilibrium in this economy. From the �rm�s
optimization, prices are given by

r (t) =
dY (t)

dK (t)
� � = A�

�
K (t)

h (t)H (t)

���1
� � (I11.39)

and w (t) =
dY (t)

dHP (t)
= A (1� �)

�
K (t)

h (t)H (t)

��
.

Substituting these expressions in the asset accumulation equation gives us the accumulation
equation for physical capital

_K (t) = AK (t)� (h (t)H (t))1�� � C (t)� �K (t) . (I11.40)

Substituting the competitive prices in Eq. (I11:39) in the indi¤erence condition (I11:37), we
get

B + �

 
_K (t)

K (t)
�
_h (t)
_h (t)

�
_H (t)

H (t)

!
= A�

�
K (t)

h (t)H (t)

���1
for all t. (I11.41)

Finally, replacing the competitive prices in Euler equation (I11:36), we get

_C (t)

C (t)
=
1

�

 
A�

�
K (t)

h (t)H (t)

���1
� �
!
. (I11.42)

An equilibrium path [h (t) ; C (t) ;K (t) ;H (t)]1t=0 is characterized by Eqs. (I11:31) and
(I11:40)� (I11:42) along with the transversality conditions Eqs. (I11:38) and given the initial
values K (0) and H (0).

We next show that there is a BGP equilibrium in which h (t) = h� is constant, the interest
rate r (t) = r� is constant and capital and output grow at constant rates. Since r (t) = r�

and h (t) = h�, Eq. (I11:39) implies that K (t) =H (t) � k� should also be constant on such
a BGP. In particular, H (t) should grow at the same constant rate as K (t). Then, from the
production function Y (t) = AK (t)� (h�H (t))1��, we have that Y (t) ;H (t) and K (t) should
grow at the same constant rate g. From Eq. (I11:39) and the indi¤erence condition (I11:41),
we have

r� = B � � = A�

�
k�

h�

���1
� �. (I11.43)

Note also that Eq. (I11:31) implies

g = B (1� h�)� �
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and the Euler equation reduces to

g =
1

�
(r� � �) = 1

�
(B � � � �) (I11.44)

where we have used Eq. (I11:43). From the last two displayed equations, h� can be solved
uniquely as

h� =
B � �
B

� 1

�B
(B � � � �) . (I11.45)

From Eq. (I11:43) we can also solve for k� uniquely as

k� = h�
�
A�

B

�1=(1��)
=

�
B � �
B

� 1

�B
(B � � � �)

��
A�

B

�1=(1��)
. (I11.46)

It follows that, when K (0) =H (0) = k�, the path in which K (t) and H (t) always grow
at rate g in Eq. (I11:44), h (t) = h� (and C (t) is found as the residual from the resource
constraint Eq. (I11:40)) is a candidate for an equilibrium since it satis�es all of Eqs. (I11:31)
and (I11:40)� (I11:42). Under the parametric restriction

(B � �) (1� �) < �; (I11.47)

it can be checked that this path also satis�es the transversality conditions and is indeed an
equilibrium. This completes our characterization of the BGP equilibrium.

Exercise 11.21, Part (d). The parametric restriction which ensures that the transver-
sality conditions hold is given in Eq. (I11:47).

Exercise 11.21, Part (e). The BGP equilibrium we have characterized in Part (c)
is the equilibrium path when the initial conditions satisfy k (0) � K (0) =H (0) = k�. In
this part, we characterize the equilibrium when this initial condition does not hold. In
particular, we show that the equilibrium features saddle path stability and k (t) � K (t) =H (t)
asymptotically converges to k�. We �rst note that the four dimensional system in Eqs.
(I11:31) and (I11:40) � (I11:42) can be reduced to a three dimensional system in variables
k (t) � K (t) =H (t), � (t) � C (t) =K (t) and h (t). More speci�cally, k (t) and � (t) are
uniquely pinned down along the equilibrium path for a given level of k (t) (i.e. independent
of the the levels of H (t) and K (t) while keeping the ratio constant). In particular, if we
start with twice the capital and twice the human capital in economy A compared to economy
B, capital, human capital, and consumption will be twice as large in economy A compared
to economy B at all points in time, and h (t) will be identical in the two economies for all t.
Next, we derive the di¤erential equation system in k (t), � (t) and h (t) as

_h (t)

h (t)
= B

�
1� �
�

�
+Bh (t)� � (t) (I11.48)

_k (t)

k (t)
= A

�
k (t)

h (t)

���1
�B (1� h (t))� � (t) (I11.49)

_� (t)

� (t)
=

1

�

"
A�

�
k (t)

h (t)

���1
� � � �

#
�A

�
k (t)

h (t)

���1
+ � + � (t) . (I11.50)

with k (0) given.
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Here, Eq. (I11:49) follows from Eqs. (I11:40) and (I11:31). Eq. (I11:48) follows by substi-
tuting Eq. (I11:49) in Eq. (I11:41), and Eq. (I11:50) follows from Eq. (I11:36).

We next consider a steady state (h�; k�; ��) of the system of Eqs. (I11:48)� (I11:50). In
the equilibrium corresponding to this steady state, the interest rate will be constant (since

h (t) and k (t) = K (t) =H (t) are constant) and Y (t) = AK (t)
�
k(t)
h(t)

���1
and K (t) will grow

at the same rate. Our analysis in Part (b) implies that there is a unique steady state and
the steady state levels of k� and h� are respectively given by Eq. (I11:46) and Eq. (I11:45).
The steady state value of �� can now uniquely be solved from Eq. (I11:48) as

�� = B

�
1� �
�

�
+Bh�

= B
1� �
�

+
1

�
(B � � � �) + �.

Linearizing the system of Eqs. (I11:48)� (I11:50) around the steady state (h�; k�; ��) shows
that the system has two positive and one negative eigenvalues. It follows that the system is
saddle path stable, that is, given the state variable k (0), the control variables (h (0) ; � (0))
take values such that the equilibrium converges to (k�; h�; ��) along the saddle path.

We next characterize the transition of the economy towards the steady state starting with
any k (0). It turns out to be more convenient to work with the following variable

z (t) = A

�
k (t)

h (t)

���1
,

which is a measure of returns to capital in this economy. Replacing z (t) in the system of
Eqs. (I11:48) � (I11:50) and replacing the steady state values in the equations, we get an
equivalent system which is more convenient to analyze:

_h (t)

h (t)
= B (h (t)� h�)� (� (t)� ��) (I11.51)

_z (t)

z (t)
= � (1� �) [z (t)� z�] . (I11.52)

_� (t)

� (t)
=

�� �
�

(z (t)� z�) + (� (t)� ��) . (I11.53)

Note that, z (t) follows a one dimensional di¤erential equation and converges monotonically
to its steady state value z� � B=�. The initial value z (0) is still an endogenous object and
is determined by the exogenous initial state variable k (0). After a few steps of algebra, it
can be seen that

z (0) Q z� if k (0) R k�: (I11.54)

Intuitively, if there is too little capital relative to human capital, the return to capital, z (0),
starts high and gradually declines towards its steady state value as the economy accumulates
capital.

Next, we characterize the transition path of the system in (I11:51)� (I11:53) for a given
z (0). There are three cases depending on the comparison between � and �.

Case 1, � < �. Since we have � < 1, and � is usually estimated larger than 1, this is the
more likely case. In this case, considering the phase diagram corresponding to Eqs. (I11:52)
and (I11:50), it can be seen that z (t) and � (t) move in the same direction along the saddle
path, that is, they either both increase or both decrease towards their respective steady state
values. Also, Eq. (I11:51) implies that � (t) and h (t) move in the same direction along
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the transition path to the steady state. It follows that, in this case (z (t) ; � (t) ; h (t)) either
all start above steady state values or all start below steady state values and monotonically
converge to steady state values (z�; ��; h�).

Case 2, � > �. This case is similar except the saddle path for the phase diagram
corresponding to Eqs. (I11:52) and (I11:50) is downwards sloping, that is, � (t) and z (t)
move in opposite directions along the saddle path. It follows that h (t) and � (t) move in
the opposite direction of z (t) along the transition path. More speci�cally, if z (0) > z�, then
h (0) < h� and � (0) < �� and all variables monotonically converge to their steady state
values.

Case 3, � = �. In this knife edge case, the stable solution to Eq. (I11:50) is � (t) = ��

for all t. Using this in Eq. (I11:51) shows that the stable solution for h (t) is also constant,
that is, h (t) = h� for all t. Hence, in this case, z (t) adjusts according to the globally stable
Eq. (I11:52) but (� (t) = ��; h (t) = h�) at all times.

Combining these observations with Eq. (I11:54), we summarize the transitional dynamics
as follows. Suppose k (0) < k� (the other case is symmetric). Since capital is relatively scarce,
it is always the case that z (0) > z�, that is, the initial return to capital is higher than at
the steady state and gradually decreases towards z� as the capital to human capital ratio
gradually increases towards k�. If we are in case 1, i.e. � < �, h (t) and � (t) monotonically
decrease towards the steady state levels. Else if we are in case 2, i.e. � > �, then h (t) and
� (t) monotonically increase towards the steady state levels. In the knife-edge case, h (t) and
� (t) remain constant respectively at h� and ��.





Chapter 12: Modeling Technological Change

Exercise 12.2

Exercise 12.2, Part (a). Suppose �rst that the innovation is drastic enough so that
pM <  . The unique equilibrium then involves p1 = pM and the innovator makes pro�ts
of �̂I1 = D

�
pM
� �
pM � ��1 

�
� � as given in (12.3). Note �rst that this is an equilibrium.

Setting qj = 0 is a best response for the other �rms as their marginal costs exceed the market
price p1 = pM <  . And that given the other �rms do not produce, the maximizing price for
the innovator is the monopolistic price p1 = pM . Hence the allocation above is an equilibrium.
To show that it is also unique, suppose there was another equilibrium involving qj > 0 for
some j > 1. For this to be an equilibrium, we need that the prevailing market price p is
weakly greater than the marginal costs  . This however cannot be an equilibrium as the
innovator could set the monopolistic price pM and increase his pro�ts. Hence, the allocation
above is the unique equilibrium. To see that this is also true in the case of pM =  , �rst note
that the proposed allocation still is an equilibrium as the other �rms j > 1 are indi¤erent
between selling and not selling at pM =  . To see that the equilibrium is still unique, note
that there is a pro�table deviation for the innovator in case qj > 0 for some j > 1. The
pro�ts for the innovator at market prices of pM =  are given by

�1(p
M ) = ([D

�
pM
�
�
X
j>1

qj ]
�
pM � ��1 

�
� �;

where
P

j>1 qj > 0. The pro�ts from o¤ering a slightly smaller price p =  � " are given by

�1(p
M � ") = [D

�
pM � "

�
]
�
pM � "� ��1 

�
� �;

where we already used that qj = 0 for all j > 1 as p <  . Hence, the gain from lowering the
price is given by

� = �1(p
M � ")� �1(pM ) = (D ( � ")�D ( )) 

�� 1
�

�D ( � ") "+  �� 1
�

X
j>1

qj :

As the last term  ��1
�

P
j>1 qj is positive by hypothesis and the demand function D is

continuous, there exists some " small enough to make � > 0. This shows that there is no
equilibrium with pM =  and qj > 0 for some j > 1. But there is no equilibrium involving
p =  �" either. To achieve a contradiction, suppose there is. Now consider setting ~p =  � "

2 .
This will clearly increase �rm 1�s pro�ts as it will still get the whole market demand but the
pro�t function is increasing in p at ~p. As " is arbitrary, this shows that there is no equilibrium
involving p =  � ". Hence, even in the case of pM =  , the unique equilibrium involves the
innovator capturing the whole market.

Exercise 12.2, Part (b). Let us now assume that pM >  . To see that the unique
equilibrium involves p1 =  and qj = 0 for all j > 1; let us suppose this is not the case. By
the same argument as given in Part (a), it is clear that any price p1 <  cannot be pro�t

191
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maximizing. As pM >  > p1, the monopolistic objective function is increasing in p at p = p1.
Hence, p1 <  cannot be optimal as ~p 2 (p1;  ) yields a higher pro�t. But p1 >  cannot be
an equilibrium either. If qj > 0 for some j > 1, then the argument is exactly the same as in
Part (a) - undercutting the price slightly and catering to the whole market will always be a
pro�table. But qj = 0 for all j > 1 will of course not be an equilibrium either, as �rm j would
make positive pro�ts by setting qj > 0 as market prices exceed their marginal costs. Hence,
the unique equilibrium price will involve p1 =  . That the unique equilibrium allocation will
also involve qj = 0 for all j > 1 can again be shown by exactly the same argument as in Part
(a). If not, o¤ering a lower price close enough to  will always be pro�table for the innovator.
This proves this part of the proposition.

Exercise 12.2, Part (c). To show that �̂I1 > �I1 it is important to note that these two
cases refer to di¤erent values of the productivity gain from innovation �. Hence let us denote
�1 � �� > �2 where the unconstrained monopoly price p1 = pM refers to the case of �1 and
the constrained case, i.e. p1 =  � pM , refers to the case of �2: Note that pM also depends
on � (see (12.2)), so that the monopoly prices pM are di¤erent in the two cases. To �nally
compare the two pro�t levels, note that

�̂I1 = D
�
pM
� �
pM � ��11  

�
� �

� D ( )
�
 � ��11  

�
� �

= D ( )
�1 � 1
�1

 � �

= D ( )
�2 � 1
�2

 � �+D( )
�
�1 � 1
�1

� �2 � 1
�2

�
= �I1 +D( )

�1 � �2
�1�2

> �I1;

where the �rst inequality follows from a revealed preference type argument that pM is the
pro�t maximizing price (so it must give a higher pro�t than  ) and the last inequality follows
from the fact that �1 > �2: Even though this is an intuitive result, it is nevertheless important:
the innovator would always prefer his innovation to be drastic.

Exercise 12.5

The �rm will never adopt the general technology improvement because ex-post competi-
tion will drive prices down to the lower marginal costs ��1 . Hence both before and after
the innovation, the revenue of the innovating �rm is zero so that the gain from innovating is
given by ��: For the details of this argument we refer to Section 12.3.1.

The �rm might however adopt the speci�c technology, even though it is less drastic.
Without the innovation the �rm has a pro�t of zero. By innovating, the �rm can generate
a position of ex-post monopoly. In order analyze the innovation decision we again have
to distinguish the same two cases as in Proposition 12.1. With the results given there we
can directly conclude that if �0 � �� (where, recall �� = 1

1�"D(pM )�1
) the �rm charges the

unconstrained monopoly price and has pro�ts of

�̂I1 = D
�
pM
� �
pM � �0�1 

�
� �:

If on the other hand �0 < ��, the �rm has to resort to limit pricing and makes pro�ts of

�I1 = D ( )
�
 � �0�1 

�
� �:
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Hence, the innovation decision is given by the rule

if �0 � �� : Innovate if and only if D
�
pM
� �
pM � �0�1 

�
� �

if �0 < �� : Innovate if and only if D ( )�0�1
�
�0 � 1

�
 � �:

As both D
�
pM
� �
pM � �0�1 

�
and D ( )�0�1

�
�0 � 1

�
 are positive, there is a level of in-

novation costs �̂(�0) (where we explicitly denoted the dependence on �0), such that the �rm
would want to innovate whenever � � �̂(�0). Hence the �rm might adopt the �0 technology
although it is "worse" than the � technology (since � > �0 is a more drastic innovation).

Let us de�ne the social value of an innovation as the increase in consumer and producer
surplus minus the cost of innovation presuming that a social planner would price the good
(see (12.1) and the discussion there). The social planner, trying to maximize the social value,
would want to price the good at its marginal costs to equalize the marginal costs and the
marginal valuation. Hence the social value of the innovation of size �, SI(�), is given by

SI(�) =

Z  

��1 
D (p) dp� � =

Z �0�1 

��1 
D (p) dp+

Z  

�0�1 
D (p) dp� �

=

Z �0�1 

��1 
D (p) dp+ SI(�0)

> SI(�0):
This shows that the social value of adopting the � technology is unambiguously higher. It is
in this sense that the �0 technology is worse: it generates a lower level of social surplus.

Exercise 12.9

Let us �rst consider the standard version of the model with constant marginal costs. We
claim that, in this case, the ability to license generates no additional pro�ts for the innovating
�rm. To see this, suppose that the innovator licenses the product to N �rms and denote the
equilibrium pro�ts of each �rm by �(N).1 Since the innovator can make a take-it-or-leave-it
o¤er, it will appropriate all the surplus from the sale of the licenses hence the licensing fee �
will be given by �(N). Then, the innovator that licenses the product chooses N that solves
the problem

max
N

NX
i=1

� = N�(N):

Note that � (N) = 0 for N � 2 due to Bertrand competition, that is, if there are at least two
�rms operating, the good is priced at marginal costs in equilibrium and each �rm makes zero
pro�ts in equilibrium. It follows that the innovator who chooses to license always licenses to
a single �rm. Note, however, that licensing to a single �rm is identical to the baseline case
in which the innovating �rm produces the good as a monopolist, in particular, in both cases
the innovator makes the same pro�ts � (1). Hence, with constant marginal costs, licensing
cannot raise the pro�ts of the innovator.2 Note that this result is not due to the fact that

1Note that we assume here that the innovator will only sell the license and not produce himself. This
is without loss of generality as all �rms are identical. In particular, the case of selling only to one �rm is
equivalent to not license the innovation and be the only �rm producing.

2Note that this argument assumes that the innovating �rm is as productive as the �rms that demand the
license. We can think of examples where this is not the case and where the prossibility to license innovations
might increase the incentives to innovate. Consider for example the case of a small innovating �rm which is
less e¢ cient in production than a bigger competitor. In such a case, the small �rm might bene�t from having
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there will be Bertrand competition ex-post. With Bertrand competition, pro�ts will be zero
so that the result is particularly stark. But even if there was Cournot competition ex post so
that there would be positive pro�ts in equilibrium, the innovator would not want to license
the innovation to more than one �rm. The reason is that the pro�t from licensing to a single
�rm is higher than the sum of the pro�ts of all participants in a game of Cournot competition.
This can be shown by a revealed preference type argument: in the case of a single �rm, the
monopolist could have o¤ered the Cournot outcome with N players but it decided not to do
so.

Let us now consider the variation of the model with the di¤erent cost structure. By the
same argument as above, the innovator will again decide about the number of �rms in the
market to maximize N�(N), where �(N) denotes again the equilibrium pro�ts and includes
the �xed costs  0. For simplicity we assume that the �xed costs  0 are small enough that
�rms would want to produce if called upon. Here this is without loss of generality as the
innovator will chose the number of �rms so as to ensure that there are positive pro�ts. Let
us �rst consider the case N > 1: To characterize the equilibrium let us assume that the
�rms still compete a la Bertrand but that they are also able to ration the quantity they sell.
The reason why this is important is, that with increasing marginal costs there are multiple
equilibria once rationing is not allowed (see Dastidar (1995)). Intuitively, by undercutting the
price of competitors slightly, the �rm increases the demand for its product discontinuously
and with increasing marginal costs, this is not necessarily pro�table. Hence, there are multiple
equilibria and in particular there are equilibrium prices which are not equal to marginal costs.

Once we allow for quantity rationing, this problem disappears as the �rm can simply
stop supplying the goods demanded once the marginal cost exceeds the price. With this
assumption there exists a symmetric equilibrium where all �rms o¤er a price equal to their
marginal costs, all �rms sell the same number of units and no �rm chooses to ration.3 As all
�rms are symmetric, the equilibrium allocation is described by

D(p) =

NX
i=1

qi = Nq

p = ��1 01(q);

where q is each �rm�s production level. This can be written compactly as

D(��1 01(q)) = Nq: (I12.1)

As @
@qD(�

�1 01(q)) = D0(p)��1 001(q) < 0, the LHS of (I12.1) is decreasing in q so that (I12.1)
determines the equilibrium production level q uniquely. Let us denote the equilibrium quan-
tity if there are N �rms in the market by qN and the equilibrium price by pN = ��1 01(q

N ).
Equilibrium pro�ts are then given by

�(N) = pNqN � ��1 1(qN )�  0;

the opportunity to sell the innovation to the bigger �rm (at least as long as it can extract a large enough share
of the rents from the bigger �rm).

3Suppose, to reach a contradiction, that rationing is used in this equilibrium. Since all �rms are symmetric
and they all are producing the same amount, they must all be rationing. Then, there is an excess of aggregate
demand, and a single �rm can increase its price without a reduction in the demand it faces (i.e. it can sell
the same number of units at a slightly higher price). It follows this equilibrium cannot feature rationing.
E¤ectively, the ability to ration solves the multiplicity problem by removing the equilibria in which the
equilibrium price is not equal to marginal cost, but rationing is not used in the remaining equilibrium in which
price is equal to marginal cost.
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so that the value of selling N licenses, V (N), is given by

V (N) = N(pNqN � ��1 1(qN )�  0):

The reason why in this case the innovator might want to choose N > 1 is that now there is
a bene�t of having more suppliers in the market: as the average costs are U shaped, there
is an e¢ cient scale of production, i.e. a quantity q� which minimizes the average costs.
Hence, rather than having a single �rm producing at too large a scale (i.e. to the right of
the minimum of the U shaped average cost curve), it is more e¢ cient to have multiple �rms
producing closer to the e¢ cient scale. Economically speaking, the innovator faces a trade-o¤
between economic e¢ ciency (which calls for a larger number of licenses) and appropriability
of consumer surplus (which is highest when there is a single �rm in the market). In the case
of constant marginal costs the e¢ ciency motive is immaterial as one �rm can e¢ ciently cater
to the whole market.

To see a concrete example, let the demand function be given by D(p) = a� bp. Let the
cost function be given by C(q) = 1

2 1q
2 +  0. In case the innovator sells N licenses, the

equilibrium allocation is given by (see (I12.1)

D(��1 01(q
N )) = a� b 1qN = NqN :

Hence, qN = a
N+� , where we de�ned � = b 1. This yields a pro�t of

�(N) =
a

N + �

a

b
(1� 1

N + �
)� 1

2

�

b

�
a

N + �

�2
�  0: (I12.2)

If only one license is sold, prices will be set monopolistically. In that case, the equilibrium
quantity is given by

q1 = argmax
q

�
a� q
b

q � 1
2
 1q

2 �  0
�
=

ab

2 + b 1
=

ab

2 + �

and pro�ts are

�(1) =
ab

2 + �

a

b

�
1� ab

2 + �

�
� 1
2

�

b

�
ab

2 + �

�2
�  0: (I12.3)

Let us for simplicity assume that the �xed costs are small, i.e.  0 � 0. To make the argument
here we simply have to show that it might be worthwhile to sell two licenses. Comparing
the expressions (I12.2) and (I12.3), it is clear that it is worthwhile to sell two licenses rather
than one, as long as

2

"
a

2 + �

a

b

�
1� 1

2 + �

�
� 1
2

�

b

�
a

2 + �

�2#
>

ab

2 + �

a

b

�
1� ab

2 + �

�
� 1
2

�

b

�
ab

2 + �

�2
:

But this inequality is satis�ed for some of the model�s parameters - e.g. b = 1 and a > 1.
As the inequality is strict, there is also some level of �xed costs � 0 such that the inequality
is still satis�ed for all  0 < � 0. Hence, in the case of declining average costs (in some
interval), the possibility to sell licenses of the innovation might be valuable. Note that the
monopolist will induce an equilibrium quantity qN such that the equilibrium price satis�es
P (NqN ) = MC(qN ) > AC(qN ). The �rst inequality follows from the fact that as long as
N > 1, prices will equal marginal costs. The second inequality ensures that each �rm in the
market will make positive pro�ts, which the innovator can extract.

To see the intuition for this reasoning, suppose for a second that the innovator could
not only sell the license but could also decide over the price charged. In that case, the
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optimal thing to do, is to have N suppliers operate at their e¢ cient scale q� and then chose
N (abstracting from the integer problem for simplicity) to solve

max
N

N(D�1(q�N)q� � ��1 1(q�)�  0):

If the convexity of the cost function is su¢ ciently high and the �xed costs are su¢ ciently
low, the solution to this problem will involve N > 1.

In our example the innovator cannot �x the price but once a license is sold, the license
owners compete among each other. The intuition is nevertheless the same: depending on the
parameters of the cost function, it might be worthwhile to sell some licenses. And if this is
the case, having the option to license will increase the incentives to innovate. The reason is
that the innovator will only sell licenses when it is worth doing so, i.e. when the pro�ts of
selling them is higher than acting as a monopolist. This however also means that licensing
increases the pro�ts from innovating.

Exercise 12.11

The maximization problem in (12.14) is given by

max
pi�0

��pi
P

��"
C

�
(pi �  ) ; (I12.4)

where the price index P is given in (12.11) by

P �
 

NX
i=1

p1�"i

! 1
1�"

(I12.5)

and the consumption index is given in (12.8) as

C �
 

NX
i=1

c
"�1
"

i

! "
"�1

:

As the maximizing argument of a function is invariant with respect to positive transformations
of this function, it is convenient to �rst take the logarithm of the objective function in (I12.4).
In many models using the Dixit-Stiglitz (1977) framework, this simpli�es the math. Hence,
the objective function is given by

max
pi�0

�" log pi +
"

1� " log
 

NX
i=1

p1�"i

!
+ logC + log (pi �  ) ;

so that the �rst-order condition results in

�" 1
pi
+

"

1� "
1PN

i=1 p
1�"
i

(1� ")p�"i +
1

pi �  
= 0: (I12.6)

Since the �rst-order condition is the same for all monopolists i, we have that pi = pj = p(N)
(where the argument N stresses the dependence of the equilibrium price on the number of
�rms). Hence we get that

PN
i=1 p

1�"
i = Np(N)1�" so that (I12.6) yields

p(N) =
(N � 1)"

(N � 1)"�N  =
"

"� N
N�1

 :

As limN!1
(N�1)"

(N�1)"�N = "
"�1 we �nd that

lim
N!1

p(N) =
"

"� 1 ;
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which is the also the required solution given in (12.15). Note that p(N) > "
"�1 and that

p(N) is monotonically decreasing in N . The reason is the following: if �rms internalize their
in�uence on the price aggregator P , optimal prices will be higher as P is increasing in pi
and �rms i�s demand is increasing in P for given pi (see (I12.4)). Intuitively, each �rm cares
about its price relative to the price index P . So if �rms internalize their in�uence, they realize
that their relative increase by less as P adjusts too. If only a small number of �rms is in the
market (i.e. N is low), each �rms�price has a large share in the determination of P so that
this e¤ect will be important in each �rm�s pricing decision.

Another way to see this, is the following. The elasticity of demand if P is taken as given,
is

"D(pi)jP = �piD
0(pi)

D(p)

����
P

= ":

In contrast, the demand elasticity when the in�uence on P is internalized, is given by

"D(pi) = �
pi

h
@D(pi)
@pi

+ @D(pi)
@P

@P
@pi

i
D(p)

= "� "P�1 @P
@pi

< "D(pi)jP :

Hence, by recognizing their in�uence on P , �rms perceive consumers�demand as less elastic
and will therefore set higher prices. From (I12.5) we see that

@P

@pi
= P "p�"i =

�
Np1�"i

� "
1�" p�"i = N

"
1�" ;

where the second equality follows from the symmetry pi = pj . In the limit where N goes to
in�nity, each �rm�s in�uence on P vanishes (i.e. limN!1

@P
@pi

= 0) so that P is e¤ectively
taken as given and equilibrium prices are lower.

Exercise 12.13

Exercise 12.13, Part (a). As the social planner wants to maximize social surplus,
there will not be any monopolistic distortions like they are present in the pricing decision of
monopolists. Hence, he will set each varieties�price equal to its (common) marginal costs  .
Using this, we get from the consumer�s optimality condition�

ci
ci0

�� 1
"

=
pi
pi0
=
 

 
= 1;

i.e. all varieties will be consumed in the same amount ci = ci0 = c. Note that this is also true
in the equilibrium. For a given number of varieties N the social planner will therefore chose
a consumption aggregator

C �
 

NX
i=1

c
"�1
"

i

! "
"�1

=
�
Nc

"�1
"

� "
"�1

= cN
"

"�1 ; (I12.7)

where c is the consumption level of each variety. To allocate resources between the con-
sumption goods c and the y�good and to decide about the number of varieties N , the social
planner solves the problem

max
y;c;N

cN
"

"�1 + y1��(1� �) (I12.8)

s.t. m = Nc + y +N�; (I12.9)

where the resource constraint stems from the fact that each good is produced in quantity c
and costs  . Another way to see this (which is more in line with the exposition in the book)
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is that the ideal price index is equal to P �
�PN

i=1  
1�"
� 1
1�"

=  N1=(1�"). Note that P also

denotes the unit costs of producing the aggregate good C. As c units of each variety are
bought, the social planner buys N

"
"�1 c = C units of di¤erentiated varieties (see (I12.7)) so

that we can also express (I12.8) as

max
y;C;N

C + y1��= (1� �)

s.t. m = CP + y +N�;

where the constraint follows from the fact that

Nc = N
"

"�1N
�1
"�1 c = N

"
"�1 cN

1
1�" = CP:

This is exactly the form given in the book (using the speci�c utility function given here).
Solving the constraint in (I12.9) for the consumption level c = m�y�N�

N and substituting this
into (I12.8), we arrive at the unconstrained maximization problem

max
y;N

m� y �N�
 

N
1

"�1 + y1��= (1� �) :

The corresponding �rst-order conditions are

y�� =
1

 
N

1
"�1 (I12.10)

m� y = �"N: (I12.11)

Using that from (I12.10) we get that y =  1=�N
� 1
�("�1) , (I12.11) determines the optimal

number of varieties of the social planner NSP by

m�  1=�
�
NSP

�� 1
�("�1) = �"NSP : (I12.12)

Exercise 12.13, Part (b). Let us now suppose that the social planner is not able to
control prices, i.e. he has to take the monopolistic prices p = "

"�1 as given. The ideal
price index in this case is given by P = "

"�1 N
1=(1�"). Hence, the only di¤erence from the

problem solved in Part (a) is, that the consumption good is now more expensive (relative
to the y�good), as the monopolistic pricing decision involves the mark-up "

"�1 . Hence the
social planer solves the problem

max
y;N

m� y �N�
"
"�1 

N
1

"�1 + y1��= (1� �) ;

which has the �rst-order conditions

y�� =
1
"
"�1 

N
1

"�1

m� y = �"N:

Note especially that the second conditionm�y = �"N is not a¤ected by the di¤erent pricing.
Similarly to (I12.12), the optimal number of varieties NC (with the constraint that prices
cannot be changed) solves the equation

m�
�

"

"� 1 
�1=� �

NC
� �1
�("�1) = �"NC : (I12.13)
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Exercise 12.13, Part (c). Consider �nally the equilibrium number of varieties, which
is determined by free entry. To do so we have to �nd the expression for monopolistic pro�ts.
From the consumers��rst-order condition we get that for each variety i

C1="c
�1="
i = piy

��: (I12.14)

Since the monopolist of variety i faces an isoelastic demand function, the monopolistic price
is given by

pi = pj =
"

"� 1 ; (I12.15)

which immediately implies that ci = cj = c, i.e. all varieties are consumed by the same
amount. From the de�nition of C we therefore get that

C =

 
NX
i=1

c
"�1
"

i

! "
"�1

= cN
"

"�1 : (I12.16)

Substituting (I12.15) and (I12.16) into (I12.14), we arrive at

C1="c�1=" = N1=("�1) =
"

"� 1 y
��: (I12.17)

Together with the budget constraint4

m = y +
NX
i=1

pici = y +
"

"� 1 Nc = y +
"

"� 1 N
�1
"�1C (I12.18)

we get two equations in two unknowns (C and y) which we can solve. Substituting y from
(I12.17) into (I12.18) yields

C =
"� 1
" 

N
1

"�1

 
m�

�
"

"� 1 
�1=�

N
�1

�("�1)

!
(I12.19)

as a function of N and parameters.
To solve for the equilibrium number of �rms NEQ, we have to derive the monopolistic

pro�ts in this economy. These are given by

� = (pi �  )ci =
1

"� 1 CN
�"
"�1

=
1

"
N�1

 
m�

�
"

"� 1 
�1=�

N
�1

�("�1)

!
;

where the second line followed upon substituting (I12.19). Hence, the equilibrium number of
�rms NEQ is given by the zero pro�t condition � = �, which in this example is given by

m�
�

"

"� 1 
�1=� �

NEQ
� �1
�("�1) = �"NEQ: (I12.20)

When we compare the respective conditions (I12.12), (I12.13) and (I12.20) we see that the
structure is really similar and that we can learn about the sources of the di¤erences between
those allocations. Consider �rst the equilibrium number of varieties NEQ determined in
(I12.20). This condition is exactly the same as for the number of varieties NC the social

4Note that m = y +
PN

i=1 pici is the correct budget constraint for the respresentative consumer. Even
though the consumer is the owner of the N �rms in the market and will therefore receive the pro�ts

PN
i=1 �i =

N�, those pro�ts are exactly spent on the entry costs N�. Hence, the consumer has only his initial income
m, which he can spend on the two consumption goods C and y.
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planner would choose if he would have to take monopolistic prices as given (determined in
(I12.13)). In fact this result is relatively general in this kind of model. Dixit and Stiglitz
(1977) work with the more general utility function

U

0@y; NX
i=1

c
"�1
"

i

! "
"�1
1A (I12.21)

and show that a social planner who is choosing pi, N and ci subject to the constraint that
each monopolist has to break even will in fact set pi = "

"�1 . Furthermore they show that
even in this more general case the social planner will choose the same number of �rms as in
the equilibrium allocation.

When we compare (I12.13) or (I12.20) to (I12.12), we see that the di¤erence between the
optimal and the equilibrium number of varieties comes from the fact that the social planner
internalizes that the marginal rate of transformation between a new variety and the y-good is
equal to the marginal costs  and not equal to "

"�1 as in either (I12.13) or (I12.20). Hence,
the only source of distortions in the equilibrium number of varieties comes from the fact that
prices are set monopolistically. Conditional on equilibrium prices, the zero-pro�t condition
determines the number of varieties at exactly the number the social planner would also have
chosen.

To see that the unconstrained social planner will in fact provide strictly more varieties, i.e.
NSP > NEQ, consider the following argument. Although this could also be shown from the
�rst-order conditions, we think the proof below is instructive as it illustrates various important
properties of the Dixit-Stiglitz model. It is also closely related to the original argument
provided in Dixit and Stiglitz (1977). We showed above that the consumers�problem can be
thought of as choosing the two goods C and y with prices pC = P and py = 1. Hence, in both
the equilibrium and the social planners solution the marginal condition @U=@C

@U=@y =
pC
py
= P will

hold true. With the utility function assumed above this yields

P =
@U=@C

@U=@y
=

1

y��
= y�: (I12.22)

Hence, y is increasing in P . Above we showed that PSP =  N1=(1�") < "
"�1 N

1=(1�") = PEQ,
i.e. due to the monopolistic distortions, the equilibrium price index will be higher. (I12.22)
then implies that yEQ > ySP , i.e. in equilibrium a higher quantity of the y-good will be
consumed. But now note that we will have U(CSP ; ySP ) > U(CEQ; yEQ). This follows
simply from the fact that the social planner could have chosen to set the monopolistic prices
p = "

"�1 but decided not to. As U is increasing in both arguments and yEQ > ySP , it will
necessarily be the case that CSP > CEQ, i.e. given that less of the y-good will be consumed,
the social planner will provide more of the consumption aggregate C. Intuitively, this could
either be achieved by cSP > cEQ or NSP > NEQ. Economically speaking, the social planner
could either increase the scale of each �rm and save the �xed costs expenses or he could
exploit the aggregate demand externality and chose a higher number of �rms.

To see that he will decide to use the latter channel, we are going to show that the social
planner will in fact choose the same consumption level of each variety as the equilibrium
allocation, i.e. cSP = cEQ. To see this, note that from the budget constraint we have that

m = pSP cSPNSP + ySP +NSP�.
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Hence,

cSP =
m� ySP �NSP�

 NSP
; (I12.23)

where we substituted pSP =  . Now note that the �rst-order condition of the social planner
(see (I12.11)) is given by m� ySP = �"NSP , so that (I12.23) implies that

cSP =
�"NSP +NSP�

 NSP
=
�"� �
 

=
"� 1
 

�: (I12.24)

This determines the variety-speci�c consumption level in the social planner�s allocation as a
function of parameters only.

Now consider the equilibrium. The pro�t of each �rm producing one variety is given by

� =
�
pEQ �  

�
cEQ =

1

"� 1 c
EQ

where the second equality uses (I12.15). In equilibrium, �rms make zero pro�ts, i.e. we will
have � = �. This however implies that

cEQ =
"� 1
 

�: (I12.25)

Hence, (I12.24) and (I12.25) show that cEQ = cSP , i.e. in both the equilibrium and the
optimal allocation the consumption level of each variety is exactly the same. Using this and
the de�nition of the consumption aggregate C (see (I12.7)), we therefore get that

CSP = cSP
�
NSP

� "
"�1 = cEQ

�
NEQ

� "
"�1

�
NSP

NEQ

� "
"�1

= CEQ
�
NSP

NEQ

� "
"�1

;

which from CSP > CEQ directly implies that NSP > NEQ. Hence, the social planner will
provide the same amount of each variety as in the equilibrium but will provide a larger
number of varieties. Again, this result is not a consequence of the special structure of the
preferences assumed in this exercise. Dixit and Stiglitz (1977) show that the same result is
true for general preferences of the form given in (I12.21).

Exercise 12.14

For a consumer at point x to be indi¤erent between buying at store x1 and x2, her utility
has to be the same. Hence we have to have that

R� t(z1 � x)� p1 = R� t(x� z2)� p2;
which yields

p1 � p2 = t(x� z2)� t(z1 � x) = (2x� z1 � z2) t (I12.26)

as required. Additionally we need that the consumer is better o¤ buying at either of the
stores than to abstain from buying entirely. Hence we need that

R� t(z1 � x)� p1 � 0;
which is the second condition.

Now let prices p1 and p2 be given. Let U j(x) be the utility from a consumer located at
point x when buying at store j = 1; 2. Consider x 2 (z2; z1). As U1(x) = R� p1 � t(z1 � x)
and U2(x) = R� p2 � t(x� z2), it is clear that

@

@x
U2(x) = �t = � @

@x
U1(x) < 0;
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i.e. the utility from buying at store 2 is strictly decreasing in x whereas the utility from buying
at store 1 is strictly increasing. By construction, the consumer located at x is indi¤erent
between the two stores. Hence, all consumers x0 2 [z2; x) strictly prefer to buy from �rm 2
and all consumers x0 2 (x; z1] strictly prefer to buy from �rm 1.

Now consider the problem of a �rm located at z2. Consider two other �rms 1 and 3
located at z1 > z2 > z3. Let prices the prices p1; p2; p3 be given. To derive the pro�t of �rm
2 we need its demand (or consumer base) at those prices. Using (I12.26), the consumer who
is indi¤erent between between store 1 and store 2 is located at

x̂12 =
1

2

�
p1 � p2

t
+ z1 + z2

�
:

Similarly, the consumer who is indi¤erent between buying at store 2 and store 3 is located at

x̂32 =
1

2

�
p2 � p3

t
+ z2 + z3

�
:

Hence, the �rm�s consumer base is given by x̂12 � z2 + z2 � x̂32 = x̂12 � x̂32, i.e. �rm 2�s
demand at prices p1; p2; p3, D2(p1; p2; p3) is given by

D2(p1; p2; p3) =
1

2
(
p1 � p2

t
+ z1 + z2 �

p2 � p3
t

� z2 � z3)

=
p1 � p2
2t

+
z1 � z2
2

+
p3 � p2
2t

+
z2 � z3
2

: (I12.27)

As marginal costs are equal to  , �rm 2�s pro�ts are given by

�2 (p1; p2; p3 j z1; z2; z3) = (p2 �  )D2(p1; p2; p3) (I12.28)

= (p2 �  )
�
p1 � p2
2t

+
z1 � z2
2

+
p3 � p2
2t

+
z2 � z3
2

�
;

which is the required expression. The pro�t maximizing price (taking p1 and p3 as given)
solves the �rst-order condition�

p1 � p2
2t

+
z1 � z2
2

+
p3 � p2
2t

+
z2 � z3
2

�
� (p2 �  )

t
= 0;

i.e. is given by

p2 =
1

2

�
 +

p1 + p3
2

+ t
z1 � z3
2

�
: (I12.29)

Let us now analyze the location choice of the �rm 2. First of all note that with the
demand structure given above, the �rm�s pro�t function (I12.28) does not depend on the
�rm�s location z2 as it cancels out. Hence, for given prices p1 and p3 the �rm weakly prefers
to position itself in the middle between �rm 1 and �rm 3. This however does not mean that
the �rms�locations in a symmetric price equilibrium are indeterminate. In fact we will show
that the unique equilibrium where all �rms charge the same price will necessarily have �rms
being situated equidistantly. So consider a symmetric equilibrium where all N �rms charge
the same price p1 = p2 = ::: = pN = p. By the de�nition of an equilibrium, prices have to be
set optimally, i.e. they have to be given by (I12.29). Hence, we need for all �rms i = 1; :::; N
that

pi = p =
1

2

�
 +

p+ p

2
+ t

zRi � zLi
2

�
=  + t

zRi � zLi
2

; (I12.30)

where zRi and z
L
i are the positions of the right and left neighbor of �rm i. As all �rms charge

the same prices, (I12.30) implies that zRi � zLi cannot depend on i. Hence, the di¤erence
between all neighboring �rms have to be equal. This shows that all �rms have to be equally
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spaced across the circle so that the distance between each �rm is given by 1=N so that
zRi � zLi = 2=N . Equilibrium prices are then given by

pi = p =  + t
zRi � zLi
2

=  + t
2=N

2
=  +

t

N
(I12.31)

as required. Importantly, equilibrium prices are decreasing in the number �rms N . In fact,
in the limit, all �rms lose their monopoly power and prices converge to the competitive case
of marginal cost pricing (note that using (I12.31) we get limN!1 pi =  ). This is in strong
contrast to the Dixit-Stiglitz model, where �rms�monopolistic power is sustained even for N
arbitrarily large. The reason is to be found in the demand elasticity the monopolist faces.
Recall that the demand elasticity was the decisive determinant of the monopolists�mark-up
(see (12.2)). The remarkable property of the Dixit-Stiglitz formulation is, that this elasticity
is constant. This is very di¤erent in the Salop model analyzed above. Note that the elasticity
of demand is de�ned as

"D(p) = �
@D(p)

@p

p

D(p)
:

Using equilibrium prices (I12.31) and the �rms�demand function (I12.27), it is easily found
that in this model we have

"D(p) =
1

t

 + t
N

1
N

=
 

t
N + 1;

which is clearly increasing in N . In fact, in the limit, each �rms�demand becomes in�nitely
elastic - which is of course just to say that each �rm faces a horizontal demand curve so that
the environment is perfectly competitive (and prices will be equal to marginal costs).





Chapter 13: Expanding Variety Models

Exercise 13.1

Exercise 13.1, Part (a). First of all note that we can rewrite (13.7) as

V (�; t) =

Z 1

t
exp

�
�
Z s

t
r(s0)ds0

�
�(�; s)ds

=

Z t+�t

t
exp

�
�
Z s

t
r(s0)ds0

�
(px(�; s)�  )x(�; s)ds

+

Z 1

t+�t
exp

�
�
Z s

t
r(s0)ds0

�
(px(�; s)�  )x(�; s)ds; (I13.1)

where we used that per period pro�ts are given by �(�; s) = (px(�; t)� )x(�; t). Intuitively,
(I13.1) shows that the total value of a �rm owning a patent can be decomposed into the �ow
pro�ts of the present (i.e. in the arbitrary small time interval�t) and the discounted �sum�of
all future pro�ts. This is closely related to the Principle of Optimality encountered in Chapter
6 and also discussed in detail by Stokey, Lucas and Prescott (1989), which concerns the
equivalence of the sequence formulation and the recursive formulation and also decomposes
the criterion function into current payo¤s and the future discounted value.

Exercise 13.1, Part (b). To arrive at the required formulation consider the �rst term
in (I13.1) and de�ne the function m(s) as

m(s) = exp

�
�
Z s

t
r(s0)ds0

�
�(�; s):

By the mean value theorem we can �nd ~s(s) for any s so that

m(s) = m(t) +m0(~s(s))(s� t);

i.e.

exp

�
�
Z s

t
r(s0)ds0

�
�(�; s) = �(�; t) +m0(~s(s))(s� t); (I13.2)

where

m0(~s(s)) =
d exp

�
�
R s
t r(s

0)ds0
�
�(�; s)

ds

�����
s=~s(s)

:

205
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Substituting (I13.2) into the �rst term of (I13.1) yieldsZ t+�t

t
exp

�
�
Z s

t
r(s0)ds0

�
�(�; s)ds

=

Z t+�t

t

�
�(�; t)ds+

Z t+�t

t
m0(~s(s))(s� t)

�
ds

� �(�; t)�t+

Z t+�t

t
max

s2[t;t+�t]

��m0(~s(s))
�� (s� t)ds

= �(�; t)�t+ max
s2[t;t+�t]

��m0(~s(s))
�� Z �t

0
zdz

= �(�; t)�t+ max
s2[t;t+�t]

��m0(~s(s))
�� 1
2
(�t)2

= (px(�; t)�  )x(�; t)�t+ o(�t); (I13.3)

where we used the de�nition of per-period pro�ts �(�; t) and the fact that the second term
is of order o(�t) (i.e. satis�es lim�t!0

o(�t)
�t = 0). Also note that by de�nition we have

V (�; t+�t) =

Z 1

t+�t
exp

�
�
Z s

t+�t
r(s0)ds0

�
�(�; s)ds

= exp

�Z t+�t

t
r(s0)ds0

� Z 1

t+�t
exp

�
�
Z s

t
r(s0)ds0

�
�(�; s)ds: (I13.4)

Using again the mean value theorem yields

exp

�Z t+�t

t
r(s0)ds0

�
= exp

�Z t+�t

t

�
r(t) + r0(~s(s0))(s0 � t)

�
ds0
�

= exp

�
r(t)�t+ max

s2[t;t+�t]

��r0(s)�� 1
2
(�t)2

�
= exp [r(t)�t+ o(�t)] :

From (I13.4) we therefore know thatZ 1

t+�t
exp

�
�
Z s

t
r(s0)ds0

�
�(�; s)ds = exp

�
�
Z t+�t

t
r(s0)ds0

�
V (�; t+�t)

= exp [�r(t)�t] exp [�o(�t)]V (�; t+�t)
= exp [�r(t)�t]V (�; t+�t) + o(�t): (I13.5)

Substituting (I13.3) and (I13.5) into (I13.1) yields1

V (�; t) = (px(�; t)�  )x(�; t)�t+ exp [�r(t)�t]V (�; t+�t) + o(�t): (I13.6)

The intuition for this equation is, that the di¤erence between the value of owning a machine
at t and the discounted value of owning a machine at t + �t is - up to �rst-order - only
given by the fact that owning the blueprint earlier provides the owner already with �ow
pro�ts of �(�; t)�t. All second order terms are subsumed in o(�t). From the approximations
above, however, we exactly know where those second order di¤erences come from. First of
all we could potentially have time varying interest rates, i.e. _r(t) 6= 0, so that the linear

1Note that there is a small typo in the exercise statement. Instead of exp [r(t)�t]V (�; t+�t) we should
have exp [�r(t)�t]V (�; t+�t) in the equation given in part (b). Hence the equation derived in (I13.6) is in
fact the correct one.



Solutions Manual for Introduction to Modern Economic Growth 207

approximation to the discounting might not be exact. Secondly, the pro�t function �(�; t)
might vary over time. This would also introduce terms of second order.

Exercise 13.1, Part (c). Rearranging (I13.6), dividing by �t and taking the limit
�t! 0 yields

(px(�; t)�  )x(�; t) + lim
�t!0

exp [�r(t)�t]V (�; t+�t)� V (�; t)
�t

= 0; (I13.7)

as lim�t!0
o(�t)
�t = 0. But now note that the second term in the equation above is just

the de�nition of the derivative of the function exp [�r(t)(� � t)]V (�; �) with respect to �
evaluated at � = t, i.e.

lim
�t!0

exp [�r(t)�t]V (�; t+�t)� V (�; t)
�t

=
d exp [�r(t)(� � t)]V (�; �)

d�

����
�=t

= �r(t)V (�; t) + _V (�; t):

Substituting this into (I13.7) and rearranging terms yields

r(t)V (�; t)� _V (�; t) = (px(�; t)�  )x(�; t) = �(�; t);

which is exactly the Hamilton-Bellman-Jacobi equation given in (13.8). The most intuitive
economic interpretation of the Hamilton-Bellman-Jacobi equation comes from an asset pricing
perspective. The return of holding the asset (i.e. holding a fully-enforced perpetual patent on
the discovered blueprint) is given by r(t)V (�; t). As with every asset this return is generated
by both dividends, i.e. current payo¤s represented by �(�; t) and capital gains, i.e. the change
in the asset�s value over time _V (�; t). Hence, the Hamilton-Bellman-Jacobi equation can be
interpreted as the an asset pricing relationship to �price�the ownership of a patent.

Exercise 13.5

That the value function V (�; t) is independent of � follows directly from its de�nition.
The net present discounted value of owning a blueprint of variety � is given by (see (13.7))

V (t; �) =

Z 1

t
exp

�Z s

t
�r(s0)ds0

�
�(�; s)ds:

In the baseline model lab-equipment model, per-period pro�ts are given by (see (13.11)

�(�; t) = �L;

so that

V (t; �) = �L

Z 1

t
exp

�Z s

t
�r(s0)ds0

�
ds; (I13.8)

which is independent of �. Hence, V (t; �) = V (t) for all t as required.
Let us now show that

�V (t) = 1 for t 2
�
t0 � "; t0 + "

�
(I13.9)

implies that
�V (t) = 1 for all t:

From (I13.9) we know that V (t) is di¤erentiable on the interval (t0 � "; t0 + "). In particular,
V (t) is constant in that interval, i.e. _V (t) = 0. As V (t) satis�es the usual HJB equation, we
get that for t 2 (t0 � "; t0 + ") it will hold true that

r (t)V (t)� _V (t) = r(t)
1

�
= �L;
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i.e. interest rates are constant. This in turn implies from the consumers�Euler equation that
consumption grows at a constant rate.

Now suppose that the claim is not true, i.e. there exists an interval [t0 + "; T ) such that

�V (t) < 1 for t 2 [t0 + "; T ): (I13.10)

From (I13.10) and the research �rms�entry decision we can conclude that

Z(t) = 0 for t 2 [t0 + "; T );

so that N(t) does not grow in this interval (as _N(t) = �Z(t)).
The resource constraint in this economy is given by

Y (t)�X(t) = ( 1

1� � � (1� �))N(t)L = C(t) + Z(t); (I13.11)

where we used that in equilibrium, Y (t) and X(t) are linear in N(t). As (I13.11) has to hold
at every point in time, we get that

(
1

1� � � (1� �))N(t)L = (
1

1� � � (1� �))N(t
0 + ")L = C(t) for all t 2 [t0 + "; T );

so that consumption is constant for all t 2 [t0 + "; T ). For this to be consistent with the
consumers�Euler equation, interest rates have to be given by

r(t) = � for t 2 [t0 + "; T );
so that the value function in this interval solves the appropriate HJB equation

r(t)V (t)� _V (t) = �V (t)� _V (t) = �L for all t 2 [t0 + "; T ):
Solving this di¤erential equation, we get that

V (t) =
�L

�

�
1� exp(�(t� (t0 + "))

�
+V (t0+") exp(�(t�(t0+")) for all t 2 [t0+"; T ): (I13.12)

As the value function is continuous (see (I13.8)), we have that V (t0 + ") = ��1, so that
(I13.12) implies that

�V (t) = �
�L

�

�
1� exp(�(t� (t0 + "))

�
+ exp(�(t� (t0 + "))

= �
�L

�
� exp(�(t� (t0 + "))

�
�
�L

�
� 1
�
: (I13.13)

As ��L > � (see (13.21)), (I13.13) shows that there is ~t > t0 + ", such that

�V (t) > 1 for all t 2 (t0 + "; ~t):
This however contradicts (I13.10) and concludes the proof.

Now suppose that there is no interval (t � "; t + ") such that �V (t) = 1, i.e. �V (t) < 1
for all t. If this is the case, free entry into research requires that Z(t) = 0 for all t. The
innovation possibilities frontier implies that N(t) stays constant so that consumption will be
non-increasing so that r(t) = � for all t. The stable solution V (t) for the di¤erential equation

�V (t)� _V (t) = �L for all t

is given by V (t) = �L
� . Using (13.21) again, implies that

�V (t) = �
�L

�
> 1:
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This is a contradiction and shows that this economy does not feature an equilibrium, where
there is no research.

Combining all these results, the proof of Proposition 13.2 is immediate. We have shown
that there is no equilibrium where there is never entry as this would violate the free entry
condition. Hence, in every equilibrium there is entry in some interval (t0 � "; t0 + "), which
from the results derived above implies that in every equilibrium there will be positive research
expenditures for all t. As shown above, this implies that consumption grows at a constant
rate gC as interest rates are constant. From the resource constraint (I13.11) we get that�

1

1� � � 1 + �
�
N(t)L = C(t) + Z(t) = C(t) +

1

�
_N(t); (I13.14)

where the second equality uses the innovation possibilities frontier _N(t) = �Z(t). As con-
sumption grows at a constant rate, we can write C(t) = C(0) exp(gCt) so that the di¤erential
equation in (I13.14) can be rewritten as�

1

1� � � 1 + �
�
LN(t) exp(�gCt)�

1

�
_N(t) exp(�gCt) = C(0): (I13.15)

Now de�ne the variable n(t) � N(t) exp(�gCt). As

_n(t) = _N(t) exp(�gCt)� gCN(t) exp(�gCt) = _N(t) exp(�gCt)� gCn(t)

we can rewrite (I13.15) as�
�

�
1

1� � � 1 + �
�
L+ gC

�
n(t)� _n(t) = �n(t)� _n(t) = �C(0):

This di¤erential equation has the solution

n(t) =
�C(0)

�
[1� exp(�t)] + n(0) exp(�t) = �C(0)

�
+

�
n(0)� �C(0)

�

�
exp(�t): (I13.16)

To argue that this economy will not have transitional dynamics, we have to show that C(0)
will satisfy

�

�
n(0) = C(0)

so that n(t) is constant, i.e. N(t) grows at the same rate as consumption. To prove this,
suppose this is not the case. If C(0) > �

�n(0), then we know from (I13.16) that n(t) declines
over time. In particular, n(t) will be negative in �nite time. This however is impossible as
N(t) � 0. If on the other hand C(0) < �

�n(0), we get from (I13.16) that n(t) will increase
over time, i.e. N(t) grows faster than consumption. This however violates the transversality
condition. To see this, note that (I13.14) implies that

_N(t)

N(t)
= �

�
1

1� � � 1 + �
�
L� C(t)

N(t)
: (I13.17)

As limt!1
C(t)
N(t) = 0, (I13.17) shows that N(t) will grow at a constant rate gN > gC asymptot-

ically. In Exercise 13.6 we have shown that this violates the transversality condition. Hence,
C(0) will be such that N(t) grows at the same rate as consumption, i.e. equilibrium growth
is balanced and the growth rate is given in (13.20). This proves Proposition 13.2.
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Exercise 13.6

Exercise 13.6, Part (a). To see that g�C > g� is not feasible, recall that the derived
production function for the �nal good is given by

Y (t) =
1

1� �N(t)L;

so that

g� =
_Y (t)

Y (t)
=

_N(t)

N(t)
:

But feasibility requires that C(t) � Y (t), which directly implies that

gC � gY = g�:

Exercise 13.6, Part (b). Now suppose g�C < g�. The appropriate transversality condi-
tion for this economy is given by

lim
t!1

�
exp

�
�
Z t

0
r(s)ds

�
N(t)V (t)

�
= 0: (I13.18)

With growth being balanced, the Euler equation requires that interest rates are constant and
given by r(t) = r�. Along the BGP we also have that V (t) = V � = �L

r� . Additionally we can
write N(t) = N(0) exp[g�t]. Using these relationships, (I13.18) can be written as

lim
t!1

�
exp

�
�
Z t

0
r(s)ds

�
N(t)V (t)

�
=

�L

r�
N(0) lim

t!1
[exp (�r�t) exp[g�t]]

=
�L

r�
N(0) lim

t!1
[exp((g� � r�)t] = 0;

or equivalently
g� � r� < 0. (I13.19)

From the free entry condition into research we know that

1 = �V � = �
�L

r�

so that interest rates are given by r� = ��L. Hence (I13.19) implies

g� � ��L < 0: (I13.20)

Now consider the resource constraint

Y (t)�X(t) = Z(t) + C(t): (I13.21)

As Y (t) = 1
1��N(t)L, X(t) = (1� �)N(t)L and Z(t) =

1
�
_N(t); (I13.21) can be written as

�(2� �)
1� � L =

1

�

_N(t)

N(t)
+
C(t)

N(t)
:

So suppose that consumption grows at a slower rate. In that case we have that asymptotically

lim
t!1

C(t)

N(t)
= 0;

so that the asymptotic growth rate of N(t) is given by

g� =
_N(t)

N(t)
= �

�(2� �)
1� � L:
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This however implies that

g� � ��L = �
�(2� �)
1� � L� ��L = 1

1� � ��L > 0;

which violates the transversality condition in (I13.20). This shows that consumption cannot
grow slower than the number of varieties. Together with the result derived in Part (a), this
proves that if the number of varieties and consumption grow at a constant rate, this rate has
to be equal.

Exercise 13.7

Exercise 13.7, Part (a). The world equilibrium is a path of allocations and prices for

each country

("
Yj (t) ; Cj (t) ; Zj (t) ; Xj (t) ; Nj (t) ;�
pxj (�; t) ; xj (�; t)

�
j�2N(t); rj (t) ; wj (t)

#1
t=0

)
j2f1;::;Mg

such that in each

country j, all monopolists choose
h
pxj (�; t) ; xj (�; t)

i1
�2[0;Nj(t)];t=0

to maximize the discounted

value of pro�ts, the evolution of [Nj (t)]
1
t=0 is determined by free entry, the paths of interest

rates and wage rates [rj (t) ; wj (t)]
1
t=0 clear capital and labor markets, and the paths of

aggregate allocations [C (t) ; X (t) ; Z (t)]1t=0 are consistent with household maximization.

Exercise 13.7, Part (b). Since there are no interactions between countries, each coun-
try equilibrium is characterized separately as a closed economy. The characterization of the
closed economy equilibrium for each country j is very similar to the characterization provided
in Section 13.1. The only di¤erence of the present model from the one analyzed in Section
13.1 is the presence of the �j parameter, which controls the costs of R&D expenditure. Since
�j units of the �nal good spent on R&D generates a �ow rate of �j new blueprints, 1 unit of
�nal good spent on R&D generates a �ow rate of �j=�j blueprints. Hence, de�ning ��j � �j=�j
as the unit productivity of R&D, the model for each country j becomes identical to the one
analyzed in Section 13.1. It follows that, if Condition (13:21) holds for the parameters of
country j, then Theorem 13.2 applies to country j and shows that Nj (t) ; Yj (t) and Cj (t)
all grow at the constant rate

gj =
1

�

�
�Lj��j � �j

�
=
1

�

�
�Lj

�j
�j
� �j

�
. (I13.22)

Moreover, country j variables grow at this rate starting at time t = 0, that is, there are no
transitional dynamics.

Exercise 13.7, Part (c). From the expression for the growth rate of each country in
Eq. (I13:22), it follows that di¤erent countries grow at di¤erent rates except for knife-edge
cases. Therefore, according to this model, small changes in preferences, population, or R&D
technology of economies would lead to large di¤erences in levels of output and consumption
in the long run.

Exercise 13.7, Part (d). We now incorporate taxes into the framework studied in
Section 13.1. There are various ways the government could tax the economy. We consider a
few variants in our analysis.

First suppose that the government of country j taxes returns on assets (i.e. capital income
taxation) linearly at rate �Aj and distributes the proceeds back to the consumers in a lump
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sum fashion. In this case, the consumer Euler equation is
_Cj (t)

Cj (t)
=
1

�

�
rj (t)

�
1� �Aj

�
� �j

�
.

The monopolist�s per-period pro�ts are still given by �j (�; t) = �Lj (cf. Eq. (13:11)) and the
value function along the BGP is given by Vj (�; t) = �Lj=r

�
j . From the free entry condition,

the BGP interest rate is pinned down as r�j = �j�Lj=�j . Using this in the Euler equation
above, the BGP growth rate is given by

gj =
1

�

�
�j�Lj

�j

�
1� �Aj

�
� �j

�
.

This allocation corresponds to an equilibrium if Condition (13:21) is satis�ed. Moreover,
output, technology and consumption grow at this rate starting at time t = 0, i.e. there are
no transitional dynamics. Note that a linear tax on capital reduces growth since it reduces
the incentives for the representative consumer to save. R&D investments in this model are
�nanced by savings of the representative household, thus a reduction in savings slows down
innovation and growth.

Second, suppose instead that the government taxes pro�ts of the monopolists (machine
producers) at a constant linear rate ��j and redistributes the revenues to the consumers in a
lump sum fashion. This time, per-period pro�ts and the value function on a BGP are given
by

�j (�; t) = �Lj
�
1� ��j

�
and Vj (�; t) =

�Lj

�
1� ��j

�
r�

.

From the free entry condition, the BGP interest rate is pinned down as r�j =

�Lj

�
1� ��j

�
�j=�j , and from the Euler equation, the growth rate is given by

gj =
1

�

�
�Lj�j
�j

�
1� ��j

�
� �j

�
.

Note that taxing pro�ts of the machine producers reduces the value of innovated varieties,
which in turn reduces innovation and growth.

Third, consider the case in which the government taxes (or subsidizes) R&D investment
linearly at rate �R and redistributes (�nances) in a lump-sum fashion. This will change the
R&D arbitrage equation as

�jVj (�; t) =
�j

(1� �R) ,

and consequently, the BGP interest rate is pinned down by rj (t) = �Lj�j

�
1� �Rj

�
=�j and

the growth rate is given by

gj =
1

�

�
�Lj�j
�j

�
1� �Rj

�
� �j

�
.

We note that, the same amount of linear tax applied in various di¤erent forms yield the
same growth rate (and equilibrium path) in this economy. In particular, taxes that discour-
age savings, private sector pro�ts or innovation all reduce the growth rate in this economy.
Note also that, if two countries have di¤erent tax policies or di¤erent discount factors, they
will have di¤erent growth rates and their income per capita levels will rapidly diverge. Then,
according to this model, small di¤erences in policy distortions can explain large income dif-
ferences, suggesting that endogenizing the growth rate may help resolve some of the empirical
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challenges discussed in Chapters 3 and 8. Note, however, that the present model is too sim-
plistic since it ignores all cross-country interactions. As analyzed in the Chapters 18 and 19,
introducing cross-country interactions in goods, �nancial or R&D markets create stabilizing
e¤ects that make the countries grow at rates closer to each other.

Exercise 13.13*

Exercise 13.13, Part (a). An equilibrium is a collection of time paths of aggre-
gate resource allocations, the set of machine varieties whose patents haven�t expired (de-
noted by N1 (t)), the set of machine varieties whose patents expired (denoted by N2 (t)),
quantities, prices and the value function for each machine, and interest rates and wages�

Y (t) ; C (t) ; Z (t) ; X (t) ; N1 (t) ; N2 (t) ,
(px (�; t) ; x (�; t) ; V (�; t)) j�2N1(t); [px (�; t) ; x (�; t)]�2N2(t) ; r (t) ; w (t)

�1
t=0

such that con-

sumers choose consumption and asset holdings optimally, the evolution of patented machines
is determined by free entry in R&D and the expiration of patents, machine producers with
patents set prices to maximize pro�ts, machines with expired patents are produced com-
petitively, the �nal good is produced competitively, and asset and the �nal good markets
clear.

We �rst characterize the static equilibrium allocations for given N1 (t) and N2 (t). The
demand for machines from the �nal good producers is given by x (�; t) = px (�; t)�1=� L. The
machine producers with patents set the monopoly prices. Thus given the isoelastic demand,
we have2

px (�; t) =  = (1� �) and x (�; t) =
�

 

1� �

��1=�
L for � 2 N1 (t) .

The monopolists�per period pro�ts are

� (�; t) =

�
 

1� �

��(1��)=�
�L: (I13.23)

The machines with expired patents are priced at marginal cost, hence we have

px (�; t) =  and x (�; t) =  �1=�L for � 2 N2 (t) .
Total output is therefore given by

Y (t) =
1

1� �L 
�(1��)=�

�
N1 (t) (1� �)(1��)=� +N2 (t)

�
, (I13.24)

and equilibrium wages by

w (t) =
�

1� � 
�(1��)=�

�
N1 (t) (1� �)(1��)=� +N2 (t)

�
.

Note also that the aggregate machine expenditure is given by

X (t) = L �(1��)=�
�
N1 (t) (1� �)1=� +N2 (t)

�
. (I13.25)

We next turn to the dynamic trade-o¤s in this economy. The value function V (�; t) for
machine producers with patents satis�es the HJB equation

r (t)V (�; t) = � (�; t) + _V (�; t)� �V (�; t) , (I13.26)

2In this exercise, we do not impose the normalization assumption  = 1 � � to provide a slightly more
general solution.
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where the last term captures the fact that with a �ow rate of �, the �rm loses the patent and
its monopoly power at which point the value drops to 0. We are interested in equilibria in
which Z (t) > 0 for all t, which implies that the value function is uniquely pinned down from
free entry in R&D as

�V (�; t) = 1.

Using this and the expression for � (�; t) in Eq. (I13:23) to solve Eq. (I13:26), we have that
r (t) is constant at all t and given by

r (t) =

�
 

1� �

��(1��)=�
��L� �.

Consumer optimization gives the Euler equation

_C (t)

C (t)
=
1

�
(r (t)� �) ,

hence the growth rate of consumption is also constant and given by

g =
1

�

"�
 

1� �

��(1��)=�
��L� �� �

#
. (I13.27)

Since consumption grows at a constant rate, we have

C (t) = C (0) exp (gt) . (I13.28)

Next note that the evolution of N1 (t) and N2 (t) are given by

_N1 (t) = �Z (t)� �N1 (t) , with N1 (0) given (I13.29)
_N2 (t) = �N1 (t) , with N2 (0) given,

where the expression �N1 (t) in both equations capture the fact that the patent for each
machine expires at a �ow rate of �. Now, using Eqs. (I13:24), (I13:25), (I13:28), and market
clearing in the �nal good, we have

Z (t) =
1

1� �L 
�(1��)=�

�
N1 (t) (1� �)1=�

�
1

1� � � (1� �)
�
+ �N2 (t)

�
� C (0) exp (gt) .

(I13.30)
Plugging this in (I13:29) gives us a set of di¤erential equations with two variables N1 (t)
and N2 (t) and two initial conditions, which can be solved for a given C (0). Among the
possible choices for C (0), only one gives a stable solution for N1 (t) and N2 (t) where N1
and N2 asymptotically grow at rate g, and this solution satis�es all equilibrium requirements
(the unstable solutions either violate the transversality condition or the resource constraints).
Hence, the equilibrium is saddle path stable and is uniquely characterized by the two di¤er-
ential equations for N1 and N2.

We are interested in the BGP equilibrium, so we conjecture that N1 and N2 grow at the
same constant rate as g. From the di¤erential equation system in (I13:29), we have that the
BGP values of N1 and N2 must satisfy

N1
N2

=
g

�
(I13.31)

Note also that from Eq. (I13:29), we have

Z (t) =
�
_N1 (t) + �N1 (t)

�
=�

= N1 (t) (g + �) =�,
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where the second line uses our BGP conjecture that N1 (t) grows at the constant rate g.
Then, on our conjectured BGP, Eq. (I13:30) can be rewritten

N1 (0) exp (gt)
g + �

�

=

�
1

1� �L 
�(1��)=�

�
N1 (0) (1� �)1=�

�
1

1� � � (1� �)
�
+ �N1 (0)

�

g

�
� C (0)

�
exp (gt) .

Canceling the growing terms exp (gt) from each side and collecting the N1 (0) terms, we have

C (0) = N1 (0)

�
1

1� �L 
�(1��)=�

�
(1� �)1=�

�
1

1� � � (1� �)
�
+ �

�

g

�
� g + �

�

�
,

which characterizes the initial level of consumption. We assume �
 

1� �

��(1��)=�
��L� �

!
(1� �) < �, (I13.32)

so that the described path also satis�es the transversality condition, and�
 

1� �

��(1��)=�
��L� � > �, (I13.33)

so that there is positive growth (which we need to verify our assumption that there is positive
R&D investment in equilibrium).

It follows that when the parametric restrictions in Eqs. (I13:32) and (I13:33) are satis�ed
and the initial values of the technology, N1 (0) and N2 (0), satisfy Condition (I13:31), there
exists a BGP equilibrium in which N1 (t) ; N2 (t) ; C (t) ; Y (t) ; w (t) all grow at the constant
rate g given by Eq. (I13:27). Note also that if the initial levels of N1 (0) ; N2 (0) do not satisfy
Condition (I13:31), then there will be transitional dynamics in this economy: N1 (0) =N2 (0)
ratio will monotonically converge to g=� and the aggregate variables will asymptotically grow
at rate g.

Exercise 13.13, Part (b). We have shown that the BGP growth rate is given by the
expression in (I13:27) hence the value of � that maximizes the growth rate is �� = 0. When
patents expire faster, incentives for innovation are lower, that is, �rms�expected pro�ts are
lower for a given interest rate. To have entry in the R&D sector, the interest rates will have
to decline. With lower interest rates, consumers demand a �atter consumption pro�le and
reduce their savings, which leads to lower investment in R&D and lower growth.

Exercise 13.13, Part (c). We �rst make a couple of observations about the nature
of the distortions in this economy. Note that there are static monopoly distortions in this
economy which reduce net output for a given level of machines N (t). Note also that, as in the
baseline expanding varieties model analyzed in Section 13.1, there are dynamic distortions
since the marginal value of a new technology is higher for the social planner for two reasons.
First, the social planner takes into account the e¤ect of new technologies on both wages and
pro�ts while the equilibrium �rms only care about pro�ts, and second, the social planner
produces a higher net output for a given level of machines (since it avoids the monopoly
distortions). Since the marginal value of a new technology is higher for the planner, the
growth rate in the socially planned economy is also higher than the equilibrium growth rate.

Next, in view of these observations, we note that the e¤ect of patents are two-fold. On the
one hand, increasing � increases the rate at which products become competitive and increases
the static output for a given level of machines. This is best seen in Eq. (I13:24): there is
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a coe¢ cient (1� �)1=� < 1 in front of N1 (t), so for a given level of N (t) = N1 (t) +N2 (t),
total output is increasing in N2 (t). The e¤ect through this channel is welfare improving since
it alleviates some of the static monopoly distortions. On the other hand, as we have seen in
Part (b), increasing � decreases the growth rate in this economy. Since the growth rate in the
economy is less than optimal to begin with (as we have noted in the previous paragraph),
increasing � reduces welfare through this channel.

Depending on consumer preferences one or the other e¤ect may dominate and increasing �
may be welfare improving or welfare reducing. The less patient the consumers are (the higher
the discount rate �) and the lower the intertemporal substitution (the higher �), the more
likely it is that the �rst e¤ect will dominate and increasing � will be welfare enhancing. In this
case, consumers care relatively more about consumption today and they dislike a growing
consumption pro�le, hence they may prefer immediate bene�ts of a more competitive market
to delayed bene�ts of the monopolistic market.

Viewed di¤erently, increasing � is not the best policy to cure the ine¢ ciencies in this
economy. This argument is also forcefully made by Romer (1990). To achieve e¢ ciency, we
need to reduce the distortions through the monopolistic mark-ups but we also need to give
su¢ cient surpluses to the monopolists so they have the right incentives to innovate. When
� = 0, a linear subsidy on the monopolist output (just enough to get the production to
competitive levels) �nanced by a lump-sum tax on the consumers can decentralize the social
planner�s solution.3 However, increasing � is only an imperfect solution and may or may not
be welfare improving. For a discussion along those lines, see also Romer (1987).

Exercise 13.15

Exercise 13.15, Part (a). The equilibrium in this economy is a sequence of aggregate
allocations, aggregate prices, pricing and production decisions for intermediate monopolists

and value functions
�
Y (t) ; C (t) ; Z (t) ; X (t) ; A (t) ; N (t) ; r (t) ; w (t) ;

[px (�; t) ; x (�; t) ; V (�; t)]�2N(t)

�1
t=0

such that the

representative consumer maximizes utility, the competitive �nal good producers maximize
pro�ts taking prices given, the intermediate good monopolists set prices to maximize pro�ts,
the expenditure on R&D and the evolution of the number of varieties is determined by free
entry, and the asset and the �nal good markets clear. We can de�ne a BGP equilibrium as
an equilibrium on which consumption and output grows at a constant rate.

We next state some of these requirements in more detail to highlight their di¤erences
with the baseline continuous time model. Note that the representative consumer now solves
the discrete time problem

max
fC(t);A(t)gt

1X
t=0

�t
C (t)1�� � 1

1� �
s.t. A (t+ 1) = (1 + r (t))A (t) + w (t)� C (t) for all t,

and lim
t!1

A (t)

tY
t0=1

1

1 + r (t0)
� 0.

3Even though this policy is Pareto optimal in the model, in reality it would be di¢ cult to implement and
it may also be undesirable. If we add heterogeneity to the model and assume that the �rms�shares are held by
a small fraction of the population, this policy would most likely increase wealth inequality and may therefore
be undesirable if the social planner has a preference for lower inequality.
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Here r (t) denotes the net rate of return on assets. The asset evolution equation and the
no-Ponzi condition are slightly di¤erent due to the discrete time formulation. The solution
is still characterized by the Euler equation and the transversality condition condition, which
now take the form

C (t)�� = � (1 + r (t))C (t+ 1)�� and (I13.34)

lim
t!1

A (t)

tY
t0=1

1

1 + r (t0)
= 0.

Next, note that the evolution of N (t) is given by the R&D technology evolution equation
in discrete time

N (t+ 1)�N (t) = �Z (t) .

Note that we assume the timing convention that investment in R&D at time t generates
blueprints at time t+ 1. With this convention, the free entry condition can be written as

�
V (�; t+ 1)

1 + r (t+ 1)
� 1 with equality if Z (t) > 0.

Note also that with this timing convention the asset market clearing condition takes the form

A (t) =

Z N(t)

0
V (�; t) d�.

Finally, note that the value function of the monopolist, V (�; t), is the discounted sum of
future pro�ts, i.e.

V (�; t) =
1X
t0=t

� (�; t)
t0Y
s=t

�
1

1 + r (s)

�
: (I13.35)

In the next part, we analyze these conditions in more detail and characterize the equi-
librium path. To avoid notational con�ict, we denote the inverse elasticity of substitution
between intermediate goods as � rather than �, since � refers to the discount factor in this
model. We continue to make the normalization  = 1�� for the marginal cost of producing
a machine.

Exercise 13.15, Part (b). First, we characterize the static equilibrium allocation given
the number of varieties N (t). Intermediate good monopolists choose px (�; t) to maximize
pro�ts given the isoelastic demand from the �nal good sector, which implies

px (�; t) = 1; x (�; t) = L; and � (�; t) = �L. (I13.36)

This shows that the �nal output and the equilibrium wages are given by

Y (t) =
1

1� �N (t)L, and w (t) =
�

1� �N (t) .

The expenditures on machines is given by

X (t) = (1� �)LN (t) .

Note that the static equilibrium allocations are identical to those in the continuous time
model.
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We next turn to the dynamic trade-o¤s in this economy. We characterize a BGP equilib-
rium in which the interest rate r (t) � r� is constant and there is positive growth. From Eqs.
(I13:35) and (I13:36), we calculate V (�; t) as

V (�; t) =
1X
t0=0

�L

(1 + r�)t
0 = �L

1 + r�

r�
.

Since there is positive growth, there is positive investment in R&D and the free entry condition
implies that

V (�; t)

1 + r�
= 1=�.

Putting the last two expressions together, we can solve for the BGP interest rate as r� = ��L.
Using this in the Euler equation (I13:34), we arrive at

C (t+ 1) = (� (1 + r�))1=� C (t) .

Since consumption grows by a factor of (� (1 + r�))1=�, we de�ne

1 + gc � (� (1 + r�))1=� � (� (1 + ��L))1=� ,

hence gc is the one period growth rate of consumption. Note that this implies C (t) =
C (0) (1 + gc)

t. Plugging the equilibrium values for Y (t) ; C (t), X (t) and Z (t) in the resource
constraint Y (t) = C (t) +X (t) + Z (t), we have

1

1� �L =
C (0) (1 + gc)

t

N (t)
+ (1� �)L+ N (t+ 1) =N (t)� 1

�
.

We conjecture a path for N (t) in which N (t+ 1) = N (t) (1 + gc) for all t, that is, N (t)
grows by the same factor as C (t). Plugging the conjectured path into the previous displayed
equation yields

1

1� �L =
C (0)

N (0)
+ (1� �)L+ gc

�
.

Hence for the initial value of consumption

C (0) =

��
1

1� � � (1� �)
�
L� gc

�

�
N (0) ,

the paths [C (t) ; N (t)]t in which both C (t) and N (t) grow at the same rate gc satisfy the
resource constraints for all t. Finally, we make the following parametric restrictions so that
the transversality condition is satis�ed and there is positive growth

(1 + r)�1 (1 + gc) < 1 (or equivalently � (1 + ��L)1�� < 1),

1 + gc > 0 (equivalently, � (1 + ��L) > 1).

Under these parametric restrictions, the path [C (t) ; N (t)]1t=0 that we describe corresponds
to an equilibrium.

Exercise 13.15, Part (c). The equilibrium we have characterized in Part (b) features
constant growth starting at t = 0 which also shows that there are no transitional dynamics.
Starting at any N (0), all variables grow at constant rates and the interest rate is constant
at every point in equilibrium.
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Exercise 13.19

Exercise 13.19, Part (a). In order to characterize the transitional dynamics let us �rst
gather the equations which determine the equilibrium allocation. From the consumer side we
know that the evolution of per capita consumption c(t) has to satisfy the Euler equation

_c(t)

c(t)
=
1

�
(r(t)� �) (I13.37)

and that the transversality condition

lim
t!1

"
exp

�
�
Z t

0
r(s)ds

�Z N(t)

0
V (�; t)d�

#
= 0 (I13.38)

has to be satis�ed. The evolution of the economy�s product varieties is given by the innovation
possibility frontier

_N(t) = �N(t)�LR(t):

Equilibrium on the labor market requires that wages are given by the marginal product of
labor

w(t) =
@Y (t)

@LE
=

�

1� �

Z N(t)

0
x(�; t)1��d�L��1E =

�

1� �N(t);

as in equilibrium x(�; t) = LE(t) for all �. By the same argument, the derived production
function for the �nal good is given by

Y (t) =
1

1� �N(t)LE(t) (I13.39)

and the resources spent on intermediary production are given by

X(t) =

Z N(t)

0
 x(�; t)d� = (1� �)LE(t)N(t):

The resource constraint is therefore given by

Y (t)�X(t) = (2� �)�
1� � LE(t)N(t) = C(t) = L(t)c(t): (I13.40)

Given that only labor is needed in the R&D-process, the free entry condition for the research
sector is given by

�N(t)�V (�; t) � w(t) with equality if LR(�; t) � 0: (I13.41)

This condition re�ects the fact that a researcher employed in research sector � costs the labor
cost given by the current wage rate w(t) and and generates a �ow rate of �N(t)� innovations
which have a value of V (�; t) each. The value function is again implicitly de�ned by the
Hamilton-Jacobi-Bellman equation

r(t)V (�; t)� _V (�; t) = �(�; t) = �LE(t); (I13.42)

where LE(t) denotes the labor force employed in the production of the �nal good.
Let us now consider an equilibrium where the research sectors are active. We will argue

below that this is without loss of generality in this model. With positive research expendi-
tures, the free entry condition contained in (I13.41) has to hold with equality, i.e. we need
that

�N(t)�V (�; t) = w(t) =
�

1� �N(t) for all t: (I13.43)
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As (I13.43) has to hold in all periods, we can di¤erentiate this condition to arrive at

_V (t)

V (t)
= (1� �)

_N(t)

N(t)
:

Substituting this into (I13.42) and rearranging terms, it follows that the equilibrium value
function is given by

V (�; t) =
�LE(t)

r(t)� (1� �) _N(t)N(t)

: (I13.44)

Substituting this back into the free entry condition (I13.43) yields

1

�

�

1� � =
V (�; t)

N(t)1��
=

�

r(t)� (1� �) _N(t)N(t)

LE(t)

N(t)1��
: (I13.45)

From (I13.40) and (I13.37) we furthermore get that

_LE(t)

LE(t)
+

_N(t)

N(t)
=
_L(t)

L(t)
+
_c(t)

c(t)
= n+

1

�
(r(t)� �): (I13.46)

Solving this for the equilibrium interest rate r(t) = �
�
_LE(t)
LE(t)

+
_N(t)
N(t)

�
+� and substituting into

(I13.45) yields
�

�
�
_LE(t)
LE(t)

+
_N(t)
N(t)

�
+ �� (1� �) _N(t)N(t)

LE(t)

N(t)1��
=
1

�

�

1� � : (I13.47)

The growth rate of technological progress is determined by the innovation possibilities fron-
tier, i.e. is given by

_N(t)

N(t)
= �

LR(t)

N(t)1��
= �

L(t)� LE(t)
N(t)1��

; (I13.48)

where the last equality uses the market clearing condition on the labor market. (I13.47) and
(I13.48) are two di¤erential equations in the two unknowns N(t) and LE(t), which (together
with the initial condition N(0) and the transversality condition (I13.38)) we can solve for
[N(t); LE(t)]

1
t=0. With these two paths at hand, interest rates are found from (I13.46),

(I13.40) determines the evolution of consumption and the value function can be calculated
from (I13.43). This concludes the characterization of the equilibrium in this economy.

Let us now consider the BGP. Along the BGP the number of varieties N(t) grows at a
constant rate g�. (I13.48) then implies that

_LR(t)

LR(t)
= (1� �)g�; (I13.49)

which in turn implies that
_LR(t)

LR(t)
=
_LE(t)

LE(t)
=
_L(t)

L(t)
= n:

From (I13.49) we can therefore determine the BGP growth rate of varieties as

g� =
n

1� �: (I13.50)

Furthermore we get from (I13.40) that aggregate consumption grows at rate

_C(t)

C(t)
=
_LE(t)

LE(t)
+

_N(t)

N(t)
= n+ g�;
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so that per capita consumption grows at g� = n
1�� . The Euler equation hence determines

equilibrium interest rates as

r� = �g� + � = �
n

1� � + �: (I13.51)

Finally we have to make sure that the transversality condition (I13.38) is satis�ed. From
(I13.44) we know that V (t) grows at rate n. Hence,

lim
t!1

"
exp

�
�
Z t

0
r(s)ds

�Z N(t)

0
V (�; t)d�

#
= lim

t!1
exp [(�r� + n+ g�)t] = 0

which (using (I13.51)) requires that

(1� �)g� + n = 2� � � �
1� � n < �: (I13.52)

This concludes the characterization of the BGP equilibrium.
Let us now turn to the transitional dynamics. First of all we will show that this economy

does feature transitional dynamics. To prove this, suppose by contradiction this is not the
case, i.e. growth is always balanced. First of all note that the innovation possibilities frontier
(I13.48) and the BGP growth rate (I13.50) imply that

g� =
n

1� � = �
LR(t)

N(t)1��
;

so that along the BGP we have

N(t)1��

LR(t)
=

�
N1��

LR

�BGP
=
1� �
n

� (I13.53)

i.e. N(t)1��

LR(t)
is constant along the BGP.

On the other hand however, the free entry condition (I13.45) needs to be satis�ed, i.e.

1

�

�

1� � =
�

r� � (1� �)g�
LE(t)

N(t)1��
=

�

r� � (1� �)g�
L(t)� LR(t)
N(t)1��

;

so that �
LR
N1��

�BGP
=

�
L

N1��

�BGP
� 1

�

r� � (1� �)g�
1� � : (I13.54)

Using (I13.53) and (I13.54) we can solve for
�

L
N1��

�BGP
as�

L

N1��

�BGP
=
1

�

"
n

1� � +
(� + �� 1) n

1�� + �

1� �

#
; (I13.55)

where we used (I13.50) and (I13.51) to solve for g� and r�. Hence, as long as the initial
conditions L(0) and N(0) do not start at their BGP ratio given in (I13.55), there will be
transitional dynamics.

To �nally characterize the transitional dynamics, we will just present the intuition. Sup-

pose that N(0)
1��

L(0) >
�
N1��

L

�BGP
. From (I13.53) we know that the share of researchers LRL to

generate a growth rate of g� is increasing in N(0)1��

L(0) . So consider a path where LR
L is constant

but larger than
�
LR
L

�BGP
in order to generate a growth rate of g�. Labor market clearing
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requires that LE
L is also constant and smaller than

�
LE
L

�BGP
. Along such a path, consump-

tion grows at a constant rate as both N(t) and LE(t) grow at rates g� and n� respectively.
This however shows that interest rates are still given by r� so that the free entry condition
is violated (i.e. it is slack) as per-period pro�ts are decreasing in LE(t). Hence, this cannot
occur in equilibrium. To satisfy both the free entry condition and to clear the labor market
we will therefore have that the share of researchers will be smaller and the share of production
workers will be higher. This increases the value of a patent via the market size e¤ect until the
free entry condition is satis�ed. As N(t) initially grows slower than g�, N(t)

1��

L(t) decreases over

time. Hence, N(t)
1��

L(t) will converge to its BGP level
�
N1��

L

�BGP
. Once this level is reached,

the economy will be on the balanced growth path characterized above. Economically, the
transitional dynamics are as follows. At t = 0, the economy is characterized by technology
abundance in the sense that N(0) is relatively big (compared to L(0)). In equilibrium the
research sector will therefore be relatively small compared to the production sector. Over
time, the technology level deteriorates (compared to L(t)) so that the share of production
workers will be decreasing along the transition path. Once the BGP is reached, labor shares
will be constant across the two sectors and the economy will grow at a constant rate.

To conclude the characterization of the equilibrium in this economy we �nally have to
show that it is without loss of generality to assume that the research sector will be active.
In particular we will show that there cannot be an equilibrium where the research sector
will always be inactive. So suppose there is such an equilibrium. Then it is the case that
LR(t) = 0 and _N(t) = 0 for all t. By (I13.39) output grows at rate n as LE(t) = L(t). As the
�nal good market has to clear, per capita consumption is constant as aggregate consumption
also has to grow at rate n (see (I13.40)). Hence, the Euler equation in (I13.37) requires that
r(t) = �, i.e. interest rates are constant. From (I13.42) we know that the value function is
given by

�V (�; t)� _V (�; t) = �LE(t) = �L(t);

i.e. V (�; t) also grows at rate n. Hence, _V (�; t) = nV (�; t) so that

V (�; t) =
�

�� nLE(t) =
�

�� nL(0) exp(nt): (I13.56)

In the proposed equilibrium with no research, the free entry condition has to be slack in all
periods, i.e.

V (�; t) � 1

�

�

1� �N(t)
1�� =

1

�

�

1� �N(0)
1��; (I13.57)

where the last equality uses that _N(t) = 0 for all t. This however is a contradiction as (I13.56)
shows that V (�; t) grows at rate n so that there will be ~t such that (I13.57) will be violated
and research becomes pro�table. This shows that there is no equilibrium where there will
never be research.

Note however that in contrast to the baseline model of expanding varieties it is possible
that there will not be research at t = 0. Intuitively, if N(0) is very high and L(0) is very
low, there are only little incentives to employ researchers as the innovation �ow rates are low
(stemming from the high N(0)) and the returns of the patent are low as LE(0) � L(0) so that
the size of the market is small. The pro�tability of patents however improves over time so
that at some point research will start to be pro�table. Hence it is without loss of generality
to simply assume that N(0) and L(0) are such that there will be research in equilibrium.
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Exercise 13.19, Part (b). Let us now consider the Pareto optimal allocation. That
the equilibrium is not necessarily Pareto optimal follows from the fact that (a) the producers
of machines are not competitive and (b) that the model with knowledge spillovers features
an externality in that �rms do not internalize the e¤ect of their research on the economies�
future innovation possibilities. The problem of the social planner is given by

max
[c(t);LR(t);LE(t);[x(�;t)]

N(t)
�=1 ;N(t)]

1
t=1

Z 1

0
exp(�(�� n)t)c(t)

1�� � 1
1� �

subject to the constraints

Y (t) = X(t) + c(t)L(t)

Y (t) =
1

1� �

Z N(t)

0
x(�; t)1��d�LE(t)

�

X(t) =

Z N(t)

0
 x(�; t)d�

_N(t) = �N(t)�LR(t)

L(t) = LE(t) + LR(t):

Again we can simplify the problem by �rst solving for the optimal allocation of machines
[x(�; t)]

N(t)
�=1 for a given N(t) and LE(t). This subproblem is just given by

max
[x(�;t)]

N(t)
�=1

1

1� �

Z N(t)

0
x(�; t)1��d�LE(t)

� �
Z N(t)

0
 x(�; t)d�;

i.e. the social planner allocates [x(�; t)]N(t)�=1 to maximize net output. The solution is given by

xS(�; t) =  
� 1
�LE(t) � (1� �)�

1
�LE(t);

so that
Y (t)�X(t) = (1� �)�1=��N(t)LE(t):

Substituting this into the program above, the social planner�s problem reduces to

max
[c(t);LE(t);N(t)]

1
t=1

Z 1

0
exp(�(�� n)t)c(t)

1�� � 1
1� �

s.t. c(t)L(t) = (1� �)�1=��N(t)LE(t)
_N(t) = �N(t)�(L(t)� LE(t))

De�ning the share of people employed in the production sector by sE(t) � LE(t)
L(t) and substi-

tuting the expression for c(t), the current value Hamiltonian is given by

Ĥ(N(t); sE(t); �(t)) =
((1� �)�1=��N(t)sE(t))1�� � 1

1� � + �(t)�N(t)�L(t)(1� sE(t))

where sE(t) is the control and N(t) the state variable. The su¢ cient conditions for a max-
imum are the �rst-order conditions and the transversality condition where the former are
given by

ĤsE = [(1� �)�1=��N(t)]1��sE(t)�� � �(t)�N(t)�L(t) = 0 (I13.58)

ĤN = [(1� �)�1=��sE(t)]1��N(t)�� + ���(t)N(t)��1L(t)(1� sE(t)) (I13.59)

= (�� n)�(t)� _�(t):
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Substituting (I13.58) into (I13.59) and rearranging terms yields

�
L(t)

N(t)1��
[(1� �)sE(t) + �]� (�� n) = �

_�(t)

�(t)
: (I13.60)

In order to compare the Pareto optimal allocation with the equilibrium allocation it is conve-
nient to derive an equation akin to the consumer�s Euler equation. Substituting the de�nition
of per capita consumption into (I13.58) yields

(1� �)�1=��c(t)�� = �(t)�N(t)��1L(t).

Di¤erentiating this expression with respect to time yields the Euler equation of the social
planner�s problem as

_c(t)

c(t)
=

1

�
(� _�(t)
�(t)

+ (1� �)
_N(t)

N(t)
� n)

=
1

�
(�

L(t)

N(t)1��
[(1� �)sE(t) + �]� �+ (1� �)

_N(t)

N(t)
);

where the second line substituted (I13.60). From the innovation possibilities frontier we know
that

_N(t)

N(t)
= �

LR(t)

N(t)1��
= �

L(t)

N(t)1��
(1� sE(t)); (I13.61)

so that the Euler equation simpli�es to

_c(t)

c(t)
=

1

�
(�

L(t)

N(t)1��
[(1� �)sE(t) + �]� �+ (1� �)�

L(t)

N(t)1��
(1� sE(t)))

=
1

�
(�

L(t)

N(t)1��
� �): (I13.62)

Let us also consider a solution with balanced growth, i.e. where consumption grows at a
constant rate. Like in the analysis for the equilibrium above, the solution to the problem will
converge to the BGP. From (I13.62) this also implies that L(t)

N(t)1��
is constant, so that the

growth rate of technology gS is the same as in the equilibrium allocation, namely

gS =
n

1� �:

From the innovation possibilities frontier (I13.61) this implies that sE(t) is constant, i.e.
sE(t) = sSE ; so that (using the resource constraint)

cS(t) = (1� �)�1=��N(t)sE(t) = (1� �)�1=��sSEN(t):

This shows that per capita consumption in the planner�s problem cS(t) also grows at the rate
of technological progress gS on the BGP.

This however does not imply that the equilibrium is Pareto e¢ cient. First of all, the
growth rate along the transition path will typically di¤er between the social planner�s solution
and the equilibrium. More importantly though, we can show that the equilibrium normalized

technology level
�
N1��

L

�BGP
is always lower than the technology level

�
N1��

L

�SP
chosen by
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the social planner. To see this claim, note that Eqs. (I13.62) and (I13.55) imply�
N1��

L

�SP
=

�

� n
1�� + ��

N1��

L

�BGP
=

�

n
1�� +

(�+��1) n
1��+�

1��

;

which already shows that the equilibrium allocation does not coincide with the social plan-

ner�s solution. Comparing
�
N1��

L

�SP
with

�
N1��

L

�BGP
, we furthermore see that the social

planner�s normalized technology level is higher whenever

�
n

1� � + � <
n

1� � +
(� + �� 1) n

1�� + �

1� � :

Simple algebra establishes that this is the case whenever

(1� �) n

1� � < �+
1

�

n

1� ��:

Recall that the parametric restriction for the transversality condition (I13:52) requires (1 �
�) n
1�� < � � n, which implies that the previous displayed equality is always satis�ed. This

proves our claim the the steady state level of normalized technology,
�
N1��

L

�
, is always higher

in the social planner�s solution. Intuitively, similar to the baseline expanding varieties model,
the social planner avoids the static monopoly distortions and internalizes the bene�ts of
innovation on future workers, which induces her to employ more labor in R&D. In this model
this leads to a higher level of technology (instead of a higher growth rate). Additionally,
the social planner also internalizes the positive knowledge spillovers (the N (t)� term in the
R&D technology equation), which works in the same direction. Hence, the equilibrium level
of technology (relative to the labor force) on the BGP is ine¢ ciently low. The distortions
in this economy are the same as the distortions in the original Romer (1990) model. Here
they imply that the equilibrium level of technology is lower than optimal, while in the Romer
(1990) model they imply that the equilibrium growth rate is lower. The reason why the
distortions have growth consequences in the Romer (1990) model and only level di¤erences
in this speci�cation is, that this model assumes decreasing returns to current technology in
the research process (i.e. � < 1), whereas Romer (1990) considers the case constant returns
� = 1. For an interesting discussion about the growth e¤ects of di¤erent speci�cations of the
innovation possibilities frontier, we also refer to Rivera-Batiz and Romer (1991).

Exercise 13.19, Part (c). Let us now analyze the e¤ect of policy on the equilibrium
allocation. As both policy interventions only a¤ect the research �rms, we can directly focus
on their decision problem. Consider �rst a subsidy to research. In particular, suppose that
the government subsidizes research by paying each research �rm a fraction # of the wage bill
they would have to pay. Hence, the e¤ective wage research �rms have to pay is given by

wR(t) = (1� #)w(t):

The free entry condition into research then reads

�N(t)�V (�; t) = wR(t) = (1� #)w(t) = (1� #) �

1� �N(t); (I13.63)
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where the value function is still given by

V (�; t) =
�LE(t)

r(t)� (1� �)g(t) : (I13.64)

Along the BGP, interest rates are constant and the number of varieties grows at a constant
rate g, so that from (I13.63) and (I13.64) we get that

�LE(t)

r � (1� �)g�N(t)
� = (1� #) �

1� �N(t);

so that (as along the BGP, LE(t) still grows at rate n) the subsidy does not have an e¤ect
on the economy�s growth rate, which is still given by

_N(t)

N(t)
= g� =

n

1� �:

Equilibrium interest rates are not a¤ected by the subsidy either, as the Euler equation still
requires that

r� = �g� + � = �
n

1� � + �:

By again denoting LE(t) = sEL(t) (where sE and sR = 1� sE are constant along the BGP),
the crucial two equations to determine the BGP are the free entry condition (I13.63) and the
innovation possibilities frontier

�

r� � n
L

N1�� sE =
1

�
(1� #) �

1� � (I13.65)

�
L

N1�� sR = g� =
n

1� �; (I13.66)

where we omitted the time arguments in the L
N1�� term to stress that this ratio is constant

along the BGP. As sR = 1�sE , (I13.65) and (I13.66) are two equations in the two unknowns
sE and L

N1�� . Substituting for
L

N1�� yields

�

r� � n
n

1� �
1

�

sE
sR

=
1

�
(1� #) �

1� �
which we can solve for

sE
1� sE

=
(1� #)(1� �)

n

r� � n
1� � :

Hence we get that
@sE
@#

= �(1� �)
n

r� � n
1� � (1� sE)

2 < 0;

i.e. the BGP share of production workers is decreasing in the subsidy. This immediately
implies that the fraction of researchers sR is increasing in the subsidy. Somewhat more
interestingly however, (I13.66) shows that L

N1�� sR is constant along the BGP so that an
increase in the BGP share of researchers sR decreases the BGP ratio L

N1�� , i.e. after the
subsidy is implemented and the economy will have reached the new BGP, the (normalized)

technology level N(t)
1��

L(t) will be relatively higher (compared to the old steady state). This
also informs us about the transitional dynamics. Suppose the economy settled in a BGP and
the government implements the wage subsidy for researchers. For the free entry condition to
be satis�ed, the share of production workers will decrease. With a higher share of researchers
being employed in the research sector, the growth rate of N(t) will be higher than the BGP
growth rate g� and L(t)

N(t)1��
declines over time. After a while, the economy reaches its new
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BGP ratio L(t)
N(t)1��

, which is lower than before. To make sure that the growth rate of the
economy is still given by g�, the share of researchers will be higher. Hence the subsidy induces
a temporary increase in the growth rate of technology and causes a long-run reallocation
between workers and researchers in the labor force.

Consider now the policy of patent expiration. With patents expiring at some constant
rate �, the value function will solve the new HJB equation

r(t)V (�; t)� _V (t) = �LE(t)� �V (�; t); (I13.67)

where the new term on the RHS accounts for the fact that with a �ow rate of �, the patent
is lost and competition will reduce the value of the blueprint to zero. Along the BGP, the
value function from (I13.67) is given by

V (�; t) =
�LE(t)

r + �� n;

so that the free entry condition into research reads

�N(t)�V (�; t) = �N(t)�
�LE(t)

r + �� n = w(t) =
�

1� �N(t):

This again shows that the growth rate of varieties will be given by g = n
1�� and the free entry

condition and innovation possibilities frontier reduce to
�

r + �� nsE
L

N1�� =
1

�

�

1� �

�
L

N1�� sR = g� =
n

1� �:

An analysis similar to above establishes that
@sE
@�

> 0

i.e. the higher the rate at which patens expire, the lower the share of workers employed in
the research sector. As this implies that sR will decrease, the new BGP technology ratio
L

N1�� will be higher, i.e. the technology level N(t) will relatively decline. This is again an
intuitive results. Owning a patent that expires is of course less valuable. At a given wage
rate w(t), there will therefore be less incentives to do research. To induce research activity,
the value of the patent conditional on survival has to increase. This is achieved by allocating
a larger share of workers in the production sector, which increases the demand for machines
and therefore monopolistic pro�ts.

Hence, in contrast to the baseline endogenous growth model, policy does not a¤ect the
growth rate of the economy. The reason is the di¤erence in the innovation possibilities frontier.
By introducing limited technological spillovers, the growth rate of the economy along the BGP
is entirely determined by the population growth rate and the degree of decreasing returns to
current knowledge N(t). Policy then only a¤ects the allocation of researchers and workers in
the labor market and the BGP value of technology N1��=L. The BGP growth rate however
is independent of policy variables. Again, Romer (1990) shows these policy considerations
have similar e¤ect on the growth rate if � = 1.

Exercise 13.22

Exercise 13.22, Part (a). An equilibrium in this economy are consumption levels, ma-
chine expenditures and research expenses [C(t); X(t); Z(t)]1t=0, wages, prices for intermediary

products and value functions [w(t); [px(�; t)]N(t)�=1 ; [V (�; t)]
N(t)
�=1 ]

1
t=0 and interest rates [r(t)]

1
t=0
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such that markets clear, the allocation is consistent with utility maximization of the rep-
resentative household, �rms maximize pro�ts, the evolution of N(t) is consistent with the
innovation possibilities frontier

_N (t) = �N (t)�� Z (t) ; (I13.68)

and the value function is consistent with free entry.
Note that there are negative externalities in innovation, that is, the greater the number

of machines, the more costly it is to innovate a new machine. This speci�cation for the
R&D technology corresponds to a view where innovation ideas are driven from a common
pool and innovation today creates a �shing out e¤ect and makes future innovations more
di¢ cult. Except for the innovation possibilities frontier the structure of this economy is
entirely analogous to the baseline model of endogenous growth. As machine demand will be
isoelastic, the monopolistic price of intermediaries is again given by

px(�; t) =
 

1� � = 1;

where the last equality follows from our normalization  = 1 � �. The labor market is
competitive so that wages are given by the marginal product of labor which is just

@Y (t)

@L
=

�

1� �

Z N(t)

0
x(�; t)1��d�L��1 =

�

1� �N(t);

where we used that x(�; t) = L(t) for all �. To derive the free entry condition in this economy
we again have to derive the value function. As per period pro�ts of research �rms are still
given by

�(�; t) = �L(t) (I13.69)
and the value function solves the Hamilton-Jacobi-Bellman equation

r(t)V (�; t)� _V (�; t) = �(�; t); (I13.70)

we get that along the BGP (where interest rates are constant and equal to r�) the value
function is given by

V (�; t) =
�(t)

r� � g�
=
�L (t)

r� � n;

where the last equality follows since pro�ts grow at the same rate n as L (t) (see (I13.69)).
Using (I13.68) the free entry condition in this economy is given by

�N(t)��V (�; t) = �N(t)��
�L(t)

r� � n � 1 with equality if Z (t) > 0. (I13.71)

To understand (I13.71), note that one unit of the �nal good invested in research yields a �ow
rate of innovation equal to �N(t)�� and each innovation has a value of V (�; t).

Exercise 13.22, Part (b). Now consider the case where population is constant, i.e.
n = 0 and L(t) = L. In that case, the free entry condition (I13.71) requires that on the BGP
we have

�N(t)��
�L

r�
� 1 with equality if Z (t) > 0. (I13.72)

If this condition is satis�ed with strict inequality, then we have Z (t) = 0 and N (t) remains
constant. If it is satis�ed with equality, then N (t) is also constant at the level (��L=r�)1=�.
This shows that along the BGP we have

N(t) = N� �
�
�
�L

r�

�1=�
. (I13.73)
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Hence, there will be no growth and total output is constant. From the consumer�s Euler
equation we then get that r� = � as consumption has to be constant too. That consumption
is constant follows from the fact that (I13.68) implies that Z(t) = 0 once N(t) reaches its
long-run level determined by (I13.73), so that from the resource constraint, consumption is
given by

Y (t)�X(t) = �(2� �)
1� � N(t)L = C(t):

Hence, as long as there is no population growth, the economy will not be able to generate
sustained growth. The reason is the following: with population being constant, the pro�ts
from intermediary producers are constant over time. However, R&D gets more and more
expensive as the �ow rate of innovation is decreasing in the current level of varieties. Hence,
there is no endogenous growth in this model as long as the population is constant.

Note that whenN(0) < N�, N (t) will converge to N�, as in contrast to the baseline model
of the lab equipment formulation, this economy will have transitional dynamics. Along the
transition path, N (t) will gradually increase to N�, while the interest rate will gradually
decline to r� = �. Note also that when N (0) > N�, the free entry condition in (I13:72) will
be slack. However, since there is no depreciation of machines, N (t) will remain at the higher
level and thus this economy has a continuum of steady states.

Exercise 13.22, Part (c). Consider now the case where the population grows over time
at rate n. Again we can use the free entry condition to determine the joint evolution of N(t)
and L(t). On an equilibrium with positive R&D, the free entry condition (I13.71) will be
satis�ed with equality, so that

1 = �N(t)��V (�; t): (I13.74)

Di¤erentiating this condition with respect to time yields

_V (�; t)

V (�; t)
= �

_N(t)

N(t)
= �gN (t): (I13.75)

From the HJB equation (I13.70) we therefore get that

V (�; t) =
�(�; t)

r(t)� _V (�;t)
V (�;t)

=
�L(t)

r(t)� �gN (t)
:

Along the BGP interest rates are constant and N(t) grows at a constant rate gN . Hence,
V (�; t) is given by V (�; t) = �L(t)

r��gN , so that

_V (�; t)

V (�; t)
=
_L(t)

L(t)
= n.

Hence, (I13.75) implies that
_N(t)

N(t)
= gN (t) =

n

�
> 0: (I13.76)

The reason why the economy now generates sustained growth is precisely that research be-
comes more valuable over time as population growth increases per period pro�ts (by the usual
market size e¤ect). This counteracts the fact that research becomes more costly due to the
congestion e¤ects N(t)��. It is still the case that total output is given by

Y (t) =
1

1� �

Z N(t)

0
x(�; t)1��d�L(t)� =

1

1� �N(t)L(t);
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so that

gY =
_Y (t)

Y (t)
=

_N(t)

N(t)
+
_L(t)

L(t)
=
1 + �

�
n:

Similarly we can show that research expenditures Z(t) and total consumption expenditures
C(t) = c(t)L(t) grow at the same rate. To see this, note that from from the innovation
possibilities frontier (I13:68) and Eq. (I13.76) we have

_N(t)

N(t)
=
n

�
= �

Z(t)

N(t)1+�
:

Hence, Z(t)
N(t)1+�

has to be constant, so that

_Z(t)

Z(t)
= (1 + �)

_N(t)

N(t)
= (1 + �)

n

�
= gY ;

i.e. Z(t) is proportional to Y (t). Therefore we can write Z(t) = zY (t) = z 1
1��N(t)L(t), so

that the resource constraint implies

C(t) = Y (t)�X(t)� Z(t)

=

�
�(2� �)� z

1� �

�
N(t)L(t):

This shows that aggregate consumption is also proportional to N(t)L(t), i.e. grows at rate

gC =
_N(t)

N(t)
+
_L(t)

L(t)
=
n

�
+ n =

1 + �

�
n;

and per capita consumption grows at the same rate as the number of varieties N(t), that is

gc =
n

�
=
1

�
(r� � �); (I13.77)

where the last equality is simply the Euler equation. Note that the described path will
correspond to a BGP equilibrium with positive growth if

0 <
n (1� �)

�
< �� n,

where the second inequality ensures that the transversality condition holds.
Note that there are transitional dynamics in this economy. In particular, (I13.74) and

(I13.77) imply that on a BGP, we have

N (t)�

L (t)
=

��

r� � n =
��

�gc + �� n
=

��

n
�
�
� � 1

�
+ �� n

=

�
N�

L

�BGP
: (I13.78)

Hence, if N (0)� =L (0) ratio is below this level, that is, the economy starts with a low level
of technology relative to its population, then N (t) will initially grow faster than n=� and
N (t)� =L (t) will gradually increase towards its BGP value given in (I13.78). Intuitively,
the economy initially has higher incentives to innovate (since the diminishing returns to
innovation, N (t)��, have not kicked in yet) and grows faster along the transition path.

Finally, note that the equilibrium is not Pareto optimal, but the socially planned economy
does not always feature higher growth than the equilibrium allocation. In this model, there are
both monopoly distortions and negative technological externalities in innovation. Without
the technology externalities, monopoly distortions would make the equilibrium grow at a
slower rate, because entrants do not capture the entire surplus of the innovation. However,
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the technological externalities create an opposing force, since each innovating �rm fails to
take into account the fact that it is making innovation for future �rms more di¢ cult. A social
planner will internalize this e¤ect and thus may want to slow down innovation and growth.4

Exercise 13.24

Exercise 13.24, Part (a). We �rst characterize the static equilibrium for a given num-
ber of machines N (t) and LE (t) employed in the production sector. In particular, we calcu-
late the aggregate variables Y (t) ; w (t) and �rm pro�ts � (�; t) for a given level of N (t) and
LE (t), which we then use to consider the dynamic trade-o¤s in this economy.

Characterization of the Static Equilibrium for given N (t) and LE (t). We denote
by p (�; t) the price of the monopolist. We normalize the price of the �nal good to 1, i.e.
pY (t) = 1 for each period. Final good �rms are competitive hence they solve

max
fy(�;t)gN(t)�=0

"Z N(t)

0
y (�; t)� d�

#1=�
�
Z N(t)

0
y (�; t) p (�; t) d�.

The �rst-order condition for y (�; t) gives the isoelastic demand for intermediate goods

y (�; t) = p (�; t)�1=(1��) Y (t) . (I13.79)

We assume � 2 (0; 1) so that the demand elasticity for each monopolist, 1= (1� �), is be-
tween (1;1), since otherwise the monopolist either charges an in�nite price or shuts down
production. Note also that the ideal price index (the unit cost of producing the �nal good)
is equal to the price of the �nal good, which is normalized to 1, that isZ N(t)

0
p (�; t)��=(1��) d� = 1. (I13.80)

Note that the intermediate monopolists maximize pro�ts, i.e. they solve the problem

max
p(�;t)

y (�; t) (p (�; t)� w (t)) ,

where y (�; t) is given by the isoelastic demand in Eq. (I13:79). The optimal monopoly price
is

p (�; t) =
1

�
w (t) , (I13.81)

i.e. each monopolist charges a constant markup over its marginal cost. Plugging in the prices
from Eq. (I13:81) in the ideal price index equation (I13:80), we have

w (t) = �N (t)(1��)=� . (I13.82)

In other words, wages in this economy are uniquely pinned down by the number of varieties.
Given that each �rm charges the same price (cf. Eq. (I13:81)), the demand for each �rm

is also the same (cf. Eq. (I13:79)), consequently labor employed by each �rm is also the
same. Hence, if the total labor employed is LE (t), we have

y (�; t) = l (�; t) =
LE (t)

N (t)
. (I13.83)

4Analyzing the social planner�s problem shows that the number of varieties in the social planner�s al-
location asymptotically grows at the same constant rate n=�, but it may grow slower than the equilibrium
allocation along the transition path to the BGP.
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Each �rm�s per period pro�ts are then given by

� (�; t) = y (�; t) (p (�; t)� w (t))

=
LE (t)

N (t)

1� �
�

w (t)

= (1� �)LE (t)N (t)(1�2�)=� , (I13.84)

where the last line substitutes from Eq. (I13:82). Substituting Eq. (I13:83) also gives an
expression for the �nal output,

Y (t) =

"Z N(t)

0
y (�; t)� d�

#1=�
= LE (t)N (t)

(1��)=� . (I13.85)

Note that the output is linearly increasing in labor employed, and is also increasing (nonlin-
early) in the number of varieties. This completes our characterization of the static equilib-
rium.

Characterization of the Dynamic Equilibrium.We conjecture a BGP equilibrium
on which LE (t) = L�L�R is constant, r (t) = r� is constant and N (t) grows at a constant rate
gN . Note that this already implies by Eqs. (I13:82) and (I13:85) that wages and output also
grow at the same rate at our conjectured BGP (albeit at a di¤erent constant rate). Recall
that the value function V (�; t) for �rm � at time t can be expressed as the discounted sum
of future pro�ts

V (�; t) =

Z 1

t
exp

�
�r�

�
t0 � t

��
�
�
�; t0

�
dt0. (I13.86)

Note also that by Eq. (I13:84), pro�ts grow (or shrink) at the constant rate gN (1� 2�) =�.
Hence the value function can be solved from the previous integral as

V (�; t) =
� (�; t)

r� � gN (1� 2�) =�
(I13.87)

=
(1� �)L�EN (t)

(1�2�)=�

r� � gN (1� 2�) =�
, (I13.88)

where the second line substitutes the expression for pro�ts from Eq. (I13:84).5 In particular,
the value function in this economy also grows at the same rate as pro�ts gN (1� 2�) =�.

We next consider the free entry condition, which, in this economy takes the form

�N (t)� V (�; t) = w (t) . (I13.89)

Using the fact that � = 1 for this part and substituting the expressions for V (�; t) from
(I13:88) and w (t) from Eq. (I13:82), we have

�N (t)
(1� �)L�EN (t)

(1�2�)=�

r� � gN (1� 2�) =�
= �N (t)(1��)=�

�
(1� �) (L� L�R)
r� � gN (1� 2�) =�

= �, (I13.90)

which shows that a BGP equilibrium is possible. Eq. (I13:90) provides a relation between
the growth rate gN , the interest rate r� and the share of labor employed in production L�E .

5This expression could also be derived using the Hamilton�Jacobi-Bellman equation

r (t)V (�; t) = � (�; t) + _V (�; t) ,

which is essentially a convenient way to represent the integral in Eq. (I13:86).
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Note how the growing terms canceled out of the innovation trade-o¤. In this economy, the
value of new blueprints grow (or shrink) at rate w (t) =N (t) and new blueprints are created
by R&D labor. The externalities in the R&D technology are chosen at exactly the right level
(proportional to N (t)) so that the cost of R&D also grows at rate w (t) =N (t), hence the
innovation incentives are balanced.

Next, note that the R&D technology _N = �NLR provides another expression for gN

gN = �L�R. (I13.91)

Plugging this value of gN in Eq. (I13:90), we get

�
(1� �) (L� L�R)

r� � �L�R (1� 2�) =�
= �. (I13.92)

Note also that that in this economy all output is consumed (output is not an input to any
production process) hence market clearing for the �nal good implies C (t) = Y (t). From Eq.
(I13:85), Y (t) grows at rate gN (1� �) =�, hence C (t) also grows at this rate. Then, the
Euler equation implies

gN
1� �
�

=
1

�
(r� � �) = �L�R

1� �
�

, (I13.93)

where the second equality uses Eq. (I13:91). Note that Eqs. (I13:92) and (I13:93) constitute
2 equations in two unknowns L�R; r

�. These equations characterize the dynamic trade-o¤
in this economy, that is, they characterize how labor is allocated between production and
research so as to balance consumer�s preferences [cf. Eq. (I13:93)] and the value from further
innovation [cf. Eq. (I13:92)]. The equations have a unique solution given by

L�R =
(1� �)L� ��=�
� (1� �) + � (I13.94)

and the growth rate of varieties is

gN =
� (1� �)L� ��
� (1� �) + � . (I13.95)

The growth rate of output (and consumption) is given by gC � gN (1� �) =�. The interest
rate can also be solved as

r� =
�� 1��� L+ �

1���

� + �
1��

.

Finally, we have to make assumptions on parameters such that growth is positive and the
transversality condition holds. For positive growth, we assume

(1� �)L > ��=�

and to satisfy the transversality condition limt!1 exp (�r�t)N (t)V (�; t) = 0, we assume
r� > gN + gV (or equivalently, gC (1� �) < �), which gives

�L�R
1� �
�

(1� �) < �.

These assumptions jointly also ensure that L�R in Eq. (I13:94) lies in (0; L) so that the
equilibrium path above is well de�ned. It can then be veri�ed that the path we have described
is an equilibrium. In equilibrium, starting at any N (0), a constant share of labor L�R is
employed in R&D, N (t) grows at a constant rate gN , and C (t) = Y (t) and w (t) grows at
the constant rate gC = gN (1� �) =�, where L�R and gN are given in terms of parameters
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as before. Moreover, this path is an equilibrium starting with any N (0) hence there are no
transitional dynamics.

Note from Eq. (I13:95) that the long run growth rate in this economy increases with L
and decreases with �. The growth rate increases in L due to two e¤ects that work in the
same direction. The �rst e¤ect is a standard market size e¤ect: the larger L, the larger
the population employed in production, the larger pro�ts (cf. Eq. (I13:84)) and the larger
the incentives for innovation, leading to a higher growth rate gN . The second e¤ect is that
since the R&D sector also uses labor, with a larger L, a larger population can be employed in
research without increasing wages (the cost of R&D), which leads to a higher growth rate. The
growth rate decreases in �, the inverse of the elasticity of intertemporal substitution. When
consumption is less substitutable between today and tomorrow, consumers prefer a �atter
consumption pro�le for a given interest rate, which reduces savings and the investment in
R&D.

Exercise 13.24, Part (b). We claim that there cannot be a BGP equilibrium in which
the interest rate is constant and the number of varieties grow at a constant rate. Suppose,
to reach a contradiction, that there is such a BGP. The R&D technology equation, LR (t) =�
_N (t) =N (t)

�
=� = L�R, implies that the labor employed in R&D is also constant. Then, the

analogue of Eq. (I13:90) applies to this economy, that is, we have

�
(1� �) (L (t)� L�R)
r� � gN (1� 2�) =�

= �. (I13.96)

This equation cannot be satis�ed for all t when population grows, which yields a contradic-
tion and proves that there does not exist a BGP. Intuitively, the value of a machine grows
faster than the cost of producing a machine since the monopolists�pro�ts are increasing in
population through the market size e¤ect. Consequently, the free entry condition will be
violated on a BGP allocation of this kind. The only way to restore the free entry condition
is to employ more and more labor in the R&D sector, which increases the growth rate (and
hence the interest rate) and which reduces employment in production and hence pro�ts. Both
of these e¤ects will reduce the value of the �rm and will help restore the free entry condition
Eq. (I13:96). Therefore, in equilibrium, we expect to have more and more of labor employed
in R&D and we expect the growth rate to be increasing, which can also be seen from the
R&D technology equation _N (t) = �N (t)LR (t).

Exercise 13.24, Part (c). The static equilibrium characterization of Part (a) continues
to apply, that is, for a given LE (t) and N (t), wages, pro�ts and output are still given by
Eqs. (I13:82), (I13:84) and (I13:85).

For the dynamic analysis, we conjecture a BGP equilibrium in which r (t) = r�, LR (t) =
l�RL (t) for some l

�
R 2 (0; 1) and the growth rate of N (t) is constant. The calculation of the

value function is now slightly changed from Eq. (I13:87) to

V (�; t) =
� (�; t)

r� � n� gN (1� 2�) =�
, (I13.97)

where the denominator now also features n since population growth leads to further growth
in pro�ts. After plugging in the static equilibrium values for � (�; t) in the value function
(I13:97) and using the static equilibrium value of wages w (t), the free entry condition Eq.
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(I13:89) can be written as

N (t)�
(1� �) l�EL (t)N (t)

(1�2�)=�

r� � n� gN (1� 2�) =�
= �N (t)(1��)=� .

N (t)��1 L (t)
(1� �) (1� l�R)

r� � n� gN (1� 2�) =�
= � (I13.98)

Di¤erentiating both sides with respect to t, the growth rate of N is uniquely solved as

gN =
n

1� � . (I13.99)

In other words, this is the only growth rate for N that is consistent with the free entry
condition.

Next note that we have another expression for the growth rate that comes from the R&D
technology _N = N (t)� L (t) l�R, which, after combining with Eq. (I13:99), implies

n

1� � =
h
N (t)��1 L (t)

i
l�R; (I13.100)

Note also that the representative consumer�s problem gives the Euler equation

gc =
1

�
((r� � n)� (�� n)) = 1

�
(r� � �) .

Note that this time we have c (t)L (t) = Y (t) from the �nal good resource constraint, hence gc
(growth rate of consumption per capita) is equal to gY �n. The expression for the �nal output
Y (t) in Eq. (I13:85) implies gY = n+ 1��

� gN and thus gc =
1��
� gN , that is, consumption per

capita grows at the same rate as wages. Using this in the Euler equation, we have

n

1� �
1� �
�

=
1

�
(r� � �) . (I13.101)

Note that Eqs. (I13:98) ; (I13:100) and (I13:101) are three equations in three unknowns
r�; l�R and N (t)

��1 L (t), which can uniquely be solved for. Under the parametric restrictions

(1� �) gc < �� n,
the path we have constructed is indeed an equilibrium. Note that there are transitional
dynamics in this case. In particular, our solution shows that N (t)��1 L (t) = � (t) must
be at a speci�c value �� on the BGP. Starting from any other level, this ratio adjusts to
its steady state level along the transitional path. For example, if N (0)��1 L (0) > ��, the
economy starts with too few machines relative to labor and the economy would invest more
in R&D early on, that is, lR (t) would decrease towards its steady state level l�R.

Note that in this case the growth rate of machines is given by gN = n= (1� �) and the
growth rate of output and consumption per labor by gc = gN (1� �) =�. As opposed to Part
(a), the growth rate in this economy does not depend on L but it depends on n. Intuitively,
the knowledge externalities in this economy are not su¢ cient to generate growth and the
engine of growth is the increase in the population. Ultimately, the same economic force (the
market size e¤ect) is present in both this economy and the economy analyzed in Part (a),
but the e¤ect is weaker here (due to diminishing externalities) and does not generate a scale
e¤ect, that is, the level of population does not increase the growth rate. The scale e¤ect is a
disputed aspect of the growth models, hence the fact that the present model does not feature
a scale e¤ect may be viewed as a success. Note, however, that the growth rate still depends
on population growth, if not population level, hence scale e¤ects are present but in a di¤erent
guise. To see this, note that N (t)��1 L (t) = �� is a constant independent of population as
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Eqs. (I13:98) ; (I13:100) and (I13:101) do not depend on L (t). Therefore, a greater level of
population translates into a higher level of N (t) and Y (t) =L (t) (cf. Eq. (I13:85)), hence
scale e¤ects are still present if we compare, for example, cross country levels of output per
capita.

Note also that, at �rst glance, the con�guration � < 1 and n > 0 seems more plausible
than the knife-edge case � = 1 and n = 0 of Part (a). On the other hand, the model
with � < 1 and n > 0 is unappealing in the sense that the growth rate does not respond to
variables that we think are important determinants of growth. For example, as opposed to the
economy analyzed in Part (a), the growth rate does not respond to �, moreover, if we added
tax policy, the growth rate would not respond to that either. These models are sometimes
called semi-endogenous growth models, and they are probably not a good representation of
reality despite the fact that they apply for many more sets of parameters than models along
the lines of the one analyzed in Part (a). There are other (perhaps more realistic) models we
can write down which eliminates the scale e¤ect but which retains the desirable properties of
the model in Part (a) (see, for example, Howitt (1999)).



Chapter 14: Models of Schumpeterian Growth

Exercise 14.2

Exercise 14.2, Part (a). Let us explicitly allow for a choice of R&D expenditures z to
prove that incumbents will never invest in R&D. Consider an incumbent with current quality
q. By (14.8) per period pro�ts are equal to

� (�; t j q) = �q (�; t)L:

In equilibrium, the value of owning a patent will be given by the value function V (�; tjq);
which now solves the HJB equation

r (t)V (�; tjq)� _V (�; tjq)

= max
ẑ

�
�(�; tjq)� ẑ + �ẑ

q
(V (�; tj�q)� V (�; tjq))� z(�; tjq)V (�; tjq)

�
: (I14.1)

To understand (I14.1), note that by spending ẑ units of resources, the incumbent generates a
�ow rate of innovation �ẑ

q which gives him an additional payo¤ of V (�; tj�q)�V (�; tjq). The
incumbent takes the �ow rate of replacement z(�; tjq) as given. The optimality condition for
incumbents�research expenditures is given by

�

q
(V (�; tj�q)� V (�; tjq)) � 1 and

�
�1 + �

q
(V (�; tj�q)� V (�; tjq))

�
ẑ = 0 and ẑ � 0:

(I14.2)
Let us focus on an equilibrium, where there are potential entrants, i.e. z(�; t j q) > 0. Free
entry implies that

�V (�; t j q) = ��1q(�; t)

as derived in (14.14). Substituting this in (I14.2) yields�
�1 + �

q
(V (�; t j �q)� V (�; t j q))

�
ẑ =

�
�1 + �

q

�
1

�
q � 1

�

q

�

��
ẑ = � 1

�
ẑ;

so that (I14.2) implies that

ẑ = 0:

This shows that incumbents would not want to engage in research if entrants are willing to
do so. The intuition is as follows: as incumbents make positive pro�ts from the existing
machine, their bene�ts from innovation are lower as they replace themselves. As entrants do
not earn pro�ts before innovating, their bene�ts from innovation are strictly higher than for
the incumbents. If entrants want to engage in research, equilibrium (in particular the free
entry condition) requires that they are indi¤erent to do so. But if this is the case, incumbents
are strictly better o¤ to not invest in research. This proves that Arrow�s replacement e¤ect
is at work in the baseline model of Schumpeterian growth.

237
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Exercise 14.2, Part (b). To prove this result, suppose there was an equilibrium where
incumbents do not incur any research e¤orts. From the analysis in Section 14.1 we know that
in such an equilibrium the value function has to satisfy the entrants�free entry condition

V (q) =
q

��
;

where we explicitly noted that V does not depend on time t or on the sector �. Now consider
the decision problem of an incumbent. By spending one unit of the �nal good, he creates a
�ow rate of innovation ��

q which has a value of V (�q)�V (q) as he replaces himself. Hence, the
above allocation is an equilibrium if the incumbent would not want to spend those resources,
i.e. if

1 � ��

q
(V (�q)� V (q)) = ��

q

q

�

�
1� 1

�

�
= �

�� 1
�

: (I14.3)

For (I14.3) to be satis�ed we need that

� � �

�� 1 ;

which is the required condition. The intuition is similar to the one given in Part (a). Given
that entrants are indi¤erent between doing research or not, incumbents strictly prefer to
not do research if they use the same technology. Hence, they need an advantage of doing
research to be willing to do so. To generate the same �ow rate of innovation as entrants do,
incumbents only have to spend a fraction ��1 of resources. Note however that �

��1 > 1 so
that even if incumbents do have an advantage of doing research (i.e. ��1 < 1) they might
still not want to do it. Only if the advantage is substantial, i.e. if they pay at most a fraction
��1 = ��1

� ; incumbents would want to invest in research themselves as the cost advantage
dominates Arrow�s replacement e¤ect.

Exercise 14.6

With the new production function of the �nal good sector, the demand function for
intermediary x(�; t j q) is given by

x(�; t j q) = L

�
1

px(�; t j q)

� 1
�

q(�; t)
1��
� : (I14.4)

The pro�t maximizing price is

px(�; t j q) =  

1� � q(�; t) = q(�; t); (I14.5)

so that (using (I14.4)) equilibrium quantities of intermediaries are given by

x(�; t j q) = L

�
1

q(�; t)

� 1
�

q(�; t)
1��
� =

L

q(�; t)
: (I14.6)

The substantial di¤erence to the baseline model analyzed in Section 14.1 is that the number
of intermediaries bought is decreasing in the current quality. The reason is that prices are
still proportional to q (see (I14.5)) but the bene�ts of using a higher quality are decreasing
as quality has "decreasing returns". Using (I14.5) and (I14.6), equilibrium pro�ts are given
by

�(�; t j q) = (px(�; t j q)�  q(�; t))x(�; t j q) = �L;

i.e. pro�ts are constant.
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To prove that this economy does not have a BGP equilibrium, we proceed by contradic-
tion. So suppose there is a BGP. Along the BGP, both interest rates and the replacement
rates are constant. In that case the value function does not depend on time t or sector �
(conditional on q) and is given by

V (q) =
�

r� + z�
=

�L

r� + z�
: (I14.7)

Free entry into research still requires that

�

q
V (�q) =

�

q

�L

r� + z�
= 1; (I14.8)

and along the BGP (I14.8) has to hold at all points in time and for all sectors �. This however
is a contradiction as (I14.8) holds only for a unique level of quality q. Hence, there is no
BGP in this economy.

To get balanced growth in this economy we have to ensure that the costs of doing research
are proportional to the bene�ts of doing so. So we could either change the production

technology such that the marginal costs of production are equal to  q
1�2�
1�� , i.e. higher quality

machines are more expensive but there are economies of scale in quality. This would ensure
that per-period pro�t (and hence the value function) are proportional to q. More easily we
could change the innovation technology. As the value of owning a patent is constant (see
(I14.7)), suppose that the �ow rate of innovation is just given by �, i.e. independent of the
current quality. The free entry condition would then be given by

�V (�q) = �
�L

r� + z�
= 1;

which determines that risk adjusted interest rate r� + z� along the BGP. The solution of
the model could then be conducted as in the baseline model analyzed in Section 14.1. In
particular, such an economy would have a BGP.

Exercise 14.7*

The equilibrium in this economy is a collection of time paths of aggregate allocations
and prices, a stochastic process for the quality of machine lines, and a collection of R&D
expenditures, quantities, prices and value functions for machine lines (as a function of qual-

ity)
�

C (t) ; Z (t) ; X (t) ; A (t) ; r (t) ; w (t) ; [q (�; t)]�2N(t) ;

[Z (�; t j q) ; px (�; t j q) ; x (�; t j q) ; V (�; t j q)] j�2N(t)

�1
t=0

such that the representa-

tive consumer maximizes utility, the �nal good sector is competitive, the quality of a ma-
chine line evolves according to the R&D technology given the investment on the line, the
R&D investment on each line is determined by free entry, the machine producers set prices
to maximize pro�ts and all markets clear.

To characterize the equilibrium, we �rst look at the pricing decision of machine producers.
The demand from �nal good producers is

x (�; t j q) =
 

q (�; t)�1

px (�; t j q)

!1=�
L,

and the marginal cost of producing a quality q (�; t) good is  q (�; t)�2 . Thus, the uncon-
strained pro�t maximizing price (that, is, the price a monopolist would charge) is given
by px (�; t j q) =  q�2= (1� �), which after the usual normalization  = (1� �) implies
px (�; t j q) = q�2 . Since the higher quality machine producer faces competition from lower
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quality machine producers, this price will be the pro�t maximizing price only if � is su¢ -
ciently large, that is, only if the new technology is su¢ ciently advanced that a lower quality
machine producer would have to su¤er a loss to undercut the more advanced producer even
when the latter charges the unconstrained monopoly price. In the present model, this will be
the case if

� �
�

1

1� �

� 1��
�1�(1��)�2

. (I14.9)

Otherwise, the higher quality machine producers will be forced to charge a limit price. Sup-
pose the parameters are such that (I14:9) holds and producers charge the unconstrained price.
Then the production is given by

x (�; t j q) = q(�1��2)=�L, (I14.10)

and pro�ts by
� (�; t j q) = �q�2q(�1��2)=�L. (I14.11)

We next look at the value function of a machine producer. Let

z (�; t j q) = Z (�; t) �=q�3 (I14.12)

denote the �ow rate of innovation on machine line � with current quality q when the level of
investment is given by Z (�; t). By Arrow�s replacement e¤ect, only outsiders invest in R&D
in this model and thus z (�; t j q) is also the replacement rate of the incumbent. It follows
that the HJB equation for the value function of a machine producer is given by

r (t)V (�; t j q) = � (�; t j q) + _V (�; t j q)� z (�; t j q)V (�; t j q) . (I14.13)

We are interested in BGP equilibria in which the interest rate, r (t) = r�, is constant and the
replacement probability z (�; t j q) is constant across � and over time, i.e. z (�; t) = z� > 0.
Since there is positive innovation on each line (z� > 0), the free entry condition implies

��
��1q

��3 V (�; t j q) = 1; 8 �; t, (I14.14)

where the ��1 term captures the fact that an innovation on an old machine leads to the value
function for the new machine. This further implies _V = 0. Using this and Eq. (I14:11) in
Eq. (I14:13), we can solve for the value function on the BGP equilibrium as

V (�; t j q) = �q�2q(�1��2)=�L

r� + z�
.

Using this in Eq. (I14:14), we obtain that the following condition should hold for all q

��

q�3

�q�2q(�1��2)=�L

r� + z�
= 1. (I14.15)

In words, to have positive and balanced research on each line, the bene�ts and costs of
research on each line should be equated, which leads to Eq. (I14:15). This can be satis�ed
for all q only if

�2 + (�1 � �2) =� � �3 = 0. (I14.16)

If this condition is not satis�ed, there will only be investment in a subset of the machines
and the economy would not feature balanced growth. Under the restriction (I14:16) for the
parameters, Eq. (I14:15) will be satis�ed for all q if

r� + z� = ���L. (I14.17)
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From the consumption Euler equation, we have
_C (t)

C (t)
=
1

�
(r� � �) � gC , (I14.18)

where the last line de�nes gC .
The last two displayed equations constitute 2 equations in 3 unknowns, r�; z� and gC . To

solve for the endogenous variables, we need one more relation, which we obtain by relating
the growth rate, gC , to the rate of innovation, z�. Using Eq. (I14:10), aggregate output is
given by

Y (t) =
1

1� �

Z 1

0
q (�; t)�1+(�1��2)(1��)=� d�L,

which further gives

_Y (t) =
1

1� �

Z 1

0
z�
�
��1+(�1��2)(1��)=� � 1

�
q (�; t)�1+(�1��2)(1��)=� d�L.

Intuitively, at every time, a share z� of the sectors have an innovation and the ones that
have an innovation increase their scale by a factor of �� 1 > 0. The last displayed equation
further implies

gY =
_Y (t)

Y (t)
= z�

�
��1+(�1��2)(1��)=� � 1

�
. (I14.19)

Similarly, total expenditures on machines are given by

X (t) = (1� �)
Z 1

0
q (�; t)�2+(�1��2)(1��)=� d�L,

which leads to

gX =
_X (t)

X (t)
= z�

�
��2+(�1��2)(1��)=� � 1

�
. (I14.20)

Finally, using Eq. (I14:12), aggregate spending on R&D is given by

Z (t) =
z�

�

Z 1

0
q (�; t)�3 d�,

which leads to

gZ =
_Z (t)

Z (t)
= z�

�
��3 � 1

�
: (I14.21)

Eqs. (I14:18), (I14:19), (I14:20), (I14:21) above show that the variables C (t) ; Y (t) ; X (t) and
Z (t) grow at constant rates gC ; gY ; gX and gZ . Market clearing in �nal good then implies

exp (gY t)Y (0) = exp (gXt)X (0) + exp (gZt)Z (0) + exp (gCt)C (0) ,

which holds only if
gC = gX = gY = gZ � g�;

where the last equality de�nes the common growth rate g�. The parametric restriction that
we impose in Eq. (I14:16) already ensures gZ = gY (cf. Eqs. (I14:21) and (I14:19)). To
ensure gX = gY from Eqs. (I14:20) and (I14:19), we also require

�2 = �1. (I14.22)

Under this requirement, using gC = gZ and Eq. (I14:21) gives us the desired relationship
between the growth rate and the rate of innovation as

g� = gC = z�
�
��3 � 1

�
. (I14.23)
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Next, solving Eqs. (I14:17),(I14:18) and (I14:23) yields

z� =
(��L� � �)

�
�
��3 � 1

�
+ 1

r� =
�
�
��3 � 1

�
��L� + �

�
�
��3 � 1

�
+ 1

and the growth rate

g� =
��L� � �

1 +
�
��3 � 1

��1 . (I14.24)

The path we have described also satis�es the transversality condition if g� < r� and leads to
a positive growth rate g� > 0 if the parameters satisfy

��L� > � > (1� �) ��L� � �
1 +

�
��3 � 1

��1 (I14.25)

It follows that the parametric restrictions on (�1; �2; �3) in (I14:16) and (I14:22) are
necessary for a BGP equilibrium. Moreover, these restrictions are satis�ed if and only if

�1 = �2 = �3.

It also follows that, when this condition on (�1; �2; �3) holds and when the remaining para-
meters satisfy Eq.(I14:25), there exists a BGP equilibrium in which the aggregate variables
Y (t) ; X (t) ; Z (t) ; C (t) grow at the constant and positive rate given in (I14:24).

Exercise 14.12*

Exercise 14.12, Part (a). Suppose that machines do not depreciate immediately after
use but depreciate only at rate �. Let us consider machine producers who rent out machines
instead of selling them. If we let px denote the one-period rental price, nothing changes from
the perspective of �nal good producers as they still pay px for one period of usage. Hence, the
interaction between machine producers and �nal good �rms is as follows. At the beginning of
the period, machine producers start with a stock of machines and take production decisions
for new machines. Final good �rms rent machines at price px, which the respective machine
producer sets monopolistically. Then production takes place and at the end of the period, the
undepreciated part of the machine is returned to the machine producer. This is the stock of
machines, the machine producer starts the next period with. Now consider a monopolist who
is the quality leader, i.e. owns the patent to the highest quality machine. To characterize
the maximization problem of this �rm we have to recognize that the fact that old machines
do not depreciate after use alters the nature of competition entirely. The reason is that old
incumbents still have machines which they will rent out as long as prices are positive. Hence,
without full depreciation the quality leader will never be able to charge the unconstrained
monopolistic price.

To make this claim formal let us denote the stock of machines of a �rm that was incumbent
in sector �, n vintages ago when the current quality is q by k(t; �; q; n). Hence, this �rm has
k(t; �; q; n) machines of quality ��nq. Now suppose that the quality leader sets a price p.
Final good producers are indi¤erent between buying q-machines at p and ��nq-machines at
p(t; �; q; njp) whenever

��nq

�
1

p(t; �; q; njp)

�1��
= q

�
1

p

�1��
: (I14.26)



Solutions Manual for Introduction to Modern Economic Growth 243

To understand (I14.26), note that by spending one unit of the �nal good on ��nq-machines,

the �nal good producer receives a machine service of ��nq
�

1
p(t;�;q;njp)

�1��
; as he can buy

1
p(t;�;q;njp) machines. Whenever (I14.26) holds, �nal good producers are indi¤erent where to
buy. Rearranging terms in (I14.26) shows that old incumbents will set a price

p(t; �; q; njp) =
�
�

1
1��
��n

p

and rent k(t; �; q; n) machines to the market. As this holds true for all old incumbents,
the total supply of old machines can be denoted by the set fk(t; �; q; n)gn(�;t)n=1 , where n(�; t)
denotes the current number of quality improvements in sector �, i.e. n(�; t) is de�ned by

�n(�;t)q(�; 0) = q(�; t)

where q(�; 0) is the initial quality in sector �.
In view of this observation, we next derive the (constrained) demand curve that the

quality leader faces. It is convenient to �rst characterize the �nal good producers�demand
for machine services qx1��. Facing rental prices [p(�)]� , �nal good producers solve

max
x

�
1

1� �

Z 1

0
q(�; t)x(�; tjq)1��d�L� �

Z 1

0
p(�)x(�; tjq)d�

�
:

This yields the usual demand function for machines

x(�; tjq) =
�
q(�; t)

p(�)

�1=�
L

or a demand of machine services of

q(�; t)x(�; tjq)1�� = q(�; t)

�
q(�; t)

p(�)

�(1��)=�
L1��: (I14.27)

By buying k(t; �; q; n) machines of old incumbent n = 1; ::; n(�; t) the �nal good producer has
machine services of ��nq(�; t)k(t; �; q; n)1��, so that old incumbents deliver a total amount
of machine services of

n(�;t)X
n=1

��nq(�; t)k(t; �; q; n)1�� = q(�; t)

n(�;t)X
n=1

��nk(t; �; q; n)1��: (I14.28)

The current highest quality producer in sector � therefore delivers the residual services

q(�; t)

�
q(�; t)

p(�)

�(1��)=�
L1�� � q(�; t)

n(�;t)X
n=1

��nk(t; �; q; n)1��;

which follows from (I14.27) and (I14.28). To do so, this producer has to deliver

x(�; tjq) =

0BB@q(�; t)
�
q(�;t)
p(�)

� 1��
�
L1�� � q(�; t)

Pn(�;t)
n=1 ��nk(t; �; q; n)1��

q(�; t)

1CCA
1

1��

(I14.29)

machines. Simplifying (I14.29) yields the �nal good �rms�demand function

x(�; tjq) =

0@�q(�; t)
p(�)

�(1��)=�
L1�� �

n(�;t)X
n=1

��nk(t; �; q; n)1��

1A 1
1��

: (I14.30)
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To derive the pro�ts of the quality leader, we also have to recognize that this producer
has a stock k of undepreciated machines of quality q. To deliver x machines, he therefore
only has to produce x � k new machines. Hence, by setting a price p, pro�ts of the highest
quality machine producer are given by

� = p

 �
q

p

� 1��
�

L1�� �X(�; t; q)
! 1

1��

�  q

24 �q
p

� 1��
�

L1�� �X(�; t; q)
! 1

1��

� k

35
= (p�  q)

 �
q

p

� 1��
�

L1�� �X(�; t; q)
! 1

1��

+  qk; (I14.31)

where we de�ned

X(�; t; q) =

n(�;t)X
n=1

��nk(t; �; q; n)1�� (I14.32)

as the quality weighted machine service supply by old incumbents. It is convenient to de�ne
X(�; t; q) because this is the appropriate additional state variable for this problem. To see
this, simply note that machine prices p(�; tjq) and quantities x(�; tjq) will be the same for
two di¤erent distributions of old machines [k(t; �; q; n)]n(�;t)n=1 and [~k(t; �; q; n)]n(�;t)n=1 as long as

X(�; t; q) =

n(�;t)X
n=1

��nk(t; �; q; n)1�� =

n(�;t)X
n=1

��n~k(t; �; q; n)1�� :

Hence, X(�; t; q) is in fact su¢ cient to determine the equilibrium - we do not need to know
the entire distribution [k(t; �; q; n)]n(�;t)n=1 . Eq. (I14.31) also shows, that the current stock of
highest quality machines k is also a necessary state variable for the monopolists�problem.

However it is important to realize that the highest quality producer does not face a static
optimization problem anymore. As pro�ts depend on k (see (I14.31)) and k accumulates
according to

_k = x� k � �k; (I14.33)

where x�k denotes the additional production of machines, pro�ts are not independent across
periods so that prices can no longer be set by just static considerations.

Using this notation we can now de�ne the equilibrium in this economy. An equi-
librium in this economy is de�ned similarly as in the baseline model of Schumpeterian
growth analyzed in Section 14.1. It consists of time paths of consumption, aggre-
gate spending on machines, and aggregate R&D, [C (t) ; X (t) ; Z (t)]1t=0, interest rates
and wages [r (t) ; w (t)]1t=0, value functions [V (�; t; k;Xjq)]

1
�2[0;1];t=0, intermediary prices

and quantities [px (�; t; k;Xjq) ; x (�; t; k;Xjq)]1�2[0;1];t=0, stocks of leading edge machines
[k(�; t;Xjq)]1�2[0;1];t=0, quality adjusted old machine supplies [X(�; t; q)]1�2[0;1];t=0 and qualities
[q(�; t)]1�2[0;1];t=0 which are the highest in their sector �, such that markets clear, consumers
maximize utility, �rms maximize pro�ts, the value functions are consistent with free entry,
k(�; t;Xjq) accumulates according to (I14.33) and X(�; t; q) is given by (I14.32). The only
new component in this version of the model is, that �rms�decisions to produce machines is
dynamic as outlined above. Hence, both the choice variables px and x and the value func-
tion V are now dependent on the additional state variables k and X. Note that only those
�rms which are the technology leader (i.e. the active incumbent) are actively pursuing plans
to invest in machines. A BGP in this economy is still an equilibrium where consumption,
output and machine spending grows at some common rate and replacement probabilities z(t)
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are constant. In the baseline model of Schumpeterian growth all of these variables grow at
the same rate as average quality Q(t).

Exercise 14.12, Part (b). To show that the introduction of only fractional depreciation
of machines does change the equilibrium in this Schumpeterian framework, let us consider
the dynamic maximization problem of the incumbent. Taking as given the current stock
of machines k in a machine line with quality q, we can express the change in the stock of
machines as a function of the price. In particular we get from (I14.30) and (I14.33) that

_k(�; t;Xjq) =
 �

q(�; t)

p(�)

�(1��)=�
L1�� �X(�; t; q)

! 1
1��

� k(�; t;Xjq)� �k(�; t;Xjq):

(I14.34)
Hence the appropriate HJB equation for the value function is given by

(r(t) + z(t; �; k;Xjq))V (�; t; k;Xjq)

= max
p

�
�(�; t; k;Xjq) + _V (�; t; k;Xjq) + @V (�; t; k;Xjq)

@k
_k(�; t;Xjq)

�
; (I14.35)

where �(�; t; k;Xjq) is given in (I14.31) and _k(�; t;Xjq) in (I14.34). Without solving (I14.35)
explicitly we can already see that the solution will be di¤erent from the baseline model. In
particular it is clear that @V

@k > 0, as having a higher stock of machines will necessitate a
smaller production of machines which saves on production costs. Hence, the monopolistic
price from the baseline model

px(�; t; k;Xjq) = q(�; t)

will not be the optimal price in this setting. To see this, note that the necessary �rst-order
condition for the optimal price px(�; t j q) solves the necessary condition

d

dp
[(p�  q)x(�; t; k;Xjq)]� @V (�; t; k;Xjq)

@k

@x(�; t; k;Xjq)
@p

= 0; (I14.36)

where recall

x(�; t; k;Xjq) =
 �

q

p

�(1��)=�
L1�� �X

! 1
1��

:

Hence

@x(�; t; k;Xjq)
@p

����
p=q

= �
�
L1�� �X

� �
1�� L1��

�q

and

d [(p�  q)x(�; t; k;Xjq)]
dp

����
p=q

=
�
L1�� �X

� 1
1�� � (q �  q)

�
L1�� �X

� �
1�� L1��

�q
= 0;

where the last inequality uses 1� = �. For px(�; t; k;Xjq) = q(�; t) to be optimal, (I14.36)
therefore requires that

0 = �@V (�; t; k;Xjq)
@k

@x(�; t; k;Xjq)
@p

=
@V (�; t; k;Xjq)

@k

�
L1�� �X

� �
1�� L1��

�q
; (I14.37)

which is not necessarily the case. In particular note that @V (�;t;k;Xjq)
@k > 0; so that (I14.37)

cannot hold whenever X 6= L1��. Hence, equilibrium machine prices will be di¤erent once
we allow for partial depreciation.
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Although this shows that the exact solution of the model will be di¤erent, it does not
show that the qualitative results will change. Recall that Exercise 13.23 asked you to show
that introducing partial depreciation in the model of expanding varieties did not change
any qualitative results although the same e¤ect outlined above is also present. I.e. in that
model, prices will also be set lower as in the case of � = 1, as a higher stock of machines k
increases the value of the monopolist. The reason why partial depreciation is not innocuous
in the Schumpeterian models is that it changes the nature of competition. In the models of
expanding varieties, two �rms never compete in the same variety as each existing monopolist
has a perpetual patent in his product line. This is di¤erent in the Schumpeterian models. As
explained above, the highest quality machine producer will be in competition with erstwhile
incumbents and this makes the analysis considerably more complicated. In particular note
that innovation incentives will depend on the sectors�current stock of quality adjusted old
machine supplies X(�; t; q). To see this, consider two sectors � and � 0 and suppose that
q(�; t) = q(� 0; t). If X(�; t; q) > X(�; t; q), entrants will strictly prefer to enter in the � 0 sector,
as they face less competition from current incumbents. Current incumbents however realize
that a high stock of machines has a discouraging e¤ect on future entrants. This possibility
of accumulating machines to shield themselves from future competition will therefore further
complicate the dynamic decision problem of the current incumbent. Hence, to characterize
the equilibrium we need to keep track of the distribution of qualities across sectors [q(�; t)]1�=0
and of the cross-sectional distribution of old quality adjusted machine supplies [X(�; t; q)]1�=0.
The assumption of immediate depreciation is therefore far from innocuous in the baseline
Schumpeterian model.

Exercise 14.13

Exercise 14.13, Part (a). The equilibrium is de�ned as a sequence of aggregate allo-
cations, aggregate prices, innovation levels in each sector, and intermediate good quantities

and prices,
�

Y (t) ; C (t) ; X (t) ; A (t) ; r (t) ; w (t) ;

[Z (�; tj MC)]1�=0 ; [p (�; t j MC) ; x (�; t j MC) ; V (�; t j MC)]1�=0

�
such that

consumers maximize utility, competitive �nal good producers choose quantities to maximize
pro�ts taking prices given, intermediate good monopolists set prices to maximize pro�ts,
there is free entry in the R&D sector, the technology (the distribution of the marginal costs)
evolves according to the R&D process that we describe below. The BGP equilibrium can be
de�ned as an equilibrium in which Y (t) and C (t) grow at the same rate, r (t) = r� is constant
and innovations on each machine line occur at a constant �ow rate, z (�; t j MC) = z�.

Exercise 14.13, Part (b). We partially solve for the equilibrium before we specify the
form of the innovation possibilities frontier, in particular, we calculate the value function for
the intermediate good monopolists. To calculate the value function, we �rst characterize the
pro�ts of a monopolist with marginal cost MC. The monopolist faces an isoelastic demand
schedule x = p�1=�L and would therefore set pu = 1

1��MC. The monopolist can set this
price only if innovations are su¢ ciently drastic. Since she is facing competition from a �rm
with marginal costs MC � �, she will have to charge a limit price whenever pu > MC � �.
It follows that the monopolist sets the price

p (�; t j MC) = min

�
1

1� � ; �
�
MC = � MC,
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where � = min
�

1
1�� ; �

�
is the markup. The current monopolist produces

x (�; t j MC) = p (�; t j MC)�1=� L = (� MC)�1=� L (I14.38)

and makes pro�ts of

� (�; t j MC) = (�� 1)��1=�MC�(1��)=�L.

We next calculate the value function of the monopolist. On a BGP on which the interest
rate is constant at r� and the �ow rate of innovation (and hence the replacement rate) is
constant at z�, the value function is given by

V (�; t j MC) =
� (�; t j MC)

r� + z�
=
(�� 1)��1=�L

r� + z�
MC�(1��)=� .

In particular, the value function is higher on lines with lower marginal costs.
We next consider an innovation possibilities frontier that allows for positive innovation

on each machine line. Since the value function is higher on lines with lower marginal costs,
ceteris paribus, there would be more innovation on lines that have lower marginal cost. Hence,
to have balanced innovation on all lines, the cost of innovation must be higher on lines with
lower marginal cost (i.e. more advanced lines). In other words, de�ning f (MC) as the �ow
rate of innovation on a line with marginal cost MC from a unit R&D investment, we have
that f (MC) must be increasing. To specify the exact functional form for f (MC) that is
consistent with a BGP, consider the free entry condition, f (MC)V

�
��1MC

�
= 1, which

leads to

f (MC)
(�� 1)��1=�L

r� + z�
�
��1MC

��(1��)=�
= 1. (I14.39)

It follows that there can be balanced innovation only if

f (MC) = �MC(1��)=� (I14.40)

for some constant �.

Exercise 14.13, Part (c). Using Eq. (I14:38) in the �nal good sector, we have

Y (t) =
1

1� �

Z 1

0

h
(�MC)�1=� L

i1��
d�L�

=
��(1��)=�L

1� �

Z 1

0
MC�(1��)=�d�.

This expression suggests to de�ne the following aggregate of marginal costs

A (t) =

Z 1

0
MC�(1��)=�d�, (I14.41)

which we can loosely interpret as the average productivity in this economy. In terms of
average productivity, output is given by

Y (t) =
��(1��)=�L

1� � A (t) , (I14.42)
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and wages are given by w (t) = �Y (t) =L. To calculate the growth rate of A (t), note that

A (t+�t)�A (t) =

Z 1

0
z��t

 �
MC

�

��(1��)=�
�MC�(1��)=�

!
d�

= z��t
�
�(1��)=� � 1

�Z 1

0
MC�(1��)=�d�

= z��t
�
�(1��)=� � 1

�
A (t)

Hence, at the limit as �t goes to 0, we have

g =
_A (t)

A (t)
= z�

�
�(1��)=� � 1

�
, (I14.43)

where the growth rate g is also the growth rate of consumption and output since A (t) and
Y (t) grow at the same rate (see Eq. (I14:42)).

Next note that the Euler equation implies

g =
1

�
(r� � �) , (I14.44)

and with our choice of f (MC) in Eq. (I14:40), the free entry condition (I14:39) gives

��(1��)=� (�� 1)��1=�L = r� + z�. (I14.45)

Eqs. (I14:43), (I14:44) and (I14:45) are three equations in three unknowns r�; g, and z�.
Solving these equations, we get the growth rate

g =
��(1��)=� (�� 1)��1=�L� �

� +
�
�(1��)=� � 1

��1 . (I14.46)

To ensure that the growth rate is positive and the transversality condition holds, we assume

(1� �) ��
(1��)=� (�� 1)��1=�L� �

� +
�
�(1��)=� � 1

��1 < � < ��(1��)=� (�� 1)��1=�L. (I14.47)

We next solve for consumption from the resource equation Y (t) = C (t) +X (t) + Z (t)
and show that the path we have described is an equilibrium. Note that the expenditure on
machines is given by

X (t) =

Z 1

0
x (�; t j MC)MCd�

=

Z 1

0
(� MC)�1=� LMCd� = ��1=�LA (t) ,

where the last equality follows from Eq. (I14:41). Note also that the total R&D expenditure
is given by

Z (t) =

Z 1

0
Z (�; t) d� =

Z 1

0

z�

f (MC)
d� =

Z 1

0

g�
�(1��)=� � 1

�
�
MC�(1��)=�d�

=
g�

�(1��)=� � 1
�
�
A (t) ,
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where the third equality uses Eq. (I14:43). Plugging these expressions for X (t) and Z (t)
and the expression for Y (t) from (I14:42) into the aggregate resource constraints, we have

C (t) =
��(1��)=�L

1� � A (t)� ��1=�LA (t)� g�
�(1��)=� � 1

�
�
A (t)

= A (t)

24��(1��)=�L
1� � � ��1=�L� g�

�(1��)=� � 1
�
�

35 .
Hence consumption also grows at the constant rate g. This completes the characterization
and shows that, given the R&D technology in (I14:40) and the parametric restriction (I14:47),
there exists a BGP equilibrium in which consumption and output grow at the same constant
rate and there is innovation at the same constant rate on each machine line. Moreover, the
path we have described is an equilibrium starting with any initial distribution of marginal
costs, [MC (�; 0)]�2[0;1], hence there are no transitional dynamics.

Exercise 14.13, Part (d). We �rst characterize the social planner�s allocation of re-
sources for a given distribution of marginal costs [MC (�; t)]�2[0;1]. The social planner will
set p (�; t j MC) =MC and produce

x (�; t j MC) = p (�; t j MC)�1=� L =MC�1=�L

units of each intermediate good. Hence the aggregate output will be

Y (t) =
1

1� �

Z 1

0

h
MC�1=�L

i1��
d�L�

=
1

1� �A (t)L,

where A (t), given by (I14:41), denotes the average productivity in the economy. Comparing
this expression with Eq. (I14:42), we note that the social planner produces more output for
a given level of average productivity since she corrects for the monopoly distortions. Note
also that the social planner�s expenditures on machines are given by

X (t) =

Z 1

0
MC �MC�1=�Ld� = A (t)L.

Using the last two displayed equations and the �nal resource allocation, we have

C (t) = Y (t)�X (t)� Z (t) = �

1� �A (t)L� Z (t) ,

where Z (t) denotes the aggregate investment in R&D.
Next, we consider the social planner�s dynamic trade-o¤. Note that the social planner�s

unit investment in a machine line with marginal cost MC, generates f (MC) new machines
and increases the contribution of the line to average productivity by

f (MC)
�
(MC=�)�(1��)=� �MC�(1��)=�

�
= �

�
�(1��)=� � 1

�
.

In particular, the social planner is indi¤erent between investing in various machine lines.
Moreover, by investing an aggregate amount of Z (�; t) on R&D, she increases average pro-

ductivity by Z (t) �
�
�(1��)=� � 1

�
. It follows that the social planner�s problem can be written
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as

max
[Z(t);C(t);A(t)]t

Z 1

0
exp (��t) C (t)

1�� � 1
1� � dt

s.t. C (t) =
�

1� �A (t)L� Z (t)

_A (t) = Z (t) �
�
�(1��)=� � 1

�
.

After substituting the �rst constraint into the second to eliminate Z (t), the current value
Hamiltonian is given by

Ĥ (t; C;A; �) =
C1�� � 1
1� � + �

��
�

1� �AL� C
�
�
�
�(1��)=� � 1

��
.

The �rst-order conditions lead to the consumption growth equation

gS �
_C

C
=
1

�

�
�

1� � �
�
�(1��)=� � 1

�
L� �

�
.

We next compare this growth expression with the equilibrium growth rate (I14:46) when
the markup � is equal to (1� �)�1 (so that machine producers can charge the unconstrained
monopoly price), given by

gEq
�
� � (1� �)�1

�
=

1

� +
�
�(1��)=� � 1

��1 � �

1� � ��
(1��)=� (1� �)1=� L� �

�
.

First, note that the social planner internalizes the static monopoly distortions and produces
more output for a given number of machines (captured by the (1� �)1=� term in gEq compared
to 1 in gS) which creates a force that tends to increase the social planner�s growth rate
relative to the equilibrium growth rate. Second, in equilibrium, �rms do not internalize the
fact that they are replacing an existing producer (the business stealing e¤ect, captured by the

�(1��)=� term in gEq compared to
�
�(1��)=� � 1

�
in gS) while the social planner does, which

creates a force that tends to decrease the social planner�s relative growth rate. Third, in
equilibrium, �rms are concerned about the fact that they are going to be replaced by another
producer in the future while the social planner is not (the replacement e¤ect captured by

the �+
�
�(1��)=� � 1

��1
term in gEq compared to � in gS), which creates a force that tends

to increase the social planner�s relative growth rate. The net comparison between gS and
gEq depends on which of these forces dominate. If the second force (business stealing e¤ect)
dominates, then the social planner�s growth rate will be lower than the equilibrium growth
rate. Therefore, it is possible to have excessive innovations in this model.

Exercise 14.14

Exercise 14.14, Part (a). Given the aggregate production function for the �nal good,
the demand function for machines is given by

x(�; tjq) = p(�; tjq)�1=�q(�; t)1=�LE(t): (I14.48)

This demand function implies that the optimal price of machines is given by p(�; tjq) =  
1�� =

1 and that intermediary pro�ts are �(�; tjq) = �q1=�LE(t). As labor markets are competitive
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and equilibrium intermediary quantities are given by x(�; tjq) = q(�; t)1=�LE(t), wages are
given by

w(t) =
@Y (t)

@L
=

�

1� �

�Z 1

0
q(�; t)x(�; t j q)1��d�

�
LE (t)

��1 (I14.49)

=
�

1� �

�Z 1

0
q(�; t)

1+ 1��
� d�

�
LE(t)

1��LE(t)
��1 =

�

1� �

Z
q(�; t)1=�d�:

According to the innovation possibilities frontier each worker generates a �ow rate � of inno-
vations. Hence, the free entry condition into the research sector reads

�V (t; �j�q) � w(t) with equality if z(�; tjq) > 0: (I14.50)

This condition re�ects the fact that the costs of innovation are equal to the current wage rate
and the bene�ts from innovating (which happens with probability �) are equal to the value
of having the patent for machines with quality �q. The value function V (t; �j�q) solves the
HJB equation

r(t)V (t; �jq)� _V (t; �jq) = �(�; tjq)� z(�; tjq)V (t; �jq): (I14.51)
Let us look for a BGP, where the amount of labor employed in the �nal good sector is
constant, i.e. LE(t) = L�E and where z(�; tjq) is not a function of time (conditional on q).
As consumers are risk neutral, interest rates are constant and given by r(t) = �. The stable
solution to (I14.51) is therefore given by

V (t; �jq) = �q(�; t)1=�L�E
�+ z(�jq) : (I14.52)

Together with the free entry condition this implies that there will only be research expendi-
tures aimed at the machine line with highest quality q. To see this, suppose this was not the
case, i.e. there was a sector � 0 with q0 = q(� 0; t) < qmax = max�fq(�; t)g and z(� 0jq0) > 0.
Then the free entry condition would imply that �V (t; �j�q0) = w(t). As the value of a
blueprint is increasing in q (for given research expenditures z(�jq)), (I14.52) implies that
z(�max; tjqmax) > z(� 0; tjq0) > 0 as otherwise the free entry condition for sector �max would
be violated. So any BGP equilibrium where multiple sectors experience positive research, im-
plies an innovation schedule z(�jq) which is an increasing function of q. As we are considering
a BGP where z(�jq) is not a function of time, this implies that the total amount of labor
devoted to research

R
LR(t; �)d� is increasing over time, as the quality distribution increases

over time and higher innovation rates can only be generated by allocating more labor to those
sectors. This however violates the assumption that we are in a BGP where the amount of
labor devoted to manufacturing LE(t) = L �

R
LR(t; �)d� is constant. Hence, there is no

BGP equilibrium, where multiple sectors experience positive research e¤orts. Then, for any
initial distribution of qualities fq(�; 0)g1�=0, the only sector where research takes place is

�max = argmax
�
fq(�; 0)g;

i.e. is e¤ectively determined by the initial conditions of the economy. As

q(�max; t) � q(�max; 0) � q(�; t) = q(�; 0); 8t; � 6= �max;

the sector �max will also be the only sector where research is directed to in the future.
The importance of this result is, that it provides a microfoundation for the one-sector

Schumpeterian growth model. As the quality in those sectors where no researchers are em-
ployed stays constant over time, the only "active" sector is the one that had the highest
quality to begin with. Hence, the economy behaves like a one-sector economy. This however
is an equilibrium phenomenon rather than an assumption which is a priori imposed.
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Exercise 14.14, Part (b). The crucial property of the result above is that the bene�ts
of doing research are higher in sectors with high quality (recall that V (�; tjq) is increasing
in q, see (I14.52)) but the costs of doing so are independent of the sector�s quality. This is
due to the fact that equilibrium wages are only dependent on the average quality or some
transformation thereof (see (I14.49) above). In order to construct an equilibrium where all
sectors experience innovative activity, we have to make sure that the costs of doing research
are proportional to the bene�ts, i.e. that the ratio of the two is independent of the sector�s
quality. Of course there are various ways of doing so. The �rst (a little brute force) way
involves changing the innovation possibilities frontier to achieve that proportionality. For
concreteness, assume that employing a worker in sector � with a current quality of q(�; t)
generates a �ow rate innovation equal to

�

R
q(�; t)1=�d�

q(�; t)1=�
; (I14.53)

i.e. the returns to research are lower in sectors where a higher quality is achieved already. As
the production structure is unchanged, the value of owning a patent is still given by (I14.52),
so that the free entry condition in (I14.50) reads

w(t) =
�

1� �

Z
q(�; t)1=�d� = �

R
q(�; t)1=�d�

q(�; t)1=�
V (t; �j�q)

= �

R
q(�; t)1=�d�

q(�; t)1=�
�L�E (�q(�; t))

1=�

�+ z(�; tjq) : (I14.54)

So consider an equilibrium where replacement rates are constant, i.e. z(�; tjq) = z�. Using
this in the free entry condition (I14.54) implies that

�
�1=�L�E
�+ z�

=
1

1� � :

From the innovation possibilities frontier in (I14.53) we get that

z� = �

R
q(�; t)1=�d�

q(�; t)1=�
LR(�; t);

so that

LR(�; t) =
z�

�

q(�; t)1=�R
q(�; t)1=�d�

: (I14.55)

Additionally we have market clearing condition of the labor market

L = L�E +

Z
LR(�; t)d� = L�E +

Z
z�

�

q(~�; t)1=�R
q(�; t)1=�d�

d~� = L�E +
z�

�
:

Using these two conditions we can solve for L�E and z
� as functions of parameters. Hence,

modifying the innovation possibilities frontier in that way ensures that there exists an equi-
librium where all sectors are improved upon and growth is balanced in the sense that the
amount of labor used in the production of the �nal good is constant and each sector faces
the same replacement rate at each point in time. The decreasing returns to research in high
quality sectors are compensated by allocating more researchers to those sectors. This is seen
from (I14.55) which shows that

LR(�
0; t)

LR(�; t)
=

�
q(� 0; t)

q(�; t)

�1=�
;
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i.e. sectors with a higher current quality hire more researchers. This is consistent with
free entry because innovating in high-quality sectors is more pro�table and the innovation
possibilities frontier is linear in the number of researchers (so research �rms are indi¤erent
between one or ten researchers).

To stress that this is not the only way to generate balanced growth in this economy,
let us also consider the case where we change both the production structure and the inno-
vation possibilities frontier. Suppose that intermediaries can be produced at marginal cost
 q(�; t), i.e. the marginal costs of production are no longer constant. This implies that prices
and pro�ts are proportional to q(�; t) (i.e. �(�; tjq) = �q(�; t)LE(t) and p(�; tjq) = q(�; t))
whereas equilibrium quantities x(�; tjq) are independent of q(�; t) and just equal to LE(t)
(see (I14.48)). Let us again focus on a BGP equilibrium were LE(t) is constant over time
and z(�; tjq) is only a function of q (and not directly a function of time). Using (I14.51) we
get that .

V (t; �jq) = �q(�; t)L�E
�+ z(�jq) :

Additionally, equilibrium wages are given by

w(t) =
�

1� �

Z
q(�; t)d�:

Let us now assume a slightly di¤erent innovation possibilities frontier. In particular let us
assume that each worker generates a �ow rate of innovation equal to

�

R
q(�; t)d�

q(�; t)
:

Then we can go through the exact same steps as above to show that there is a BGP equilibrium
in this economy.

These two examples show that the exact form of the innovation possibilities frontier has
to balance two margins to achieve balanced growth. With the �nal good being the numeraire
and the marginal returns of labor (and hence wages) being increasing in the average quality,
the �ow rate of innovation should also be proportional to the average quality to make sure
that research does not get increasingly expensive (vis-a-vis the �nal good) as the economy
develops. To get balanced growth across sectors, i.e. to ensure that all sectors actually
experience innovations, the �ow rate of innovation should also be (inversely) proportional to
(some transformation) of the current quality of the speci�c sector. If we specify the innovation
possibilities frontier in such a way, we ensure that research as a whole develops in line with
the labor productivity of the �nal good sector and that the monetary returns to research
are equalized across sectors in the cross-section. Together this ensures (assuming that the
exogenous parameters satisfy the transversality condition) the existence of an equilibrium
with balanced growth where all sectors are being improved upon.

Exercise 14.15

Exercise 14.15, Part (a). Given that the structure of the economy is exactly the same
as the one characterized in section 14.1, the de�nition of the equilibrium also takes the same
form. Hence, an equilibrium in this economy consists of time paths of consumption levels,
aggregate spending on machines, and aggregate R&D expenditure, [C (t) ; X (t) ; Z (t)]1t=0,
time paths of the qualities of leading-edge machines [q (�; t)]1�2[0;1];t=0, time paths of prices and
quantities of each machine and the net present discounted value of pro�ts from that machine,
[px (�; t j q) ; x (�; t j q) ; V (�; t j q)]1�2[0;1];t=0, and time paths of interest rates and wage rates,
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[r (t) ; w (t)]1t=0 such that consumers maximize utility, entry into research is determined by
free entry, both �nal food and intermediary producers maximize pro�ts and all markets
clear. Furthermore we again de�ne a BGP equilibrium as an equilibrium where output and
consumption grow at a common rate g�.

Let us now turn to the characterization of the BGP. As the production side is identical
to the one in section 14.1 in the book we refer to the exposition there. There it is shown that
equilibrium pro�ts for an intermediary producer with quality q(�; t) are given by �(�; tjq) =
�qL and that the value function solves the HJB equation

r(t)V (t; �jq)� _V (t; �jq) = �(�; tjq)� z(�; tjq)V (t; �jq): (I14.56)

Along the BGP, both interest rates r(t) and innovation rates z(�; tjq) are constant over time,
i.e. r(t) = r� and z(�; tjq) = z�. Hence the di¤erential equation above has the stable solution

V (t; �jq) = V (q) =
�Lq

r� + z�
; (I14.57)

where we already explicitly noted that the value of having a patent does neither depend on
time, nor on the sector �. Let us now turn to the free entry condition of the research sector.
The innovation possibilities frontier still posits that by spending one unit of the �nal good
one generates a �ow rate of innovation equal to �

q , where q is the current quality of the sector
one tries to improve upon. Now however, the quality improvement is random and so are the
bene�ts of innovation. As the representative agent holds a balanced portfolio of the �rms
in this economy, the appropriate objective of potential entrants in the research sector is the
maximization of their expected value. To arrive at this expression, simply note that having
an innovation of quality � in a sector with current quality q, has a value of V (�q). As the

support of possible values of � is given by [(1��)(1��)=� ;
�
�], and the distribution function of

� is given by H, the expected value of a �rm conditional on having a successful innovation is
equal to Z �

�

(1��)�(1��)=�
V (�q)dH(�):

Using this, the free entry condition into research reads

1 =
�

q

Z �
�

(1��)�(1��)=�
V (�q)dH(�) =

�

q

Z �
�

(1��)�(1��)=�

�L�q

r� + z�
dH(�); (I14.58)

where the second equality uses the expression for the value function given in (I14.57). Let us
de�ne the average quality improvement as

�� �
Z �

�

(1��)�(1��)=�
�dH(�):

Then we can rewrite the free entry condition (I14.58) as

1 =
��L

r� + z�
��; (I14.59)

which determines the equilibrium replacement adjusted discount rate r� + z� in terms of
exogenous parameters.

From the consumer�s problem we again get the Euler equation
_C (t)

C (t)
= g� =

1

�
(r� � �) : (I14.60)
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Additionally we can express the economy�s growth rate g� directly via the entrants research
expenditures. Following the analysis from section 14.1 in the book we get that aggregate
output Y (t) is proportional to average quality

Q(t) =

Z
q(�; t)d�:

Hence we need to determine the growth of the average quality in the economy. To derive
this expression we can again make use of the law of large numbers. Above we denoted the
(endogenous) innovation probability by z�. Hence, in a (small) time interval �t, there will
be a measure z��t of entrants which will experience an innovation. Let us call this random
set of sectors that experiences an innovation by � � [0; 1]. Consequently, all sectors in �C

will not experience an innovation. Hence

Q(t+�t) =

Z
q(�; t+�t)d� =

Z
�
q(�; t+�t)d� +

Z
�C

q(�; t+�t)d�

=

Z
�
q(�; t+�t)d� +

Z
�C

q(�; t)d�

=

Z
�
q(�; t+�t)d� + (1� z��t)Q(t) + o(�t):

But then note thatZ
�
q(�; t+�t)d� = E[�q(�; t)jInnovate] = E[E[�jq(�; t); Innovate]q(�; t)jInnovate]

= ��Q(t)z
��t;

where we used that both the improvement conditional on innovating and innovating itself
is random, i.e. independent of the current quality so that E[�jq(�; t); Innovate] = �� and
E[q(�; t)jInnovate] =

R
� q(�; t)d� = Q(t)z��t. Using these results, we get that

Q(t+�t) = (1� z��t)Q(t) + ��Q(t)z��t+ o(�t);

which yields

g� =
_Q(t)

Q (t)
= lim
�t!0

Q(t+�t)�Q(t)
�t

1

Q(t)
= (�� � 1)z� + lim

�t!0

o(�t)

�t

1

Q(t)

= (�� � 1)z�: (I14.61)

Using (I14.59), (I14.60) and (I14.61), we get that

g� =
1

�
(r� � �) = 1

�
(����L� z� � �) =

1

�
(����L� ��

g�

(�� � 1)
)

=
����L� �
� + 1

���1
; (I14.62)

so that this economy has positive growth as long as

����L > �:

Note that the growth rate in (I14.62) is very similar to growth rate of the baseline model
(see (14.23)). In particular, the only di¤erence is that � is replaced by its expected value ��.
Hence, the restriction to constant quality improvements in the baseline version of the model
is for convenience only.



256 Solutions Manual for Introduction to Modern Economic Growth

For the transversality condition to hold we need the usual condition that the growth rate
of the economy does not exceed the interest rate, i.e. that g� < r�. Using (I14.60) and
(I14.62) we therefore need that

� > (1� �)g� = (1� �)����L� �
� + 1

���1
;

which can be simpli�ed to
� > (1� �)(�� � 1)��L:

Hence, there exists a BGP equilibrium with positive growth if

����L > � > (1� �)(�� � 1)��L: (I14.63)

Exercise 14.15, Part (b). The importance of the lower support of the distribution of
� is, that this is precisely the threshold that makes the innovation drastic, i.e. the quality
improvement is big enough such that the entrant can charge the unconstrained monopoly
price (see (14.5) and the discussion there). Hence, by assuming that � > (1 � �)�(1��)=�

we make sure that whatever the realization of �, the innovator will be able to charge the
unconstrained monopoly price. If this assumption was relaxed, we would have to consider
two di¤erent regimes with two di¤erent value functions. The value function in (I14.57) used
the result that equilibrium pro�ts are given by �(�; tjq) = �qL. This in turn relied on the
entrant�s ability to charge the unconstrained monopoly price. However, if � < (1��)�(1��)=�
this can not occur in equilibrium, as the old incumbent with quality ��1q(�; t) can set a price
low enough such that �nal good producers would prefer the old quality at this lower price.
Hence, the new entrant has to resort to limit pricing, i.e. he will set a price pL(�; tjq) such
that �nal good producers are indi¤erent between buying quality q at pL(�; tjq) and buying
quality ��1q at price  ��1q (which are the marginal costs of the old incumbent). Hence,
spending one unit on an intermediary of quality ��1q, yields x(�; tj��1q) =

�
 ��1q

��1
many

intermediaries of variety �, whose value in the production function (see (14.3)) is given by

��1qx(�; tj��1q)1�� = ��1q
�
 ��1q

��(1��)
:

Similarly, spending the unit on the better quality product yields an input level of

qx(�; tjq)1�� = q
�
pL(�; tjq)

��(1��)
:

The limit price pL(�; tjq) will be set to ensure that �nal good producers are exactly indi¤erent
between spending the unit on the new or the old vintage in the respective machine line. This
requires that

��1q
�
 ��1q

��(1��)
= q

�
pL(�; tjq)

��(1��)
;

which shows that
pL(�; tjq) = ��=(1��) q = ��=(1��)(1� �)q: (I14.64)

Note that it is from the limit price formula in (I14.64) that the lower bound on � in (14.5)
can be derived. In particular, this bound ensures that the unconstrained monopoly price
px(�; tjq) satis�es

px(�; tjq) = q(�; t) � pL(�; tjq):
For an extensive discussion of the importance of limit pricing see Chapter 12, especially
Proposition 12.1 and the discussion thereafter. This being said, the unique equilibrium price
of intermediary goods is equal to

px(�; tjq) =
�

q if � � (1� �)�(1��)=�
(1� �)�(1��)=�q if � < (1� �)�(1��)=� : (I14.65)



Solutions Manual for Introduction to Modern Economic Growth 257

Note especially that the unique equilibrium has the entrant being the only producer in the
market (but not necessarily being able to charge the unconstrained monopoly price). Pro�ts
of the intermediary producer are still given by

�(�; tjq) = (px(�; tjq)�  q)
�

q

px(�; tjq)

�1=�
L;

so that with (I14.65) we get

�(�; tjq) =
(
�M (�; tjq) = q�L if � � (1� �)�(1��)=�

�L(�; tjq) = ( 1
1�� )

1��
� (�(1��)=� � 1)��(1��)=�2qL if � < (1� �)�(1��)=�

:

Using this we also get that the value function V (�q) depends on the particular value of �
drawn, i.e.

V (�q) =

�
�M (�; tj�q)=(r� + z�) if � � (1� �)�(1��)=�
�L(�; tj�q)=(r� + z�) if � < (1� �)�(1��)=� : (I14.66)

Having derived this expression of the value function, the free entry condition has to be
changed accordingly. Using (I14.66) we get from (I14.58) that free entry requires

1 =
�

q

Z �
�

�
�

V (�q)dH(�)

=
�

q

Z (1��)�(1��)=�

�
�

�L(�; tj�q)=(r� + z�)dH(�)

+
�

q

Z �
�

(1��)�(1��)=�
�M (�; tj�q)=(r� + z�)dH(�)

=
�L

(r� + z�)

24Z ��

�
�

(
1

1� � )
1��
� (�(1��)=� � 1)��(1��)=�2�dH(�) + �

Z �
�

��
�dH(�)

35 ;
where �� = (1 � �)�(1��)=� . Although the expression in parenthesis looks daunting, note
that it is only a function of exogenous parameters. Hence, the analysis stays in principle
unchanged (of course we have to change the parametric restrictions accordingly to ensure
that the transversality condition is satis�ed).

Exercise 14.15, Part (c). To analyze the transitional dynamics (or absence thereof)
in this economy, let us again focus on the equilibrium conditions which have to hold at every
point in time. We consider an equilibrium where there are positive research expenditures in
some sector �. Whereas per period pro�ts are always given by �(�; tjq) = q�L, the value
function is in principle only de�ned implicitly by the HJB equation (I14.56) as the particular
form in (I14.57) was only derived as the solution along the BGP. Now we have to show
that this will always be the case, i.e. that the only equilibrium is characterized by balanced
growth. If the equilibrium features positive research e¤orts in sector � at period t, the free
entry condition has to hold, i.e. it will have to be true that

1 =
�

q(�; t)

Z �
�

(1��)�(1��)=�
V (�; tj�q(�; t))dH(�): (I14.67)
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Note that in contrast to (I14.58), (I14.67) potentially allows for the value function to depend
on the sector � and the time t. Then however, (I14.67) shows that conditional on the current
quality q(�; t), the free entry condition implies that the value function V can neither depend
on time nor on the sector, i.e. V (�; tjq) = V (q) and _V (�; tjq) = 0. Consequently, the HJB
equation simpli�es to

r(t)V (q) = �(q)� z(�; tjq)V (q):
This however shows that z(�; tjq) will be independent of the sector � too, i.e. z(�; tjq) = z(tjq).
Substituting the expression for �(q), we get

(r(t) + z(tjq))V (q) = �(q) = q�L; (I14.68)

so that r(t)+ z(tjq) will be independent of time (as q�L
V (q) does not depend on t). Substituting

(I14.68) in (I14.67) yields

1 =
�

q(�; t)

Z �
�

(1��)�(1��)=�

�q(�; t)�L

r(t) + z(tj�q(�; t))dH(�)

= ��L

Z �
�

(1��)�(1��)=�

�

r(t) + z(tj�q(�; t))dH(�): (I14.69)

As this has to hold for all q(�; t), (I14.69) implies that the replacement rates z(tjq(�; t))
are not only independent of the speci�c sector �, but also constant across qualities, i.e.
z(tjq(�; t)) = z(t) for all q(�; t). Hence in equilibrium we will need to have

r(t) + z(t) = s; (I14.70)

where s is some constant. In fact we can use (I14.69) to explicitly solve for s. Rearranging
terms, we get

r(t) + z(t) = ��L

Z �
�

(1��)�(1��)=�
�dH(�) = ��L��; (I14.71)

where we again de�ned the average quality improvement �� =
R ��
(1��)�(1��)=� �dH(�). All

that remains to be shown for the proof that the unique equilibrium features balanced growth
is that (I14.70) implies that both r(t) and z(t) individually are constant. To do so, note �rst
that the resource constraint in this economy is given by

Y (t)�X(t) = C(t) + Z(t) = C(t) +
1

�

Z 1

0
z(tjq(�; t))q(�; t)d�: (I14.72)

As in section 14.1, equilibrium output is given by Y (t) = 1
1��Q(t)L and expenditures on

machines are given by X(t) = (1��)Q(t)L. Additionally we showed above that z(tjq(�; t)) =
z(t) so that Z(t) = 1

�z(t)Q(t). Hence, we can rewrite (I14.72) as�
1

1� � � (1� �)
�
Q(t)L� 1

�
z(t)Q(t) = C(t);

or rather �
1

1� � � (1� �)
�
L� 1

�
z(t) =

C(t)

Q(t)
: (I14.73)
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Di¤erentiating (I14.73) with respect to time yields
1
�z(t)�

1
1�� � (1� �)

�
L� 1

�z(t)

_z(t)

z(t)
=

_C(t)

C(t)
�
_Q(t)

Q(t)
: (I14.74)

As consumption growth is determined by the Euler equation, the growth rate of average

quality Q(t) is still given by
_Q(t)
Q(t) = (��� 1)z(t) and (I14.70) provides a relation between r(t)

and z(t), we can express (I14.74) as
1
�z(t)�

1
1�� � (1� �)

�
L� 1

�z(t)

_z(t)

z(t)
=
1

�
(s� z(t)� �)� (�� � 1)z(t): (I14.75)

This is a di¤erential equation in a single variable z(t). Hence to show that growth is always
balanced, we only have to show that the only stable solution of (I14.75) is given by z(t) = z�,
where z� is BGP replacement rate. First of all, note that z(t) = z� indeed solves (I14.75),
as this would imply that consumption grows at the same rate as average quality (which is
the case on the BGP). To see that this is the only stable solution, suppose that z(t) < z�.
Rewriting the RHS of (I14.75) as

1

�
(s� z(t)� �)� (�� � 1)z(t) =

(s� �)
�

� (1
�
+ �� � 1)z(t)

shows that this term is strictly decreasing in z(t). As

1

�
(s� z� � �)� (�� � 1)z� = 0

this implies that the RHS of (I14.75) is negative whenever z(t) < z�. To determine the

evolution of z(t) from (I14.75) the sign of the term
�

1
1�� � (1� �)

�
L� 1

�z(t) is crucial. So

suppose �rst that

�

�
1

1� � � (1� �)
�
L = ��

2� �
1� �L > z(t): (I14.76)

Then we get from (I14.75) that

_z(t) =

�
(s� �)
�

� (1
�
+ �� � 1)z(t)

��
��
2� �
1� �L� z(t)

�
< 0:

But with z(t) decreasing at t, we will have that z(t) < z� in the next instance and (I14.76)
will still be satis�ed. Hence, whenever z(t) < z� and (I14.76) holds true, z(t) will be strictly
decreasing and hence will converge to z(t) = 0. This however violates that resource constraint
in (I14.73) as z(t) = 0 implies that average quality Q(t) is constant so that consumption
also has to be constant asymptotically. However (I14.71) implies that interest rates would
asymptotically be given by

r(t) = ��L�� > �;

where the inequality follows from (I14.63). Hence, the Euler equation requires that con-
sumption will still be increasing asymptotically, which is a contradiction. Now suppose that
(I14.76) is not satis�ed. Then we get that

z(t) < z� implies _z(t) > 0

so that z(t) converges to the BGP level z�. We will now show that this is impossible as the
transversality condition will be violated. If (I14.76) is violated and z(t) is increasing towards
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z�, it implies that

z� > ��
2� �
1� �L: (I14.77)

Now note that from (I14.71), the Euler equation and (I14.61) we get

z� = ��L�� � r� = ��L�� � �g� � � = ��L�� � �z�(�� � 1)� �

=
��L�� � �
1 + �(�� � 1)

;

so that it follows from (I14.77) that

��L�� � (1 + �(�� � 1))��
2� �
1� �L > �:

From (I14.63) we need for the transversality condition to be satis�ed that

� > (1� �)(�� � 1)��L:

These two inequalities imply that

��L�� � (1 + �(�� � 1))��
2� �
1� �L > (1� �)(�� � 1)��L:

This however is a contradiction, as 2��1�� > 1. This shows that we can never have z(t) < z�.
Now suppose that z(t) > z�. Consider �rst the case where (I14.76) is satis�ed. Then it

is clear that z(t) increases over time. To see that z(t) will converge towards to �� 2��1��L, note
that (I14.75) implies that

lim
z(t)!�� 2��

1��L
_z(t) = 0;

as the RHS of (I14.75) is �nite. Hence, z(t) = �� 2��1��L at the BGP equilibrium. However,
the same steps as above show that this violates the transversality condition. Finally suppose
that z(t) > z� and (I14.76) is violated. As z(t) decreases over time, there will be some �t
such that z(�t) = z� or z(�t) = �� 2��1��L. Either way this implies that z(t) is converging to a

constant that satis�es z(t) = z � �� 2��1��L. As shown above, this is a contradiction as the
transversality condition is violated. Hence the di¤erential equation in (I14.75) has a unique
solution which satis�es the transversality condition and has positive research expenditures
on the entire equilibrium path. This solution is given by z(t) = z�. This proves that this
economy does not have transitional dynamics and that growth is always balanced.

The economics of this result are intuitive. As in most models featuring endogenous
growth, the only technology to save for the future are resources spent on research. Hence,
the current interest rates and the amount of resources spent on research are closely related.
If interest rates decline over time, consumers - taking those interest rates as given - postpone
their consumption to the future as savings get less attractive over time. However, for a
given level of average quality Q(t) (which is the appropriate state variable in this economy)
we cannot have both higher consumption and higher investment into research in the future.
Hence, interest and replacement rates have to go hand in hand which - from (I14.70) - is
only possible if both are constant over time, i.e. if growth is balanced. This shows that the
general equilibrium e¤ects are a crucial force towards balanced growth.
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Exercise 14.15, Part (d). Let us now focus on the social planner�s problem to derive
the Pareto optimal growth rate. As the production side is identical to the one studied in
the book, we refer to the analysis there to show that net output which can be distributed
between consumption and research expenditures is given by (see (14.25))

Y S(t)�XS(t) = (1� �)�1=��QS(t)L = ZS(t) + CS(t); (I14.78)

where again the superscript denotes the social planner�s allocation. This already shows that
the social planner�s appropriate state variable is also average quality Q(t). The law of motion
of aggregate quality is given by

_Q(t) = �(�� � 1)ZS(t):
Substituting for ZS(t) from (I14.78), the social planner solves the problem

max
[CS(t);Q(t)]1t=0

Z
exp(��t)C

S(t)1�� � 1
1� � dt

s.t. _Q(t) = �(�� � 1)
h
(1� �)�1=��QS(t)L� CS(t)

i
:

The current value Hamiltonian for this problem is given by

Ĥ(QS ; CS ; �S) =
CS(t)1�� � 1

1� � + �S(t)[�(�� � 1)((1� �)�1=��QS(t)L� CS(t))]:

The su¢ cient conditions for a maximum are the two �rst-order conditions and the transver-
sality condition

ĤC(Q
S ; CS ; �S) = CS(t)�� � �S(t)�(�� � 1) = 0 (I14.79)

ĤQ(Q
S ; CS ; �S) = �S(t)�(�� � 1)(1� �)�1=��L = ��S(t)� _�S(t) (I14.80)

0 = lim
t!1

[exp(��t)�S(t)QS(t)]:

From (I14.80) we get that

� _�
S(t)

�S(t)
= �(�� � 1)(1� �)�1=��L� �;

so that - using (I14.79) - we arrive at

_CS(t)

CS(t)
= �1

�

_�S(t)

�S(t)
=
1

�
(�(�� � 1)(1� �)�1=��L� �): (I14.81)

In the decentralized equilibrium, interest rates were given by

r� =
�(�� � 1)�L��� + �
1 + �(�� � 1)�1

: (I14.82)

In order to judge if the social planner would want to induce faster or slower growth compared
to the equilibrium allocation, we need to compare (I14.82) with the analogous expression in
(I14.81), i.e.

�(�� � 1)(1� �)�1=��L Q
�(�� � 1)�L��� + �
1 + �(�� � 1)�1

:

From here it is seen that the comparison is ambiguous, i.e. the equilibrium growth rate can
be too small or too big. The reason is that we still have the two e¤ects always present in the
Schumpeterian models of creative destructions. The appropriability e¤ect (i.e. monopolistic
intermediaries do not capture the whole bene�ts of the innovation) tends to reduce equilibrium
growth, the business-stealing e¤ect (i.e. new entrants do not take account of the e¤ect that
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they are replacing an old incumbent) tends to make growth excessive. Hence, as in the
baseline version of the model no unambiguous comparison can be made.

Exercise 14.18

Exercise 14.18, Part (a). An equilibrium in this economy is a collection of time paths

of allocations and prices
�
Y (t j q) ; C (t j q) ; x (t j q) ; LE (t j q) ; LR (t j q) ;

px (t j q) ; r (t j q) ; w (t j q)

�1
t=0

given the

current quality and a deterministic path for quality [q (t)]t such that the representative con-
sumer maximizes utility, the �nal good sector maximizes pro�ts given prices, the machine
producer chooses quantities and prices to maximize pro�ts, the R&D sector hires scientists
to maximize pro�ts and all markets clear.

The representative consumer�s optimization gives the Euler equation

C (t j q)�� = (1 + r) exp (��)C (t+ 1)��

and the transversality condition

lim
t!1

exp (��t)C (t)�� V (t j q) = 0:

Since the consumer is risk neutral, we have � = 0, hence the Euler equation is satis�ed if and
only if the interest rate is the inverse of the time discount rate, i.e.

1 + r (t j q) = exp (�) , (I14.83)

hence the interest rate is constant in equilibrium.
The �nal good producers�maximization yields the following demand for machines

x (t j q) = q (t)LE (t) p
x (t j q)�1=� .

To reduce the number of cases we need to study, we assume that once a new technology is
invented, the old vintage gets destroyed so the new monopolist can price at unconstrained
monopoly prices. Since the machine producer faces isoelastic demand, its pricing decision is
given by

px (t j q) = 1

1� � = 1,

which also gives x (t j q) = qLE (t) and per-period pro�ts

� (q) = �qLE (t) :

Wages are then also given by

w (t j q) =
�

1� �
x (t j q)1�� (q (t)LE (t))�

LE (t)
(I14.84)

=
�

1� � q.

The output of the �nal good sector is given by

Y (t j q) = 1

1� � qLE (t j q) . (I14.85)

Since the monopolist gets replaced in the next period with certainty, its value function is
only the period pro�ts, that is

V (t j q) = � (t j q) = �qLE (t j q) .



Solutions Manual for Introduction to Modern Economic Growth 263

Given current quality q, the R&D sector solves

�R (t j q) = max
LR

1

1 + r
V (t+ 1 j � (LR) q)� LRw (t j q)

= max
LR

1

1 + r
�� (LR) qLE (t+ 1 j q)� LRw (t j q)

which yields the �rst-order condition

w (t j q) � 1

1 + r
��0 (LR (t j q)) qLE (t+ 1 j q) with equality if LR (t j q) > 0. (I14.86)

Note that, di¤erent than in the version in the book (where R&D was characterized by free
entry), in this case the R&D sector makes pro�ts in equilibrium. We assume that shares
of R&D �rms are held equally across households, so pro�ts accrue to the representative
consumer and the presence of R&D pro�ts changes nothing signi�cant in the analysis.

We next consider a BGP equilibrium on which the allocation of labor is constant over time,
that is LE � LE (t) and LR � LR (t) for all t. Since � (LR) satis�es the Inada conditions,
Eq. (I14:86) always has an interior solution, which leads to

(1� �) �0 (LR) (L� LR) = exp (�) , (I14.87)

where we have used Eq. (I14:83), Eq. (I14:84) and the labor market clearing condition
LE + LR = L. The preceding expression shows that, in this economy, the BGP allocation of
LR only depends on the monopoly markups, the discount rate, and the R&D technology. In
particular, it does not depend on the quality of the existing machine, since, on the one hand
higher quality machines yield more pro�ts but on the other hand, higher quality machines
raise wages and make further innovations costlier.

The equilibrium is completely characterized by (I14:87). Once we determine LR and LE ,
output is given by (I14:85) and consumption is given by the net output

C (t j q) = Y (t j q)� (1� �)x (t j q)

=

�
1

1� � � (1� �)
�
qLE .

Each period the quality, and hence output, consumption and wages, all grow by a factor of
� (LR). We also need to check the transversality condition, which will be satis�ed if

lim
t!1

exp (��t)C (0)� (LR)t = 0.

It follows that the constant growth path we have described is an equilibrium with positive
growth whenever the following parametric restriction is satis�ed

0 < ln (� (LR)) < �.

Exercise 14.18, Part (b). We �rst calculate the optimal choice of machine production
by the social planner, given the quality of the machine line q and employment in production
LE (t). For this static problem, the social planner solves

max
x

C (t j q) = 1

1� �x
1�� (qLE (t))

� � (1� �)x,

which implies
x (t j q) = qLE (t) (1� �)�1=�

and
C (t j q) = � (1� �)�1=� qLE (t) .
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Next, we consider the dynamic trade-o¤ for the social planner and determine the alloca-
tion of labor between the R&D and the employment sectors. The social planner�s dynamic
problem is

max
fLR(t);LE(t)g1t=0

1X
t=0

exp (��t)C (t)

s.t. C (t) = � (1� �)�1=� q (t)LE (t) ,
q (t+ 1) = q (t) � (LR (t)) ,

LR (t) + LE (t) = L for all t � 0.

The �rst-order condition for LR (t) yields

� (1� �)�1=� q (t) = �0 (LR (t)) q (t) exp (��)� (1� �)�1=� LE (t+ 1) , for all t � 0

We conjecture a solution to the �rst-order conditions such that LE � LE (t) and LR � LR (t)
is constant for all t. Under this conjecture the previously displayed �rst-order condition
simpli�es to

�0 (LR) (L� LR) = exp (�) , (I14.88)

which has a unique intermediate solution, verifying our conjecture. Since the social planner�s
problem is weakly concave, it follows that the conjectured path that satis�es the �rst-order
conditions is optimal if the transversality condition ln� (LR) < � also holds. Then, the
social planner�s allocation of employment in the R&D sector is also constant and given as
the solution to Eq. (I14:88). Quality, output and consumption grow by a factor of � (LR).

Comparing (I14:87) and (I14:88), since �0 is a decreasing function, we have

LSR > LEqR ,

and consequently �
�
LSR
�
> �

�
LEqR

�
. The social planner always employs more labor in R&D,

achieves a larger size of innovation and a higher growth rate. The reason is the following.
The social planner�s static allocation is not a¤ected by monopoly distortions, captured by
the (1� �) term in (I14:87) that is absent from (I14:88). Hence the social planner produces
more machines for a given quality level. Consequently, every unit of quality innovated is more
valuable to the social planner than an to equilibrium �rm which implies that social planner
innovates more and achieves a higher growth rate.

Note that in the variants of this model with stochastic innovations, there is a counteracting
replacement e¤ect: in equilibrium, innovation is only done by outsiders which do not take
into account that they are replacing an existing producer. With stochastic replacement, with
some probability there is no innovation and the incumbent continues to operate. The social
planner takes this into account and tends to innovate less than the market (controlling for the
monopoly distortion e¤ect above). However, with deterministic innovations, the incumbent
is replaced for sure so that the replacement e¤ect is absent. Also, in some other variants
of this model, there is a counteracting externality e¤ect: when the outside R&D market
is competitive and when there are aggregate negative externalities in the R&D technology,
the social planner tends to innovate less than the market since each �rm fails to take its
negative e¤ect on the innovation possibilities frontier of future entrants into account. Here,
the R&D technology requires a single �rm to do the innovation, hence the R&D market
internalizes the externalities in R&D technology. Since both counteracting forces are absent
from the model, the only remaining force is the monopoly distortion e¤ect and consequently
the equilibrium unambiguously involves less innovation than in the Pareto optimal allocation.
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Aghion and Howitt (1992) also discuss these issues in their seminal contribution on models
of Schumpeterian growth.

Exercise 14.19*

Exercise 14.19, Part (a). As the economy is exactly the same as in Exercise 14.18
above, we will not derive the static equilibrium conditions again. There we showed that
risk-neutrality implies that interest rates are given by

r(t) = r = exp(�)� 1; (I14.89)

and that equilibrium pro�ts and wages were given by

w(tjq) =
�

1� � q(t) (I14.90)

�(tjq) = �q(t)LE(t): (I14.91)

The basic new feature in this model is the labor market. The speci�cation of technology
means to capture that technological progress is both a (in this model the only) source of
growth but that it imposes challenges on the economy in the short run. We could think of
these as changes in the sectoral composition or in the required skill of the workforce. Here
we simply capture this in a very reduced form way by assuming that if an innovation comes
around, a fraction ' of the workers employed in the �nal good production will be unemployed
to get retrained. Hence let us refer to LE(t) as the workers employed in production and to
LU (t) as the number of unemployed workers so that LR(t) +LE(t) +LU (t) = L. To capture
the retooling necessities, we have to introduce a new state variable, namely the state of the
economy. In particular let us de�ne the variable �(t) 2 fU;Eg, where we denote a state where
there has been no innovation last period by E (as there is full employment) and a state where
an innovation occurred in the last period by U (as there will be unemployment). Formally,

�(t) =

�
U if q(t) > q(t� 1)
E if q(t) = q(t� 1) :

Using this notation, we can express the number of unemployed people as

LU (t) =

�
'(L� LR(t)) if �(t) = U

0 if �(t) = E
: (I14.92)

Hence the timing is the following: at time t labor is allocated according to LR(t); LU (t) and
LE(t). With probability �(LR(t)) there is an innovation in t so that tomorrow�s quality will
be given by q(t + 1) = �q(t). In this case, some people of the workforce allocated to �nal
sector employment will be unemployed as they have to learn to work with the new machines
of higher quality. If there is no innovation we have that q(t + 1) = q(t) and all workers
allocated to the �nal good sector can be used in production, i.e. LE(t+ 1) = L� LR(t+ 1).

An equilibrium in this economy consists of time paths of allocations
[Y (t); C(t); X(t); q(t); LE(t); LR(t)]

1
t=0, a value function V (tjq; �) and prices

[px(tjq; �); w(q); r(t)]1t=0 such that the representative consumer maximizes utility taking
prices as given, the �nal good producers maximize pro�ts at given prices, the monopolistic
intermediary sector maximizes pro�ts, the R&D sector hires the optimal amount of labor
(researchers) given the value function and all markets clear. A BGP allocation is an
allocation where the �ow rate (or probability) of innovation is constant. Note that in this
economy this does not mean that all variables grow at a constant rate. As there is only one
sector in this economy, there either will be an innovation or there will not be one. Along
the BGP, the probability of an innovation is constant but its actual occurrence is still a
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random variable. Note that both the value function and intermediary prices are functions of
�, whereas wages are not (as seen in (I14.90)).

Exercise 14.19, Part (b). Let us now solve the model. To do so we have to �nd the
value function to characterize the equilibrium behavior of research �rms. So what is the
value of being the monopolist with a machine of quality q? The current pro�ts are given by
(I14.91). Arrow�s replacement e¤ect again implies that the current incumbent will not be
active in research. Hence, from the incumbent�s point of view, the probability that there is an
innovation in time t is the same as the probability that he is replaced next period. Denoting
the replacement probability for an incumbent with quality q in state � in time t by p(t; q; �),
the value of being a monopolist is given by the system of functional equations

V (t; q; U) = �(t; q; U) +
1

1 + r
(1� p(t; q; U))V (t+ 1; q; E)

V (t; q; E) = �(t; q; E) +
1

1 + r
(1� p(t; q; E))V (t+ 1; q; E);

where we used that interest rates are constant and that per-period pro�ts depend on the
state � via the available labor supply (see (I14.91)). To understand why we need two func-
tional equations to pin down the value of innovation, note that in the �rst period of being
a monopolist the state of the economy is �(t) = U as the monopolist himself had the inno-
vation in the last period. Hence, in his �rst period of using his innovation, the pro�ts are
lower as the economy is characterized by unemployment. In case the monopolist does not
get replaced (which happens with probability 1� p(t; q; U)), the monopolist remains the sole
provider of the good and gets a value V (t+1; q; E), which captures the fact that the quality
stays the same (as the monopolist does not engage in research) and conditional on survival
the economy�s state is �(t+1) = E as there was no innovation in t (otherwise the monopolist
would have been replaced). The value of being the monopolist in state E with quality q then
consists of the per-period pro�ts �(t; q; E) and the continuation value V (t + 1; q; E) which
accrues with probability 1� p(t; q; E).

Let us now characterize the BGP allocation in this economy. Above we de�ned the BGP
as an equilibrium where the probability of an innovation is constant. The probability of
innovation is given by the probability of replacement, i.e. is given by

p(t; q; �) = �(LR(t; q; �)):

As the probability of replacement is only a function of the number of researchers employed,
for p(t; q; �) to be constant we therefore need that

LR(t; q; �) = L�R, 8t; q; �;

i.e. along the BGP the number of researchers has to be constant. Using the market clearing
condition of the labor market and (I14.92) we get that along the BGP the number of employed
production workers and total unemployment is given by

LE(t; q; E) = LE(E) = L� L�R (I14.93)

LE(t; q; U) = LE(U) = (1� ')(L� L�R) (I14.94)

LU (t; q; E) = LU (E) = 0

LU (t; q; U) = LU (U) = '(L� L�R):

Hence, along the BGP, employment in production and unemployment is only a function of
the state of the economy �(t) but independent of time and the current frontier quality q.
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Using this, we can solve for the BGP per-period pro�ts from (I14.91) as

�(t; q; E) = �(q; E) = �qLE(E) = �q(L� L�R)
�(t; q; U) = �(q; U) = �qLE(U) = �q(1� ')(L� L�R):

Denoting the constant BGP innovation probability by

pBGP (t; q; �) = �(L�R) = p�;

the value functions above are independent of time and only a function of the current quality
q and the state of the economy �, i.e.

V (q; U) = �(q; U) +
1

1 + r
(1� p�)V (q; E) (I14.95)

V (q; E) = �(q; E) +
1

1 + r
(1� p�)V (q; E): (I14.96)

As (I14.96) implies that

V (q; E) =
1 + r

r + p�
�(q; E) =

1 + r

r + p�
�qLE(E);

(I14.95) can be solved as

V (q; U) = �qLE(U) +
1� p�
r + p�

�qLE(E)

= (1� '+ 1� p
�

r + p�
)�qLE(E);

where we have used (I14.93) and (I14.94). Given this value function, research �rms chose the
number of researchers LR to solve the problem

max
LR

�(LR)
1

1 + r
V (�q; U)� w(t)LR: (I14.97)

To understand (I14.97), note that if a research �rm employs LR researchers, it achieves an
innovation with probability �(LR): This innovation has a value of V (�q; U), which accrues
only in the next period and hence it is discounted. The wage bill however has to be paid for
in the present. Hence, the number of researchers is allocated according to the FOC1

�0(LR)
1

1 + r
(1� '+ 1 + r

r + p�
)��q(t)LE(E) =

�

1� � q(t);

or after simplifying this expression

(1� �)�0(LR)(1� '+
1 + r

r + p�
)�LE(E) = 1 + r: (I14.98)

Note in particular that equilibrium wages are not a function of �(t) but only of the current
quality q(t). Along the BGP we have that p� = �(L�R) and that LE(E) = L � L�R: Using
this, we can rewrite the optimality condition (I14.98) as

(1� �)�0(L�R)(1� '+
1 + r

r + �(L�R)
)�(L� L�R) = 1 + r; (I14.99)

which determines the BGP number of researchers L�R as a function of parameters only. In
particular, L�R is neither a function of time, nor of the current quality q(t) as required along
the BGP. As we assumed that � is strictly concave, the LHS of (I14.99) is strictly decreasing
in LR. Furthermore let us assume an Inada-type condition limL!0 �

0(L) = 1. Then it is
1As �(:) is concave, the FOC is also su¢ cient to characterize the optimum.
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clear that there will be unique value L�R that solves (I14.99). Also, if we compare (I14.99)
with the analogous condition in Exercise 14.18, we see that the structure of the two economies
is very similar. There the crucial equation pinning down the allocation in the labor market
was given in (I14.87) as

(1� �)�0(LR)�(L� L�R) = exp(�) = 1 + r:

If we let ' = 0 we see that the only di¤erence is the discount rate which now incorporates the
fact that patents expire with probability p� = �(L�R) instead of probability one (as implicit
in Exercise 14.18).

Exercise 14.19, Part (c). The dynamic behavior of unemployment was already charac-
terized in (I14.92). There we showed that unemployment is positive whenever the workforce
has to be retrained for the new technology and zero otherwise. But in this one-sector Schum-
peterian model, innovations evolve stochastically. It is in this sense that the economy will
feature bursts of unemployment followed by periods of full employment. Whenever a new
innovation occurs (which happens with probability �(L�R)), the economy will experience un-
employment in the following period. Whenever, no innovation takes place, all workers will
�nd jobs in the �nal good sector and the economy will experience full employment.

Exercise 14.19, Part (d). As in the baseline Schumpeterian model, total output along
the BGP is proportional to quality, i.e.

Y (t; q; �) = Y (q; �) =
x(tjq; �)1��(q(t)LE(t; q; �))�

1� �

=
q(t)LE(�)

1� � :

Along the BGP, the number of workers LE(�) is given in (I14.93) and (I14.94), i.e. the
number of production workers changes stochastically. To characterize the average growth
rate, note that conditional on being in state �, the expected growth rate of the economy
along the BGP is given by

g(�) =
�(L�R)Y (�q; �) + (1� �(L�R)Y (�q;E)

Y (q; �)
� 1

=
�(L�R)�qLE(U) + (1� �(L�R)qLE(E)

qLE(�)
� 1

=
[�(L�R)�(1� ') + (1� �(L�R)]LE(E)

LE(�)
� 1: (I14.100)

To solve for the average growth rate we need to derive the unconditional probabilities pU and
pE that the economy is in state U and E respectively. Those probabilities pU and pE have
to satisfy the equations

1 = pU + pE

pU = �(L�R)p
U + �(L�R)p

E ;

where the �rst one is the simple identity that there are only two states and the second one
follows from the fact that the probability of being in state U tomorrow is independent of the
current state. Hence, we get that

pU = �(L�R) and p
E = 1� �(L�R): (I14.101)
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Using Eq. (I14.100), the average growth rate of the economy is therefore given by

g = pUg(U) + pEg(E)

= �(L�R)g(U) + (1� �(L�R))g(E)

=

�
�(L�R)

(1� ') + 1� �(L
�
R)

�
[�(L�R)�(1� ') + (1� �(L�R)]� 1

=

�
�(L�R)'

(1� ') + 1
�
(�(L�R) (�(1� ')� 1) + 1)� 1

Let us assume that �(1�') > 1. In this context this is a sensible assumption, because it means
that quality improvements are su¢ ciently large such that the increase in labor productivity
q dominates the e¤ect of having a smaller labor force due to the retooling necessity. Then it
is clear that

@g

@L�R
> 0;

as �(:) is increasing in the number of researchers employed. Hence, to analyze the e¤ect of
a change of the discount rate on the growth rate of the economy, we have to determine how
the equilibrium number of researchers changes if the discount rate declines.

The allocation of researchers is determined by (I14.99), which implies that L�R is de-
creasing in �. To see this, note �rst interest rates are increasing in the discount rate � (see
(I14.89)). For a given level of researchers LR, the LHS of (I14.99) is decreasing in r and the
RHS is increasing in r. Hence, for (I14.99) to be satis�ed at higher interest rates, the number
of researchers has to decline as the LHS is decreasing in LR. This shows that

@L�R
@r

< 0;

and hence that a decline in the discount rate increases the number of researchers employed
and hence the growth rate of the economy. This is an intuitive result: as � decreases, the
interest rate declines so that pro�ts which accrue in the future are worth more today (when
expenditures for researchers are made). This increases the incentives to invest into research,
which in turn increases the economy�s growth rate.

Let us now consider the average unemployment rate in this economy. As the unemploy-
ment rate depends only on the state of the economy � and is given by

u(�) =

�
'
L�L�R
L if � = U
0 if � = E

;

the average unemployment rate along the BGP is

�u = pUu(U) + pEu(E)

= �(L�R)'
L� L�R
L

;

where we used the unconditional probabilities derived in (I14.101). Hence,

@�u

@L�R
=
'

L

�
�0(L�R) (L� L�R)� �(L�R)

�
: (I14.102)

To see that the last term is positive, note that L�R solves the problem in (I14.97) and that
the research �rms�maximand is given by

��(LR) (L� L�R)� w(t)LR;
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where

� =
1

1 + r
(1� '+ 1� p

�

r + p�
)��q:

As
@

@LR
(��(L�R) (L� L�R)� w(t)L�R) = 0

we will have that
@

@LR
��(L�R) (L� L�R) = w(t) > 0;

which implies that
�0(L�R) (L� L�R)� �(L�R) > 0:

Hence, the average unemployment rate is increasing in the number of researchers employed
(see (I14.102)). Above we showed that a decline in the discount rate will increase the equi-
librium number of researchers. Hence, the average unemployment rate is higher, when the
discount rate and hence the equilibrium interest rate declines. Intuitively speaking, this
model features unemployment only because new technologies require retooling. As a decline
in � causes a higher probability of innovation, retooling occurs more often so that the unem-
ployment rate is higher.

Exercise 14.20*

The value function is still de�ned by the HJB equation

r(t)V (t; q)� _V (t; q) = �(t; q)� z(t)V (t; q):
Even in an equilibrium with cycles we need that _V (t; q) = 0 as interest rates and pro�ts are
constant and current incumbent�s quality q does not improve. Hence, the value of owning a
patent is given by

V (t; q) =
�(t; q)

�+ z(t)
:

As even and odd innovations determine the allocation of researchers and workers, both the
probability of replacement and the per period pro�ts di¤er between odd and even innovations.
The analysis in Section 14.2 established that

�(t; q) = �qLE(t):

Let us denote the pro�ts in times when odd innovations are in place by �1(q) and the pro�ts
in times of even numbers of innovation by �2(q). As market labor clearing requires that
LE(t) = L� LR(t), those pro�ts are given by

�1(q) = �q(L� L1R(t)) and �2(q) = �q(L� L2R(t)):
Similarly, we still have that z(t) = �(LR(t))LR(t) so that

z1 = �(L1R)L
1
R and z

2 = �(L2R)L
2
R;

where again the superscripts refer to times of odd and even innovations. Using those results,
we get that

V 1(q) =
�q(L� L1R)
�+ �(L1R)L

1
R

and V 2(q) =
�q(L� L2R)
�+ �(L2R)L

2
R

(I14.103)

which veri�es equation (14.31).2

2Note that there is a small typo in equation (14.31) in that the argument of the value function should be
q and not �q.
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Let us now turn to the free entry condition. Consider a �rm when currently an odd
numbered innovation is used in production, i.e. a �rm thinking about creating an even
numbered innovation. Taking as given the aggregate allocation of workers (L1E ; L

1
R), the free

entry condition requires that
�(L1R)V

2(�q) = w(q):

To see this, note that employing one researcher at costs w(q), yields a �ow rate of innovation
given by �(L1R). Note that L1R determines the �ow rate because we are considering an
equilibrium where L1R denotes the number researchers employed when an odd numbered
innovation is in place. Conditional on being successful, the value of the innovation is given
by V 2(�q), as the current quality q is improved upon (i.e. the new entrant has a quality of
�q) and he gets the value of an even numbered innovation. Similarly we have

�(L2R)V
1(�q) = w(q);

which, together with w(q) = �
1�� q and (I14.103) yields equation (14.32) as required.

Exercise 14.21*

Exercise 14.21, Part (a). The crucial equilibrium condition to determine the allocation
of labor between research and the �nal good sector is the free entry condition into research.
In (14.32) this equilibrium condition was given as

1 = �
�
L1R
� � (1� �) �L� L2R�

�+ �
�
L2R
�
L2R

= �
�
L2R
� � (1� �) �L� L1R�

�+ �
�
L1R
�
L1R

: (I14.104)

From (I14.104) we get that L1R and L
2
R have to solve

�
�
L1R
� (1� �2)
�+ �

�
L2R
�
�2L

= �
�
L2R
� (1� �1)
�+ �

�
L1R
�
�1L

;

where we de�ned �i as the labor share working in the research sector in the respective period

i, i.e. �i =
LiR
L . Now suppose for simplicity that �(:) is given by

�(L) = �L�1: (I14.105)

Note that �(:) is decreasing as required if �(:) is supposed to represent some negative exter-
nality in the research process. Using (I14.105), the �rst term of (I14.104) simpli�es to

1 =
�

�1L

� (1� �) (1� �2)L
�+ �

=
�� (1� �)
�+ �

1� �2
�1

:

The second one is analogously given by

1 =
�

�1L

� (1� �) (1� �2)L
�+ �

=
�� (1� �)
�+ �

1� �1
�2

:

Now let � be given by
� =

�

�(1� �)� 1 ;

which is positive as long as innovations are drastic enough, i.e. �(1 � �) > 1. Then we get
that equilibrium requires that

1 =
1� �2
�1

=
1� �1
�2

;

which has the symmetric solution �1 = �2 = 1=2 and the asymmetric solution �1 = 3=4 >
1=4 = �2 (and of course the analogous one where �2 = 3=4 > 1=4 = �1). Hence in this
economy there is an equilibrium with endogenous cycles.
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The intuition for such an equilibrium is as follows: as both the costs of engaging in
research w(q) and the value of having a patent V i(q) are proportional to current quality
q, the basic force of generating endogenous cycles is that �winning� a patent when it is
hard to get should have bigger bene�ts (and vice versa). Hence consider the case where
�1 = 3=4 > 1=4 = �2. This means that there are many R&D workers for even numbered
innovations (i.e. many research �rms compete to improve upon an odd numbered technology).
As there are congestion e¤ects in the research technology (i.e. �(:) is decreasing), ceteris
paribus it will be less pro�table to do research for odd numbered innovations. Hence, doing
so can only be an equilibrium if the bene�ts of receiving a patent with an odd numbered
innovation are higher. This however is exactly satis�ed when �2 < �1 as this implies that
there are more workers employed in the production sector if an even numbered innovation is
in place. And as the amount of intermediaries produced is increasing in the employed labor
force, monopolistic pro�ts will be higher, the higher the labor force. In particular, pro�ts
are given by �(t; q) = �qLE(t) (see the analysis in Section 14.2). Hence, in the proposed
equilibrium it is harder to win the competition for an even numbered innovation but the
prize of doing so is also higher. In equilibrium these e¤ect balance out so that �rms are
exactly indi¤erent between entering the research market in odd or even times.

Exercise 14.21, Part (b). That there is always an equilibrium with constant research
in case an equilibrium featuring cycles exists follows from the free entry condition given in
(I14.104). The equilibrium requirement is that �rms should be indi¤erent between engaging
in R&D or not in every period. Using the free entry condition

1 = � (LR)
� (1� �) (L� LR)
�+ � (LR)LR

;

we have to establish that the equation

0 = �(LR) [� (1� �) (L� LR)� LR]� � � h(LR); (I14.106)

has some solution LR. To see that this is the case, note �rst that

h(L) = ��(L)L� � < 0; (I14.107)

so that research is not pro�table in case everyone is employed in the research sector. Now
suppose there was no solution to (I14.106). As h is continuous and negative for LR = L (see
(I14.107)), this is only possible if

h(LR) = �(LR) [� (1� �) (L� LR)� LR]� � < 0 8LR 2 [0; L]:

But this is a contradiction. Suppose for example that L1 > L2. Using (I14.104) we then
know that

0 = �(L1R)� (1� �)
�
L� L2R

�
� �(L2R)L2R � �

= h(L2R) +
�
�(L1R)� �(L2R)

�
� (1� �)

�
L� L2

�
< h(L2R);

as under assumption that L1R > L2R we get that �(L
1
R) � �(L2R) < 0. This contradicts the

hypothesis that there is no solution to (I14.106) and proves that there exists an equilibrium
with constant research whenever there exist equilibria with endogenous cycles. Note that
this also proves that the solution LR satis�es LR 2 (L2R; L1R) when L2R < L1R.
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Exercise 14.21, Part (c). Now suppose that there are no numbers L1R and L
2
R, such

that

1 = �
�
L1R
� � (1� �) �L� L2R�

�+ �
�
L2R
�
L2R

= �
�
L2R
� � (1� �) �L� L1R�

�+ �
�
L1R
�
L1R

: (I14.108)

To show that there exists an equilibrium with oscillatory dynamics which converges to the
steady state L�R, let us �rst de�ne the function g(:) implicitly via

1 = � (x)
� (1� �) (L� g(x))
�+ � (g(x)) g(x)

:

Intuitively, if the current number of researchers is equal to x, the free entry condition is
satis�ed when there are g(x) researchers in the next period. Note that by de�nition of the
steady state solution L�R we have

L�R = g(L�R): (I14.109)

Furthermore we have that
g0(x) < 0; (I14.110)

i.e. the more researchers are employed in the current period (and hence, the harder it is to
win the patent), the less researchers have to be employed in the future as this increases the
pro�tability of the innovation. Now consider a sequence of equilibrium research allocations
fLR(t)g1t=1. We are going to show that this sequence features oscillatory dynamics and
that it converges to the steady state equilibrium allocation L�R. Note that by construction,
fLR(t)g1t=1 has to satisfy

LR(t+ 1) = g(LR(t));

as otherwise the free entry condition would not be satis�ed. So suppose that LR(1) < L�R.
Using (I14.109) and (I14.110) we get that

LR(2) = g(LR(1)) > g(L�R) = L�R:

Similarly we get that
LR(3) = g(LR(2)) < g(L�R) = L�R:

We are now going to show that in fact

LR(1) < LR(3) < L�R;

i.e. there is no overshooting in the sense that LR(3) < LR(1). Note �rst that

LR(3) 6= LR(1)

as otherwise LR(1) and LR(2) would be two solutions as in Part (a), i.e. there would be a
two-period endogenous cycle. However, we assumed that those solutions do not exist. Hence,
let us suppose that

LR(1)� LR(3) = LR(1)� g(g(LR(1)) � m(LR(1)) > 0: (I14.111)

First of all note that feasibility requires that

m(0) = �g(g(0)) � 0: (I14.112)

However we cannot have g(g(0)) = 0 as otherwise there was a two-period endogenous cycle
(0; g(0); 0; g(0); :::). Hence,

m(0) = �g(g(0)) < 0:
As m(:) is continuous, (I14.111) and (I14.112) imply that there exists some ~L such that
m(~L) = 0, i.e.

9~L 2 [0; LR(1)) : ~L = g(g(~L)):
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This however just says that the sequence f~L; g(~L); ~L; g(~L):::g is an equilibrium so that the
economy would have a two-period endogenous cycle, which we assumed would not exist. This
shows that

LR(3) > LR(1).

With a similar argument we can show that

LR(4) < LR(2):

Hence, the equilibrium allocation fLR(t)g1t=1 can be characterized by the two sequences
fLR(1+ 2i)g1i=0 and fLR(2+ 2i)g1i=0, where the former is strictly increasing and the latter is
strictly decreasing. As LR(t) 2 [0; L], i.e. those are sequences on a compact set, and

LR(2 + 2i) = g(LR(1 + 2i)) � g(L�R) = L�R � LR(1 + 2i)

those sequences will converge to some limit

lim
i!1

LR(1 + 2i) = LOR

lim
i!1

LR(2 + 2i) = LER;

where

LOR � LER:

To argue that LOR = LER = L�R, simply observe that if this was not the case, we would have
found L1 = LOR and L2 = LER which would solve the two equations in (I14.108) contradicting
our assumption that such solutions did not exist. Hence, this oscillatory equilibrium indeed
converges to the one characterized in Part (b).

To see the intuition for such oscillatory dynamics, consider the incentives for research
�rms if they expect that there will be a lot of research in the future. This has two e¤ects
on the value of a patent. First of all, pro�ts will be low, as demand of intermediaries is
proportional to employment. Secondly, the probability of losing the patent is higher. Hence,
both e¤ect cause patents to be less valuable. So when would research �rms be willing to
spend resources trying to improve upon the existing technology? Only when doing so is
cheap in the sense that workers generate a high �ow rate. But this is only the case when
few research �rms are active. Similarly, when there will be only little research in the future,
the new technology will be worth a lot and research �rms compete for researchers until the
�ow rate is low enough to satisfy the free entry condition. Hence, there is a natural tendency
that in an equilibrium where the number of researchers is not constant, the dynamics will be
oscillatory.

Exercise 14.22*

Consider now the following market structure: at every given point in time t, there is an
incumbent producing at current quality q earning pro�ts �(t; q) = �LE(t)q and there is a
single �rm that decides if it wants to incur the research expenditures to improve upon the
incumbent�s quality. By Arrow�s replacement e¤ect it will still be true that the incumbent
will not invest in research so that the value of having a patent will still be given by

V (q; t) =
�q(L� LR(t))

�+ �(LR(t))LR(t)
:
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Note that each incumbent takes LR(t) as given as this refers to the number of researchers
the next (potential) entrant chooses. Hence, the value of a successful innovation is given by

V (q) =
�q(L� �LR)
�+ �(�LR)�LR

;

where �LR is the employment level of researchers the next entrant will chose (in equilibrium).
Additionally we dropped the time argument from the value function to stress the fact, that
V will not be a function of time conditional on quality and labor allocations. Let us now
consider the choice of research e¤orts by the single entrant. Taking wages as given, the
entrant solves the problem

max
LR

�(LR)LRV (�q)� LRw(q):

The �rst-order condition is given by

�0(LR)LR
��q(L� �LR)
�+ �(�LR)�LR

+ �(LR)
��q(L� �LR)
�+ �(�LR)�LR

� �

1� � q = 0: (I14.113)

This condition will be su¢ cient to characterize the maximum, if �(LR)LR is concave. Let us
suppose that this is the case, so that (I14.113) characterizes the optimal choice of researchers
employed. To understand the di¤erences between competitive and monopolistic entry, note
�rst that aggregate research e¤orts will be lower if there is only a single entrant. Formally we
can see this, as the term �0(LR)LR ��q(L��LR)

�+�(�LR)�LR
is negative, so that (I14.113) cannot hold at the

competitive solution where �(LR) ��q(L�L
R)

�+�(LR)LR
= �

1�� q. Economically, this result is intuitive:
as the monopolistic entrant recognizes his own "congestion e¤ects" via �(:), she hires less
researchers. Nevertheless we see that qualitatively, the results of the competitive situation
will still hold. (I14.113) can be simpli�ed to

�0(LR)LR + �(LR) =
1

1� �
�+ �(�LR)�LR
(L� �LR)

: (I14.114)

By the concavity of �(LR)LR, the RHS of (I14.114) is decreasing in LR. Hence, (I14.113)
de�nes a function LR(�LR), i.e. depending on what the monopolistic entrants expects future
entrants to do, she will adjust her research e¤orts today. In particular note that nothing rules
out the existence of an equilibrium where the number of equilibrium researchers [LR(t)]1t=0
�uctuates over time, i.e. where the economy experiences endogenous cycles.

Exercise 14.26

Exercise 14.26, Part (a). As the new assumption about the incumbents� research
technology does only a¤ect the research side of the model, the static equilibrium for given
qualities [q(�; t)]1�=0 is unchanged. In particular it will still be true that monopolistic pro�ts
are given by

�(�; tjq) = �(q) = �Lq;

where we explicitly noted that pro�ts do neither depend on � nor t once current quality q
is controlled for. The value of owning a perpetual patent is still given by the HJB equation.
This however is dependent on incumbents�optimal research e¤ort, i.e. is given by

r(t)V (�; t j q)� _V (�; t j q) = �+max
z
f�(z)(V (�; t j �q)�V (�; t j q))� zqg� ẑ�(ẑ)V (�; t j q);
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where ẑ is the entrants�research e¤ort which incumbents take as given. Incumbents�research
e¤orts z� are implicitly de�ned by

z� = argmax
z
f�(z)(V (�; t j �q)� V (�; t j q))� zqg: (I14.115)

Let us furthermore assume that ẑ > 0, i.e. in equilibrium entrants will chose positive e¤ort.
We will show below that this will indeed be the case. In such an equilibrium, the free entry
condition for entrants has to be satis�ed with equality. As spending an amount of q yields
a �ow rate of innovation of �(ẑ) (where each entrant takes ẑ as given) and this innovation
increases the current quality to �q, the free entry condition is given by

�(ẑ)V (�; t j �q) = q: (I14.116)

Let us now conjecture that the value function V is not dependent on the speci�c sector and
linear in q, i.e. V (�; tjq) = V (tjq) = v(t)q. We will show that in equilibrium v(t) will in fact
be constant. But for now let us not assume that a priori. Then (I14.115) implies that

z�(t) = argmax
z
f�(z)(�� 1)v(t)� zg:

The necessary condition for an interior solution reads

�0(z�(t))(�� 1)v(t) = 1: (I14.117)

That this condition is also su¢ cient follows from the fact that we assume �(:) to be strictly
concave. Let us now show that there exists a unique BGP. We �rst show that there exists a
BGP and then that it is in fact unique. So suppose a BGP exists. Along the BGP interest
rates are constant and all variables grow at constant rates. Let us call gW the growth rate of
variable W . As we still have that x(�; tjq) = L, aggregate output is

Y (t) =
1

1� �

�Z 1

0
q(�; t)x(�; tjq)1��d�

�
L� =

1

1� �LQ(t)

and aggregate expenditures on machines X(t) are still given by

X(t) =

Z 1

0
 q(�; t)x(t; �jq)d� = (1� �)LQ(t);

where

Q(t) =

Z 1

0
q(�; t)d�:

Hence, Y (t) and X(t) are proportional to Q(t), so that gY = gX = gQ. That this also
implies that consumption and research expenditures have to grow at this rate follows from
the economies resource constraint which is given by

C(t) + Z(t) = Y (t)�X(t) = (2� �)�
1� � LQ(t):

Di¤erentiating this with respect to time and noting that gC and gZ are constant along the
BGP, we get that

gY =
_C(t)

C(t) + Z(t)
+

_Z(t)

C(t) + Z(t)

= gC
C(t)

C(t) + Z(t)
+ gZ

Z(t)

C(t) + Z(t)

= gC + (gZ � gC)
Z(t)

C(t) + Z(t)
: (I14.118)
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As gY ; gZ and gC are constant along the BGP and (I14.118) has to hold for all t,
Z(t)

C(t)+Z(t) is
also constant along the BGP. Hence Z(t) and C(t) grow at the same rate so that (I14.118)
shows that

g� = gY = gC = gZ = gQ:

From the consumer�s Euler equation we know that interest rates have to be constant
whenever consumption grows at a constant rate. Additionally, note that aggregate research
expenditures are given by

Z(t) = z�(t)Q(t) + ẑ(t)Q(t):

As Z(t) and Q(t) are growing at the same rate, this implies that z�(t)+ ẑ(t) is constant. We
now show that the optimality conditions for research �rms in fact imply that both z�(t) and
ẑ(t) are individually constant. From the entrants�free entry condition (I14.116) we get that

�(ẑ(t))V (�; t j �q) = �(ẑ(t))v(t)�q = q;

so that
�(ẑ(t))v(t)� = 1: (I14.119)

Combining this with the incumbents�optimality condition in (I14.117) we get that

�(ẑ(t))v(t)� = �0(z�(t))(�� 1)v(t);
so that

@ẑ(t)

@z�(t)
=
�00(z�(t))(�� 1)

�0(ẑ(t))�
> 0; (I14.120)

i.e. incumbents� and entrants� research expenditures are �aligned� in that they are posi-
tively correlated. The mechanism is of course the function v(t). The only reason for either
incumbents� or entrants� research e¤orts to increase is an increase in v(t). Hence, when-
ever incumbents increase their research e¤orts, entrants do so too. We saw however that
z�(t)+ ẑ(t) has to be constant along the BGP. Together with (I14.120) this implies that both
z�(t) and ẑ(t) have to be constant, i.e. z�(t) = z� and ẑ(t) = ẑ. This however implies from
(I14.119) that v(t) = v is constant so that V (�; tjq) = qv(t) = qv, i.e. the value function is
only a function of quality q. Another way to see that v(t) cannot depend on time is the HJB
equation. Along the BGP, the HJB equation is given by

r�v(t)q � _v(t)q = �Lq � z�q + v(t)q(�(z�)(�� 1)� ẑ�(ẑ));
where we already used that along the BGP z�(t) = z� and ẑ(t) = z. This di¤erential equation
has a unique stable solution which is given by3

v(t) = v =
�L� z�

r� + ẑ�(ẑ)� �(z�)(�� 1) : (I14.121)

This is an intuitive equation. The (per unit of quality) cash �ows net of research expenditures
are given by

�L� z�:
The e¤ective discount rate has two parts. The �rst part r�+ ẑ�(ẑ) captures the risk-adjusted
discounting caused be the probability of replacement and the interest rate. The last part
��(z�)(��1) captures the �option value�of being an incumbent as incumbents can improve

3This solution is the unique solution which is stable in the sense that any other solution would either
violate the transversality condition or had v(t) converging to zero, both if which cannot happen along the
BGP.
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upon themselves by having access to the innovation technology �(z�). Hence, the BGP is
characterized by the system of equations

v =
�L� z�

r� + ẑ�(ẑ)� �(z�)(�� 1)

g� =
_c(t)

c(t)
=
1

�
(r� � �)

1 � �0(z�)(�� 1)v with equality if z� > 0
1 � ��(ẑ)v with equality if ẑ > 0

g� =
_Q(t)

Q(t)
= (�� 1)ẑ�(ẑ) + (�� 1)�(z�):

These are �ve equations in the �ve unknowns z�; ẑ; r�; v; g�. Hence, provided parameters are
such that the transversality condition holds, there exists a BGP where all variables grow at a
constant rate, where our conjecture for the value function is true and where both incumbents�
and entrants�research e¤orts are constant.

Let us now characterize this BGP further. First of all note that (I14.117) and (I14.119)
imply that ẑ and z� will actually be interior. This follows from the Inada-type conditions

lim
z!0

�(z) =1 and lim
z!0

�0(z) =1: (I14.122)

Using this, the system above can be simpli�ed to

1 =
�0(z�)(�� 1)

��(ẑ)
(I14.123)

1 =
�0(z�)(�� 1) (�L� z�)

[�(�� 1) + 1] ẑ�(ẑ) + [� � 1]�0(z�)(�� 1) + �: (I14.124)

These are two equations in ẑ and z�. Having solved for these two research variables, we can
then determine g�; r� and v from the remaining equations above. From (I14.123) we again
get (I14.120), which showed that we can de�ne a function

ẑ = h(z�);

which is strictly increasing and continuous. Additionally h satis�es

lim
z�!0

h(z�) = 0 and lim
z�!1

h(z�) =1

from the Inada-type conditions (I14.122) and

lim
z!1

�(z) = 0 and lim
z!1

�0(z) = 0:

Let us now turn to (I14.124). Totally di¤erentiating this equality, we get that

dẑ

dz�
=
(�� 1)

�
�00(z�)(�L� z�)� ��0(z�)

�
(�(�� 1) + 1) @�(z)z@z

���
z=ẑ

< 0;

where the inequality follows from the fact that �(z)z is assumed to be increasing and that
�(:) is a concave function so that �00(:) < 0. Hence, (I14.124) de�nes another function

ẑ = m(z�);

which is strictly decreasing. Additionally, the Inada conditions imply that

lim
z�!0

m(z�) = m(0) > 0:
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As m(:) and h(:) are continuous function, this shows that there exists a unique

ẑ = m(z�) = h(z�):

As given z� and ẑ, the interest rate r�, the growth rate g� and the value function v� is
uniquely determined, the BGP is unique.

To relate this model to the model analyzed in the chapter, note that we can express the
growth rate of the economy as

g� = (�� 1)ẑ�(ẑ) + (�� 1)�(z�)
= �0(z�)(�� 1) + (�� 1)�(z�)� ẑ�(ẑ): (I14.125)

Now recall that for the model in the book we assumed that �0(:) = 0 and �(z�(t)) = �.
Substituting this into (I14.125) yields

g = gC =
_C(t)

C(t)
=
1

�
(�(�� 1)� ẑ�(ẑ)� �) ;

which is exactly the growth rate found in the exposition in the Chapter.

Exercise 14.26, Part (b). Incumbents�optimal level of research expenditures is deter-
mined by (I14.117). But (I14.117) determines z� only as a function of v and � and (I14.121)
shows that v is not a function of q. Hence, incumbents�research expenditures are indepen-
dent of q. Note that this result follows from our conjecture that the value function is linear in
q. We showed above that there is unique BGP where our conjecture turns out to be correct,
i.e. that there is a unique BGP where the value function actually turns out to be linear in
q. However, if there is an equilibrium where the value function is not linear in q (and we did
not prove that such an equilibrium does not exist), we would not expect that the research
intensities of incumbents are independent of q. The optimality condition for incumbents�
research expenditures was given by

z� = argmax
z
f�(z)(V (�; t j �q)� V (�; t j q))� zqg:

Even if we assume that V is not a function of the speci�c sector �, the general solution is
still given by

z�(t; q) = �0�1
�

q

V (tj�q)� V (tjq)

�
;

i.e. is a function of q and t. Hence, as long as q
V (tj�q)�V (tjq) is not independent of the

quality q, incumbents with di¤erent quality machines will also have di¤erent levels of research
expenditures. This however cannot occur along the BGP.

Exercise 14.26, Part (c). Once we consider the limiting case where �0(:) = 0, i.e.
where the incumbents��ow rate of innovation is constant, the incumbents�problem is linear
in z� so that in equilibrium the value function has to be such that incumbents are indi¤erent
between all levels of z�. Hence, there is no reason to believe that all incumbents chose the
same level of z�. In the exposition in the chapter we considered an equilibrium where z�

was constant across �qualities�. From the analysis above this seems to be the interesting
case, because once we introduce a little curvature into �(:) the research e¤orts will indeed
be pinned down uniquely. In Exercise 14.27 we show that even in the case where �0(:) = 0
the research expenditures of incumbents are not entirely unrestricted along the BGP. In fact
even though the distribution of z� across incumbents is not determined, the BGP implies that
aggregate expenditures of incumbents are proportional to Q(t). Hence, the restriction that
z� is the same across all incumbents is without loss of generality (in the class of equilibria
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we look at here, but recall our discussion in Part (c)) and the natural limiting case of the
equilibrium considered above.

Exercise 14.26, Part (d). Let us �rst consider the entrants and suppose that equilib-
rium research expenditures are zero. From the Inada condition

lim
z!0

�(z) =1

we get that any unit of research expenditures invested will generate a �ow rate of in�nity if
no other potential entrant is active. Hence, not exerting research e¤orts cannot be optimal.
This shows that in equilibrium entrants will exert positive research e¤orts, i.e. ẑ > 0.

Let us now turn to the incumbents. Research expenditures are determined by

�0(z�(t))(�� 1)v(t) = 1; (I14.126)

as shown in (I14.117). As v(t) > 0 because owning a patent has a positive value, z� > 0, as

lim
z!0

�0(z) =1;

which does not satisfy the optimality condition (I14.126). Hence, incumbents�research ex-
penditures are also positive.

Exercise 14.26, Part (e). Introducing taxes on research changes the research decision
of incumbents and entrants. In terms of the �nal good every unit of research invested now
costs 1 + � , where � is the respective tax rate. As the rest of the analysis is unchanged,
research expenditures are set according to

�0(z�)(�� 1)v(t) = 1 + � I

�(ẑ)v(t)� = 1 + �E : (I14.127)

Those equations re�ect the fact that spending one unit of the �nal good on research, costs
1 + � I or 1 + �E units respectively. The value function v(t) is now implicitly de�ned by

r�v(t) = �L� z�(1 + � I) + v(t) (�(z�)(�� 1)� ẑ�(ẑ)) ;
so that

v(t) = v =
�L� z�(1 + � I)

r� + ẑ�(ẑ)� �(z�)(�� 1) : (I14.128)

Whereas v does not explicitly depend on �E (other than via z� and ẑ), � I of course matters
because it a¤ects the net cash �ows when being an incumbent. The BGP with taxes is
characterized by the analogous system of equations as above. In particular we can still
determine z� and ẑ from the two equations

1 + �E
1 + � I

�0(z�)(�� 1)
�(ẑ)�

= 1 (I14.129)

�0(z�)(�� 1) (�L� z�(1 + � I))
[�(�� 1) + 1] ẑ�(ẑ) + [� � 1](�� 1)�(z�) + � = 1 + � I (I14.130)

Once we have solved for z� and ẑ, we can then back out the equilibrium interest rates and
the BGP growth rate from the Euler equation and the de�nition of the growth rate (e.g.
(I14.125)). By the same argument as above, (I14.129) de�nes a function ẑ = h(z�; � I ; �E)
which is strictly increasing and (I14.130) de�nes a function ẑ = m(z�; � I) which is strictly
decreasing. As we are interested in the comparative statics results with respect to the R&D
tax rates �E and � I , we explicitly denoted the dependence of h(:) and m(:) on those tax
rates. Again there will be be a unique intersection for any tax policy (�E ; � I), i.e. there is a
unique BGP equilibrium with taxes.
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Let us now look at the comparative statics. Consider �rst an increase of entrants�taxes
�E . As m(z�; � I) does not depend on �E , the decreasing locus remains unchanged. The
function h(:; � I ; �E) however depends in taxes. In particular, (I14.129) shows that for a
given level of entrants�research expenditures ẑ, the research activity of incumbents z� has to
increase as

dz�

d�E

����
ẑ

= � �0(z�)

�00(z�)(1 + �E)
> 0:

Hence, the h(:; � I ; �E) locus shifts to the right. This shows that the equilibrium response of
research expenditures is given by

dz�

d�E
> 0 and

dẑ

d�E
< 0;

i.e. entrants will spent less on research and incumbents�research expenditures will increase.
The e¤ect on the BGP growth rate is given by

dg�

d�E
= (�� 1)@ẑ�(ẑ)

@z

dẑ

d�E
+ (�� 1)�0(z�) dz

�

d�E
:

As the �rst e¤ect term is negative (the entrants�contribution to economic growth is reduced)
and the second terms is positive (incumbents�increase their R&D expenditures), the overall
e¤ect on economic growth is ambiguous.

The analysis of an increase in the tax rate of incumbents is a little more involved as both
loci characterized in (I14.129) and (I14.130) are a¤ected. From (I14.129) we get that

dz�

d� I

����
ẑ

=
�0(z�)

�00(z�)(1 + � I)
< 0;

i.e. for a given level of entrants�research e¤orts ẑ, incumbents reduce their R&D expenditure,
i.e. the upward sloping curve shifts to the left. Totally di¤erentiating the downward sloping
locus characterized in (I14.130) yields

dz�

d� I

����
ẑ

=
1 + �0(z�)(�� 1)z�

@
@z�

h
�0(z�)(��1)(�L�z�(1+�I))

M(z�;ẑ)

iM(z�; ẑ);
where

M(z�; ẑ) = [�(�� 1) + 1] ẑ�(ẑ) + [� � 1](�� 1)�(z�) + �:
As the m(:; � I) is downward sloping, we know that

@

@z�

�
�0(z�)(�� 1)(�L� z�(1 + � I))

M(z�; ẑ)

�
< 0;

so that (I14.130) implies that for a given level of ẑ, z� is decreasing in the incumbents�tax
rate dz�

d�I
jẑ < 0, i.e. the downward loping locus also shifts to the left. Hence, the overall e¤ect

on entrants�research e¤orts is ambiguous. This shows that the equilibrium responses of R&D
expenditures are given by

dz�

d� I
< 0 and

dẑ

d� I
7 0:

The intuition why the e¤ect on entrants is ambiguous is the following. For a given level of ẑ,
lower research expenditures by incumbents will reduce the growth rate of the economy (see
(I14.125)) which (from the Euler equation) will cause interest rates to decline. But lower
interest rates will of course make innovations more attractive as future pro�ts are discounted
less. This e¤ect tends to increase ẑ. On the other hand, entrants only incur R&D expenses in
order to be incumbents in the future. The value of being an incumbent however is reduced by
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taxing incumbents more heavily. This tends to discourage research expenditures by entrants.
The overall e¤ect is ambiguous.

From here it seems that the overall e¤ect on the equilibrium growth rate is also ambiguous.
This however turns out to be not true.4 In fact we will now show that the growth rate
necessarily declines if taxes on incumbents� research expenditures are increased. We will
prove this by contradiction and provide the intuition below. Consider again the value function
given in (I14.128) and let us explicitly denote its dependence on the endogenous variables
r�; z� and ẑ and the exogenous tax rate � I . Doing so allows us to write

v(z�; ẑ; r�; � I) =
�L� z�(1 + � I)

r� + ẑ�(ẑ)� �(z�)(�� 1) :

Equivalently we can use the Euler equation to substitute the equilibrium growth rate g� for
the interest rate r� and write the v-function along the BGP as

v(z�; ẑ; g�; � I) =
�L� z�(1 + � I)

�g� + �+ ẑ�(ẑ)� �(z�)(�� 1) : (I14.131)

The total derivative of this function is given by

dv(z�; ẑ; g�; � I)

d� I
=

@v

@� I
+

@v

@z�
@z�

@� I
+
@v

@ẑ

@ẑ

@� I
+

@v

@g�
@g�

@� I
: (I14.132)

From (I14.131) it is apparent that @v
@�I

< 0. Furthermore note that incumbents�innovation

expenditures z� are set optimally, so that the Envelope Theorem implies that @v
@z� = 0.

Now suppose to arrive at a contradiction that the equilibrium growth rate g� is increasing.
As the growth rate g� is a linear combination of z� and ẑ, and as we showed above that
@z�

@�I
< 0, g� can only increase when entrants increase their research expenditures ẑ su¢ ciently

strong. Formally,
@g�

@� I
> 0 =) @ẑ

@� I
> 0: (I14.133)

However, (I14.131) shows that
@v

@g�
< 0 and

@v

@ẑ
< 0;

as �(z)z is assumed to be increasing in z. (I14.133) and (I14.132) therefore imply that if g�

increases, we have

dv(z�; ẑ; g�; � I)

d� I
=

@v

@� I
+
@v

@ẑ

dẑ

d� I
+

@v

@g�
dg�

d� I
< 0: (I14.134)

Let us now go back to the entrants�free entry condition contained in (I14.127), i.e.

�(ẑ)v(z�; ẑ; g�; � I)� = 1 + �E :

Totally di¤erentiating this condition yields that

�0(ẑ)v(z�; ẑ; g�; � I)�
dẑ

d� I
+ �(ẑ)

dv(z�; ẑ; g�; � I)

d� I
� = 0;

which can be solved for
dv(z�; ẑ; g�; � I)=d� I

dẑ=d� I
= ��

0(ẑ)v(z�; ẑ; g�; � I)

�(ẑ)
> 0 (I14.135)

4So, although the exercise asks you to show that the e¤ect is ambiguous, we can in fact show that taxing
incumbents will necessarily reduce growth.
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as �0(ẑ) < 0. This however provides the desired contradiction as (I14.133) and (I14.134) show
that

dv(z�; ẑ; g�; � I)=d� I
dẑ=d� I

< 0.

This concludes the proof that
dg�

d� I
< 0:

The derivation of this result is instructive because it uses exactly the economic intuition why
the growth rate cannot increase. As incumbents spent less on research, higher growth will
have to be ��nanced� by entrants. Entrants however will only want to do so, if the value
of being an incumbent in the future also increases. This is exactly what (I14.135), which is
an implication of the entrants� free entry condition, requires: ẑ will only increase if v also
increases. But now suppose that the equilibrium value function v does increase. The value
function measures the value of being an incumbent. From their point of view, both higher
interest rates and higher replacement rates are bad as they increase the appropriate discount
rate. Hence, in equilibrium a higher value function can only coexist with higher growth
and replacement rates if the cash �ows of incumbents are also higher. Higher taxes however
represent exactly the opposite in that they reduce the per-period cash �ows. Hence, entrants�
research e¤orts cannot increase su¢ ciently for the growth rate of the economy to increase.
This shows that in contrast to the case of taxing entrants�R&D e¤orts, taxing incumbents
is always detrimental to economic growth.

Let us now consider the case where there are no negative externalities of entrants�R&D,
i.e. �(z) = �� is constant. We will see that this simpli�es the analysis. The crucial equations
characterizing the BGP with taxes are then given by

�0(z�)(�� 1)v(t) = 1 + � I

��v(t)� = 1 + �E

v(t) = v =
�L� z�(1 + � I)

r� + ẑ�� � �(z�)(�� 1) ;

where additionally r� has to be consistent with the Euler equation and the equilibrium growth
rate g� is now given by

g� = (�� 1)ẑ�� + (�� 1)�(z�): (I14.136)

To analyze the equilibrium level of (z�; ẑ) and the comparative statics, let us rewrite the
system above as

1 + � I = �0(z�)(�� 1)1 + �E
���

(I14.137)

v =
1 + �E
���

=
�L� z�(1 + � I)

(�(�� 1) + 1) ẑ�� + (� � 1)(�� 1)�(z�) + �; (I14.138)

where the denominator of the RHS in (I14.138) follows again by substituting the Euler equa-
tion r� = �g� + � and using the de�nition of the growth rate contained in (I14.136). Again,
(I14.137) and (I14.138) is a system of two equations in the two unknowns z� and ẑ. Now
however the solution is easier. In particular note that (I14.137) now determines z� just in
terms of exogenous parameters, i.e. we can solve for z� using (I14.137). Then we can go to
(I14.138), to solve for ẑ given z�. Hence, we can solve the system recursively.
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To characterize the comparative statics, note that (I14.137) immediately implies that

dz�

d� I
=

���

1 + �E

1

(�� 1)�00(z�) < 0 (I14.139)

dz�

d�E
= � 1

1 + �E

�0(z�)

�00(z�)
> 0:

To see the comparative statics of entrants�R&D, consider �rst the change in �E . As z�

increases, (I14.138) shows that for given ẑ, the LHS increases and the RHS decreases. Hence,
ẑ has to go down to keep (I14.138) satis�ed, i.e.

dẑ

d�E
< 0:

The comparative statics with respect to � I also simplify slightly. From (I14.138) we get that

v (�(�� 1) + 1) ��dẑ + v(� � 1)(�� 1)�0(z�)dz� = �(1 + � I)dz� � z�d� I :

Substituting (I14.137) and (I14.139) yields

v (�(�� 1) + 1) ��dẑ = ��(1 + � I)dz� � z�d� I

= �
�

����(1 + � I)

(�� 1) (1 + �E)
1

�00(z�)
+ z�

�
d� I

= �
�
�
�0(z�)

�00(z�)
+ z�

�
d� I :

As we cannot sign the term � �
0(z�)

�00(z�)
+ z� without further restrictions on the function �, the

e¤ect on ẑ is still ambiguous. The proof given above that the equilibrium growth rate will be
decreasing in � I however still applies. This shows that assuming �(z) = �� does not change
any of the qualitative results of the analysis.

The most important lesson from this part of the exercise is the fundamental asymme-
try of policy interventions. Whereas a tax on incumbents will always decrease the growth
rate, taxing entrants might have positive e¤ects on growth. The intuition is the following.
Entrants�R&D expenditures are good for growth as the process of creative destruction in-
creases the growth rate for a given level of incumbents�research e¤orts z�. However, higher
replacement rates will reduce the value of being a monopolist and will therefore diminish re-
search incentives of the incumbents. Depending on which e¤ect dominates, taxing entrants�
might be good or bad for growth. Taxing incumbents however is always bad for growth as
explained above. This shows that the growth implications of innovation policy are very sen-
sitive to which agents they are directed to. Policies which make incumbents�research more
costly might increase market entry but will reduce the economy�s growth rate. Policies which
represent barriers to innovation from entrants�might foster economic growth if incumbents�
R&D expenditures are su¢ ciently responsive.

Exercise 14.27*

Let us �rst gather the equations every equilibrium has to satisfy. From the consumer�s
utility maximization problem we get the Euler equation

_c(t)

c(t)
=
1

�
(r(t)� �): (I14.140)



Solutions Manual for Introduction to Modern Economic Growth 285

From the �rms�side we know that the value function has to satisfy the functional equation

r(t)V (�; tjq)� _V (�; tjq)
= max

z(�;tjq)
f�(�; tjq)� z(�; tjq)q(�; t) + �z(�; tjq)(V (�; tj�q)� V (�; tjq))

�ẑ(�; tjq)�(ẑ(�; tjq))V (�; tjq)g:
Let us rewrite this equation by taking everything out of the max operator which does not
depend on the incumbents�research intensity z(�; t j q). This yields

r(t)V (�; tjq)� _V (�; tjq) = �(�; tjq)� ẑ(�; tjq)�(ẑ(�; tjq))V (�; tjq) + (I14.141)

max
z(�;tjq)

fz(�; tjq)[�q(�; t) + �(V (�; tj�q)� V (�; tjq))g:

This equation shows the indeterminacy of the incumbents� optimal research policy as the
maximand is linear in z(�; t j q), i.e. the solution to this maximization problem is

z(�; tjq) =

8><>:
1 if �(V (�; tj�q)� V (�; tjq)) > q(�; t)

(0;1) if �(V (�; tj�q)� V (�; tjq)) = q(�; t)

0 if �(V (�; tj�q)� V (�; tjq)) < q(�; t)

:

Hence, the equilibrium condition (satisfying the above optimality and market clearing, which
requires that research expenditures are �nite) reads

�(V (�; tj�q)� V (�; tjq)) � q(�; t) with equality if z(�; tjq) > 0: (I14.142)

The analogous equilibrium condition for entrants�research activity is given by

�(ẑ(�; tjq))V (�; tj�q) � q(�; t) with equality if ẑ(�; tjq) > 0: (I14.143)

Note that each entrant is atomistic, i.e. takes ẑ(�; tjq)) in �(ẑ(�; tjq)) as given. Hence, if an
entrant spends ~zq(�; t) on research in sector � and all other entrants spend ẑ(�; tjq)q(�; t),
his �ow rate of innovation is given by

~z�(ẑ(�; t j q)):
In equilibrium, symmetry requires that ~z = ẑ(�; t j q) and that is what we imposed in
(I14.143). But let us now formally prove, that the equilibrium will in fact be symmetric. In
view of the Inada-type conditions

lim
z!1

�(z) = 0 and lim
z!0

�(z) =1;

it is clear that the research activity of entrants will be positive. Because if there was a sector
� where no entrants were active, the marginal entrant could generate a �ow rate of innovation
of in�nity. As this holds for all sectors �, (I14.143) implies that the value function has to
satisfy

�(ẑ(�; t j q))V (�; t j �q)� q(�; t) = 0 8�; t: (I14.144)

Now let us suppose that incumbents�research expenditures are positive (though might di¤er
across sectors �). Then we get from (I14.142) that

�(V (�; t j �q)� V (�; t j q)) = q(�; t) 8�; t:
Let us write this equation using q as the argument in the function and dropping � and t as it
has to hold for a sectors and all points in time. Then the above implies that the equilibrium
value function has to satisfy the equation

�(V (�q)� V (q)) = q; (I14.145)
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so that V has to be linear in q. Hence let us write V (�; t j q) = v(�; t)q = vq where we
explicitly used the fact that once quality q is controlled for, the value will be the same for all
sectors and all points in time. Using (I14.145), we can solve for v as

�(v�q � vq) = �(�� 1)vq = q;

so that the equilibrium value function is given by

V (�; t j q) � V (q) = vq =
1

�(�� 1)q: (I14.146)

Furthermore, note that this linearity is an implication of incumbents�research expenditures
being positive - a property which we have to verify as we just assumed it. Using this linearity
in (I14.144) yields

�(ẑ(�; t j q)) �

�(�� 1) = 1;

which determines a unique level of entrants�research incentives

ẑ(�; t j q) � ẑ = ��1(��1�(�� 1)): (I14.147)

Hence, in contrast to the incumbents� research e¤orts, every equilibrium requires that en-
trants�research expenditures are the same across sectors and at every point in time. Sym-
metry is not an assumption but a property of the equilibrium.

Let us now turn to the research expenditures of incumbents. As shown in (14.49) the
growth rate of the economy is given by

_Q(t)

Q(t)
= (�� 1)�

R 1
0 z

�(�; t j q)q(�; t)d�
Q(t)

+ (�� 1)ẑ�(ẑ) (I14.148)

Additionally we have from the resource constraint

Y (t) = C(t) +X(t) +

Z 1

0
(ẑ(�; t j q) + z�(�; t j q))q(�; t)d�:

Equilibrium still implies that Y (t) = 1
1��Q(t)L and X(t) = (1��)Q(t)L. Hence, the resource

constraint reduces to

1

1� �Q(t)L = C(t) + (1� �)Q(t)L+ ẑQ(t) +
Z 1

0
z�(�; t j q)q(�; t)d�; (I14.149)

where we used that ẑ(�; tjq) = ẑ from (I14.147). We can rewrite the resource constraint as

1

1� �L =
C(t)

Q(t)
+ (1� �)L+ ẑ +

R 1
0 z

�(�; t j q)q(�; t)d�
Q(t)

: (I14.150)

Using the two free entry conditions conditions contained in (I14.146) and (I14.143) and the
value function de�ned in (I14.141), we can solve for equilibrium interest rates as

r(t)
1

�(�� 1)q = �Lq � ẑ�(ẑ) 1

�(�� 1)q:

Hence, interest rates are constant so that consumption grows at a constant rate (by the Euler
equation contained in (I14.140)). Using this, we write C(t) = C(0) exp(gCt) where gC is the
growth rate of consumption. Additionally we can use (I14.149) and (I14.148) to substitute
for
R 1
0 z

�(�; tjq)q(�; t)d�. Doing so, we arrive at the di¤erential equation

Q(t)� _Q(t) = (�� 1)C(0) exp(gCt);
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where  = [(��1)(�(2��)1�� L� ẑ)+(��1)ẑ�(ẑ)]: The unique stable solution of this di¤erential
equation implies that

_Q(t)

Q(t)
= gC ;

so that C(t)
Q(t) is constant. But then we can rearrange (I14.150) to getR 1

0 z(�; t j q)q(�; t)d�
Q(t)

=
1

1� �L�
C(t)

Q(t)
� (1� �)L+ ẑ;

which shows that R 1
0 z(�; t j q)q(�; t)d�

Q(t)

is constant along the BGP. Hence, aggregate incumbent research expendituresR 1
0 z(�; tjq)q(�; t)d� are proportional to Q(t). It is useful to recapitulate what we have shown
here. We have shown that if incumbents invests in research, the equilibrium features bal-
anced growth and entrants�research expenditures are uniquely de�ned. Furthermore we have
shown that research intensities of individual incumbents z�(�; t j q) are undetermined but
aggregate research expenditures

R 1
0 z(�; t j q)q(�; t)d� are uniquely de�ned as shown above. It

is in this sense that the equilibrium is unique. The only step that is missing is that this econ-
omy does not have an equilibrium where incumbents do not engage in research expenditures.
We abstain from proving this here but refer to Acemoglu (2008).

Exercise 14.35

Exercise 14.35, Part (a). To characterize the pricing decision of the duopolists, note
�rst that we can without loss of generality restrict the analysis to the �rm with the lower cost
realization, as in equilibrium it will only be this �rm producing. The most important part in
the analysis concerns the question if the �rm is able to charge the unconstrained monopolistic
price or if it has to rely on limit pricing. Consider �rst the unconstrained monopolistic price
p�, which is de�ned by

p�(c) = argmax
p
(p� c)(A� p): (I14.151)

Note that we write p�(c) to stress that the optimal price will be dependent on the marginal
costs, which are observed before the pricing decision. Solving (I14.151) shows that

p�(c) =
1

2
(A+ c):

Now note however that we assumed that A > 2maxfc1; c2g. As c 2 [0; �ci], we get that

p�(c) � p�(0) =
A

2
> maxfc1; c2g:

This shows that the monopolistic price would always exceed the competitor�s marginal costs.
Hence, charging the monopolistic price cannot occur in equilibrium, because the competitor
could charge p�(c)� " and make positive pro�ts. The optimal pricing strategy will therefore
be given by limit pricing of the low-cost producer. To characterize the equilibrium price
in this economy, suppose that c1 < c2. First of all observe that �rm 2 has to charge c2
in equilibrium. If it would charge more, than �rm 1 would want to charge a price higher
than c2 too (recall that c2 < p�(c1)) which in turn cannot be an equilibrium as �rm 2 could
undercut this price. Additionally note that in equilibrium the low cost �rm has to get the
entire demand. To see this, suppose �rm one would only get a share � < 1 of the demand. By
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charging p1(c1; c2) = c2� ", �rm one would get the whole market. But as c2� " < p�(c1), the
revenue function is decreasing in ", so that there is no equilibrium with p1(c1; c2) = c2�" < c2.
Hence, there is no equilibrium where �rm one only gets a share � < 1 of the demand if both
�rms charge c2. Firm one getting the whole market at a price of c2 however is an equilibrium
as �rm two makes zero pro�ts regardless of its market share and consumers are also indi¤erent
which �rm to buy from because the good is homogenous. This shows that the equilibrium
price pEQ(c1; c2) will be given by

pEQ(c1; c2) = maxfc1; c2g;

and that the low cost �rm will get the entire market.
Let us now turn to the expected pro�ts E[�i], where expectations are unconditional and

taken over the joint distribution of (c1; c2). Economically speaking, these are the pro�ts
�rms expect ex-ante, i.e. before costs are realized but knowing that conditional on (c1; c2)
the equilibrium outcome will occur. Recall that from the law of iterated expectations we
know that

E[�1] = Ec2 [Ec1 [�1jc2]]:

To calculate this expression we have to consider two cases, namely �c1 � �c2 and �c1 < �c2.
Considering �rst the case of �c1 � �c2, we have that

E[�1(�c1; �c2)jH] =

Z �c2

0

�Z c2

0
[(c2 � c1)(A� c2)]

1

�c1
dc1

�
1

�c2
dc2

=
1

�c1�c2

1

2

Z �c2

0

�
Ac22 � c32

�
dc2

=
A�c22
6�c1

� �c32
8�c1

; (I14.152)

where H denotes the event that �c1 � �c2: In the second case where �c1 < �c2 we get that

E[�1(�c1; �c2)jL] =

Z �c1

0

�Z �c2

c1

[(c2 � c1)(A� c2)]
1

�c2
dc2

�
1

�c1
dc1

=
��c31
24�c2

+
A�c21
6�c2

+
�c1�c2
4
+
A

2
(�c2 � �c1)�

�c22
3
; (I14.153)

where L denotes the event that �c1 < �c2. As the problem of the second duopolist is symmetric,
we get the analogous expressions.

Exercise 14.35, Part (b). Let us now consider the decision to invest in R&D. As the
R&D decision has to be taken before the costs are realized, the �rm will invest in R&D,
whenever this increases its ex-ante expected pro�ts. Note however that the ex-ante pro�ts
of �rm i are dependent on �rm j0s R&D decision as (I14.152) and (I14.153) show that
EH [�i(�ci; �cj)] and EL[�i(�ci; �cj)] are functions of �cj which in turn is a¤ected by �rm j�s R&D
decision. To analyze the equilibrium of the innovation stage, it is convenient to de�ne the
expected pro�ts as a function of the outcome of the innovation stage. In particular let us
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de�ne

�00 = EH [�i(�c; �c)] =
A�c

6
� �c2

8
(I14.154)

�10 = EL[�i(�c� �; �c)] =
�(�c� �)3
24�c

+
A(�c� �)2

6�c
+
(�c� �)�c

4
+
A�

2
� �c2

3

�01 = EH [�i(�c; �c� �)] =
A(�c� �)2

6�c
� (�c� �)

3

8�c

�11 = EH [�i(�c� �; �c� �)] =
A(�c� �)

6
� (�c� �)

2

8
;

where �00 denotes the expected pro�t of the �rm if both �rms�technology stays the same,
�10 the pro�t if the �rm becomes the technological leader, �01 is the �rm�s pro�t if only
the opponent�s technology improves and �11 is the expected pro�t if both �rms�innovation
e¤orts are successful.

To characterize the innovation stage we therefore just have to solve for the Nash equilib-
rium in a static game, where each �rm has two actions ai 2 fI;Dg, where I refers to "Invest"
and D refers to "Don�t Invest", and the payo¤s Wi(ai; aj) as a function of the actions are
given by

Wi(I; I) = �2�11 + �(1� �)�10 + (1� �)��01 + (1� �)2�00 � � (I14.155)

Wi(I;D) = ��10 + (1� �)�00 � �
Wi(D; I) = ��01 + (1� �)�00
Wi(D;D) = �00: (I14.156)

To understand those expressions, consider for example Wi(I; I). With probability �2 both
�rms are successful which yields a pro�t of �11. With probability �(1 � �) only one of the
�rms is successful, in which case the expected pro�ts are equal to �01 or �10 depending on
which �rm is successful. The case where both �rms fail to have an innovation occurs with
probability (1� �)2. Additionally, the �rm has to pay the �xed costs � whenever it decides
to invest into R&D. The intuition for the other three cases is analogous.

Using those expressions we can characterize the conditions for the respective equilibria.
There is an equilibrium, where both �rms do not invest, whenever

Wi(D;D) �Wi(I;D);

i.e. when
C1 : �(�10 ��00) � �:

Condition 1 (hence C1) is an intuitive condition in that it states that the expected gains from
innovation must not exceed the �xed costs necessary to start innovating. Similarly there is a
symmetric equilibrium where both �rm innovate whenever

Wi(I; I) �Wi(D; I);

i.e. when
C2 : � [�(�11 ��01) + (1� �) (�10 ��00)] � �:

Hence the requirement for an equilibrium, where both �rms invest is the following. By
investing, the �rm gets an innovation with probability �. Conditional on being successful,
the marginal gains are �11��01 if the opponent is successful (which happens with probability
�) and �10 ��00 is the opponent is not successful As long as these expected marginal gains
outweigh the �xed costs �, it is an equilibrium for each �rm to invest.
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Besides those symmetric equilibria there might also be asymmetric equilibria, where only
one �rm invests. The condition for those equilibria to exist is

Wi(I;D) �Wi(D;D) and Wi(D; I) �Wi(I; I): (I14.157)

Note that for this equilibrium we explicitly need two conditions. First of all we need one �rm
to prefer to invest when the other �rm does not. But then we also need the other �rm not
wanting to invest, in case the �rst one does. Hence, we need that each �rm wants to invest
if and only if the other one does not. The parametric condition stemming from (I14.157) is

C3 : �(�10 ��00) � � � � (�(�11 ��01) + (1� �)(�10 ��00)) :
Substituting the respective expression given in (I14.155)-(I14.156) gives the required equilib-
rium conditions as a function of the exogenous parameters.

Exercise 14.35, Part (c). To characterize the e¤ect of a decline in �c, note �rst that
from (I14.154) we get that

@�00
@�c

=
1

6

�
A� 3

2
�c

�
> 0;

where the inequality follows from the restriction that A > 2maxf�c1; �c2g = 2�c. Hence, a
decline in �c can be interpreted as an increase in competition as it decreases the pre-innovation
pro�ts. To analyze the e¤ect of an increase in competition on �rms�innovation incentives,
let us de�ne the functions

f(�c; �;A) = �10 ��00 =
�

24�c

�
�2 + 4Aa� 3�c2 + �c(4A� 3�)

�
g(�c; �;A) = �11 ��01 =

�

24�c

�
4A(�c� �)� 3(�c� �)2

�
:

Those functions capture the bene�t of innovation. In particular, f(�c; �;A) denotes the in-
novation induced increase in expected pro�ts if the opponent does not invest and g(�c; �;A)
captures the increase in pro�ts if the other �rm is investing. Note that

@f(�c; �;A)

@�c
= � �

24

�2 + 4Aa+ 3�c2

�c2
< 0

and
@g(�c; �;A)

@�c
=

�

24

3�2 + 4A�� 3�c2
�c2

7 0:

In particular, @g(�c;�;A)@�c > 0 if � is big enough. To simplify the exposition let us assume this
to be the case for the rest of the analysis.

The intuition for these comparative statics results is as follows. If competition is �erce
(i.e. �c is low) the bene�ts of innovation are high (f is high) if the competitor does not invest
in R&D. Hence, the incentives to escape the competition are high. On the other hand, the
incentives to invest in R&D if the competitor also invest are low (as g is low) as higher
competition reduces the value of catching up if the competitor is already ahead. Using this
notation we can write the three equilibrium conditions C1; C2 and C3 as

C1 : �f(�c; �;A) � �

C2 : � [�g(�c; �;A) + (1� �)f(�c; �;A)] � �

C3 : �f(�c; �;A) � � � � (�g(�c; �;A) + (1� �)f(�c; �;A)) ;
where recall C1 refers to the equilibrium where no �rm invests, C2 is the condition for there to
be an equilibrium where both �rms invest and if the conditions in C3 are satis�ed there exists
an asymmetric equilibrium, where only one �rm innovates. An increase in competition, i.e.
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a decline in �c therefore makes C1 less likely to be satis�ed as f(�c; �;A) increases. Hence, in a
competitive environment the bene�ts of escaping this competition are high so that equilibria
without innovation are less likely. For � su¢ ciently large, we also have that

d

d�c
[�g(�c; �;A) + (1� �)f(�c; �;A)] > 0;

so that an increase in competition will also make the equilibrium where both �rms invest
less likely. Intuitively, if � is close to one, it is very likely that both �rms end up having an
innovation. If competition is �erce however, the pro�ts of being in such a situation are low
and in particular they are not worth the �xed costs �. Hence, an equilibrium where both
�rms innovate is less likely to exist.

In that case however, C3 is likely to be satis�ed. The reason is, that the pre-innovation
rents (i.e. the rents without innovating) are low as higher competition reduces expected
pro�ts. To reduce competition one �rm wants to improve its technology, but only if the
other �rm does not improve its technology simultaneously. Hence, in an economy, where
competition is �erce, asymmetric equilibria with only one �rm innovating are more likely.

The e¤ect of an increase in competition on aggregate innovation expenditures is in general
ambiguous. At this level of generality we only argued that certain equilibria are less likely
to occur. However, we did not make any statement about which equilibrium is going to
be played. To see that competition could both increase and decrease aggregate innovation,
suppose that in the status quo, both �rm do not innovate and that competition policy reduces
�c over time. At some point, the condition C1 for the symmetric no-investment equilibrium
will be violated so at least one �rm will spent resources on innovation. In such a case, tougher
competition will obviously increase innovation expenditures and potentially economic growth.
On the other hand we could also have the case where both �rms innovate in the status quo
and �ercer competition will move the economy to the equilibrium, where only �rm invests.
In such a con�guration, competition policy will reduce aggregate innovation expenditures.
For both a theoretical model and empirical evidence, see the paper by Aghion et al. (2005).

Despite this ambiguity, note that his model captures an important feature which is missing
in the baseline expanding varieties or Schumpeterian models. There, competition will always
reduce growth as it reduces the rents ex-post and therefore incentives ex-ante. The reason
is that in the baseline version of those models, there is no room for the escape-competition
e¤ect as entrants are currently not producing so that incumbents do not compete in their
varieties. Hence, higher competition only reduces the rents of being a monopolist, which in
turn reduces spending on innovation.





Chapter 15: Directed Technological Change

Exercise 15.6

The optimal growth problem the social planner solves is given by

max
[C(t);[xL(�;t);xH(�;t)]� ;ZL(t);ZH(t)]

1
t=0

Z 1

0
exp (��t) C (t)

1�� � 1
1� � dt (I15.1)

subject to the constraints

Y (t) = C (t) +X (t) + ZL (t) + ZH (t)

Y (t) =
h
LYL (t)

"�1
" + HYH (t)

"�1
"

i "
"�1

YL (t) =
1

1� �

 Z NL(t)

0
xL (�; t)

1�� d�

!
L�

YH (t) =
1

1� �

 Z NH(t)

0
xH (�; t)

1�� d�

!
H�

X (t) = (1� �)
 Z NL(t)

0
xL (�; t) d� +

Z NH(t)

0
xH (�; t) d�

!
_NL (t) = �LZL (t) and _NH (t) = �HZH (t) :

To simplify this problem, note that we can solve it sequentially. In particular we can �rst
study the optimal allocation of resources across sectors �. The solution to (I15.1) will maxi-
mize net output, i.e. the allocation of machines across sectors has to solve the problem

max
f[xL(�;t)]

NL(t)
�=0 ;[xH(�;t)]

NH (t)
�=0 g

Y (t)�X(t);

where Y (t) and X(t) are de�ned as above. The necessary conditions are given by

LY (t)
1="YL(t)

�1="L�xL(�; t)
�� = (1� �) 8� 2 [0; NL(t)] (I15.2)

HY (t)
1="YH(t)

�1="H�xH(�; t)
�� = (1� �) 8� 2 [0; NH(t)]; (I15.3)

which simply state that the marginal revenue of each machine has to equal its marginal costs.
These conditions imply that

xL(�
0; t) = xL(�

00; t) = xL(t) 8� 0; � 00 2 [0; NL(t)]

xH(�
0; t) = xH(�

00; t) = xH(t) 8� 0; � 00 2 [0; NH(t)]

LxL(t)
��L�YL(t)

�1=" = HxH(t)
��H�YH(t)

�1=":

293
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To express the allocations of machines in the required form, let us de�ne the competitive
prices of intermediaries of sector j = H;L as

pj(t) �
@Y (t)

@Yj(t)
= jYj(t)

�1="Y (t)1="; (I15.4)

so that (I15.2) and (I15.3) can be written as

xL(t) = (1� �)�1=�pL(t)1=�L (I15.5)

xH(t) = (1� �)�1=�pH(t)1=�H

as required. Substituting (I15.5) into the production function of L-intermediaries, we get

YL(t) =
1

1� �

 Z NL(t)

0
xL (�; t)

1�� d�

!
L� = (1� �)�1=�LNL(t)pL(t)

1��
� :

Let us again denote the derived elasticity of substitution by

� � "� ("� 1) (1� �) = 1 + ("� 1)�:

Using the expression for competitive prices in (I15.4), we arrive at

YL(t) = (1� �)�1=�LNL(t)
1��
�

L YL(t)
� 1��

�" Y (t)
1��
�"

= (1� �)
�"
� (LNL(t))

"�
� 

1��
�
"

L Y (t)
1��
�

and hence

LYL(t)
"�1
" = (1� �)

�("�1)
� (LNL(t))

("�1)�
� 

"
�
LY (t)

1��
�

"�1
"

= (1� �)
�("�1)

� Y (t)
1��
�

"�1
" (LNL(t))

��1
� 

"
�
L :

The expression for HYH(t)
"�1
" is analogous. Substituting this into the production function

of �nal good yields

Y (t) =
h
LYL (t)

"�1
" + HYH (t)

"�1
"

i "
"�1

= (1� �)�1=�
h
(LNL(t))

��1
� 

"
�
L + (HNH(t))

��1
� 

"
�
H

i �
��1

:

Additionally we can multiply (I15.2) by xL(�; t) = xL(t) and integrate over all sectors � 2
[0; NL(t)] to getZ NL(t)

0
xL(t)d� = xL(t)NL(t) = L

�
YL(t)

Y (t)

�� 1
" NL(t)L

�xL (t)
1��

1� � = LY (t)
1
"YL(t)

"�1
" :

Using the same relationship for the skilled sector, the total amount of resources spent on
intermediaries is given by

X(t) = (1� �)(xLNL(t) + xHNH(t)) = (1� �)
�
LY (t)

1="YL(t)
"�1
" + HY (t)

1="YH(t)
"�1
"

�
= (1� �)Y (t):

Net output, which can be allocated to either consumption or research, is therefore given by

Y (t)�X(t) = �Y (t) = �(1� �)�1=�
h
(LNL(t))

��1
� 

"
�
L + (HNH(t))

��1
� 

"
�
H

i �
��1

:
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Using these results, we can write the maximization problem in (I15.1) as

max
[C(t);ZL(t);ZH(t)]

1
t=0

Z 1

0
exp (��t) C (t)

1�� � 1
1� � dt (I15.6)

s.t. C (t) = (1� �)�1=��
h
(LNL(t))

��1
� 

"
�
L + (HNH(t))

��1
� 

"
�
H

i �
��1 � ZL (t)� ZH (t)(I15.7)

_NL (t) = �LZL (t)

_NH (t) = �HZH (t) :

The simpli�ed problem in (I15.6) is a standard problem in the optimal control framework, the
only di¤erence being that it features two state variables NH(t) and NL(t) and three control
variables C(t), ZL (t) and ZH (t). Hence, we can characterize the solution by studying the
current value Hamiltonian which is given by

Ĥ (NL; NH ; ZL; ZH ; C; �L; �H) =
C (t)1�� � 1

1� � + �L (t) �LZ
S
L (t) + �H (t) �HZ

S
H (t) ;

where C(t) is given in (I15.7). This is the required expression.
The �rst-order conditions for the two control variables ZL and ZH are given by

ĤZL = �C(t)�� + �L (t) �L = 0 (I15.8)

ĤZH = �C(t)�� + �H (t) �H = 0:

These immediately imply that
�H(t)

�L(t)
=
�L
�H

; (I15.9)

so that
_�H(t)

�H(t)
=
_�L(t)

�L(t)
=
_�(t)

�(t)
: (I15.10)

Taking the �rst-order conditions for the two state variables yields

ĤNL = C(t)��	(t)
"
�
LL

��1
� NL(t)

� 1
� = ��L(t)� _�L(t) (I15.11)

ĤNH = C(t)��	(t)
"
�
HH

��1
� NH(t)

� 1
� = ��H(t)� _�H(t); (I15.12)

where we de�ned 	(t) as

	(t) = (1� �)�1=��
h
(LNL(t))

��1
� 

"
�
L + (HNH(t))

��1
� 

"
�
H

i 1
��1

to save on notation. From (I15.11), (I15.12) and (I15.10) we get that

1 =
�� _�L(t)

�L(t)

�� _�H(t)
�H(t)

=

1
�L(t)

C(t)��	(t)
"
�
LL

��1
� NL(t)

� 1
�

1
�H(t)

C(t)��	(t)
"
�
HH

��1
� NH(t)

� 1
�

=
�L
�H

�
L
H

�"=� � L
H

���1
�
�
NL(t)

NH(t)

�� 1
�

;

where we used (I15.9) to get the second equality. Hence, the social planner chooses a tech-
nology ratio of

NL(t)

NH(t)
=

�
�L
�H

�� � L
H

�"� L
H

���1
: (I15.13)
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From Eq. (I15.8) we get that
_C(t)

C(t)
= �1

�

_�L
�L
:

Furthermore (I15.11) and (I15.8) imply that

� _�L
�L

=
1

�L
C(t)��	(t)

"
�
LL

��1
� NL(t)

� 1
� � �

= �L(1� �)�1=��[
"
�
L (NLL)

��1
� + 

"
�
H(NHH)

��1
� ]

1
��1

"
�
LL

��1
� N

� 1
�

L � �:
Using (I15.13) we �nd that

[
"
�
L (NLL)

��1
� + 

"
�
H(NHH)

��1
� ]

1
��1 = ["L(�LL)

1�� + "H(�HH)
1��]

1
��1

1

�L
N

1
�
L L

���1
� 

� "
�

L ;

so that

� _�L
�L

= (1� �)�
1
� �["L(�LL)

1�� + "H(�HH)
1��]

1
��1 � �:

Plugging this in Eq. (I15.8) gives the desired growth rate

_C(t)

C(t)
= gS =

1

�
((1� �)�

1
� �["L(�LL)

1�� + "H(�HH)
1��]

1
��1 � �)

in terms of exogenous parameters. That it is bigger than the equilibrium growth rate (given

in (15.29)) follows from the fact that � < 1 so that ((1� �)�
1
� > 1.

Let us now turn to the equivalents of weak and strong equilibrium bias. Factor prices are
given by

wL(t) = pL(t)
@YL(t)

@L
=

�

1� �

 Z NL(t)

0
xL (�; t)

1�� d�

!
L��1

= pL(t)
1=��(1� �)�1=�NL(t);

so that

!(t) =
wH(t)

wL(t)
=

�
pH(t)

pL(t)

�1=� NH(t)

NL(t)
=

�
H
L

� "
�
�
H

L

��1
�
�
NH(t)

NL(t)

���1
�

; (I15.15)

where we used that

pH(t)

pL(t)
=

HYH(t)
�1="Y (t)1="

LYL(t)
�1="Y (t)1="

=
H
L

�
YH(t)

YL(t)

��1="
=
H
L

�
H

L

NH(t)

NL(t)

��1="�pH(t)
pL(t)

�� 1��
�"

=

�
H
L

��"
�
�
H

L

NH(t)

NL(t)

���
�

:

To see that the result concerning the weak equilibrium bias is also present in the social
planner�s solution, let us consider the e¤ect of an increase in the relative skill supply on the
wage premium holding the relative factor supply in (I15.15) �xed. Clearly,

@!(t)

@NH(t)NL(t)

=
� � 1
�

!(t)
NH(t)
NL(t)

:

Additionally we have from (I15.13) that

@NH(t)NL(t)

@HL
= (� � 1)

NH(t)
NL(t)

H
L

;
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so that

@!(t)

@NH(t)NL(t)

@NH(t)NL(t)

@HL
=
(� � 1)2

�

!(t)

H=L
� 0:

Hence, the result about weak equilibrium bias is also present in the social planner�s solution.
To see that we can also reproduce the result about strong equilibrium bias, use (I15.15) and
(I15.13) to solve for the BGP skill premium as

!(t) =

�
H
L

� "
�
�
H

L

��1
�

 �
�H
�L

�� �H
L

�"�H
L

���1!��1
�

=

�
H
L

�"��H
�L

���1�H
L

� (��1)2�1
�

=

�
H
L

�"��H
�L

���1�H
L

���2
:

Hence,
d!(t)

dHL
= (� � 2) !(t)

H=L
;

which shows the possibility of strong equilibrium bias if � > 2, i.e. if � > 2, an increase in
the relative supply of skilled labor will increase the relative price of skilled labor, once the
process of technological change is endogenized.

Exercise 15.11

Exercise 15.11, Part (a): The free entry conditions for the model of directed techno-
logical change with technology spillovers are given in (15.33) and (15.34). For convenience
these two conditions are reproduced here as

�LNL (t)
(1+�)=2NH (t)

(1��)=2 VL (t) � wS (t) (I15.16)

and
�HNL (t)

(1��)=2NH (t)
(1+�)=2 VH (t) � wS (t) , (I15.17)

where both conditions hold with equality whenever SH (t) or SL (t) are positive. We will
prove the stability result of Proposition 15.6 in three steps. For the stronger result that only
one sector�s technology will be improved upon if the economy is not on the BGP, we refer to
the discussion in footnote 1.

Step one. We �rst claim that if there is research in both sectors (which means that Eqs.
(I15:16) and (I15:17) bind) in a neighborhood of t0, [t0; t0 + "), and if

NH (t0)

NL (t0)
= (NH=NL)

BGP � �
�

1���

�
H

L

� ��1
1���


"

1��� , (I15.18)

then there is research in both sectors and the technology ratio is constant for all t � t0.
First note that since the inequalities in (I15:16) and (I15:17) are satis�ed with equality over
[t0; t0 + "), we have

_NH(t)

NH(t)
�

_NL(t)

NL(t)
=
1

�

�
d (VH (t) =VL (t)) =dt

VH (t) =VL (t)

�
, (I15.19)
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for t 2 [t0; t0 + "). We also have

d (VH (t) =VL (t)) =dt

VH (t) =VL (t)
=

�H(t)

VH(t)
� �L(t)

VL(t)

=
�pH(t)

1=�H

VH(t)
� VH(t)

VL(t)

�pL(t)
1=�L

VH(t)

=
�pH(t)

1=�H

VH(t)

"
1� �L

�H

�
NL(t)

NH(t)

�� � pL(t)
pH(t)

�1=� L
H

#

=
�pH(t)

1=�H

VH(t)

241� NH(t)=NL(t)

(NH=NL)
BGP

! 1���
�

35 , (I15.20)

where the �rst equality uses the HJB equation, the second equality substitutes the expression
for pro�ts, and the third equality substitutes the expression for VH(t)VL(t)

from Eqs. (I15:16) and
(I15:17). Combining Eqs. (I15:19) and (I15:20), we have

d (NH (t) =NL (t))

NH (t) =NL (t)
=
�pH(t)

1=�H

�VH(t)

241� NH(t)=NL(t)

(NH=NL)
BGP

! 1���
�

35 ,
for [t 2 t0; t0 + "), which characterizes the evolution of NH (t) =NL (t) given the initial
value NH (t0) =NL (t0). By Eq. (I15:18), this di¤erential equation implies NH (t) =NL (t) =

NH (t0) =NL (t0) = (NH=NL)
BGP for all t 2 [t0; t0 + "]. In particular, the technology ra-

tio is also constant and equal to (NH=NL)
BGP at time t0 + ". Furthermore, this ratio can

remain constant at t0 + " only if there is research in both sectors at t0 + ", i.e. if Eqs.
(I15:16) and (I15:17) also bind in a neighborhood of t1 � t0 + ". Hence, by induction, if
there is research in both sectors over [t0; t0 + ") and the initial technology ratio is given by
NH(t0)=NL(t0) = (NH=NL)

BGP , then there is research in both sectors at all t � t0 and the
technology ratio remains constant over time, that is NH (t) =NL (t) = (NH=NL)

BGP for all
t � t0.

Step two. If NH(t0)
NL(t0)

>
�
NH
NL

�BGP
and 1 � �� > 0 (stable case), then NH(t)

NL(t)
gradually

declines towards
�
NH
NL

�BGP
, that is, technological change is relatively L-augmenting (by

symmetry, if NH(t0)
NL(t0)

<
�
NH
NL

�BGP
, then technological change is relatively H-augmenting).1

Suppose the contrary, i.e. suppose NH(t)
NL(t)

increases in a neighborhood of t0. Since the relative
price is given by

pH (t)

pL (t)
= 

"�
�

�
NH (t)

NL (t)

H

L

���=�
, (I15.21)

1The statement "technological change is relatively L-augmenting" encompasses both the case in which
there is only L-augmenting research and the case in which there is also H-augmenting research but relatively
more L-augmenting research. Only one of these cases should be true but we are not exactly sure which one.
Therefore we prove a less speci�c statement, encompassing both cases. In particular, we are unable to prove
the statement in the proposition that, if the technology ratio is not equal to the BGP value, then there is only
research augmenting one factor. However, given that the proof provided above encompasses both cases, the
stability result is true regardless of this stronger claim.
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this implies
pH (t)

pL (t)
� pH (t0)

pL (t0)
(I15.22)

in a neighborhood [t0; t0 + "). This argument can be generalized to show that Eq. (I15:22)
holds for all t � t0.2 Next note that, since Eq.(I15:17) binds and (I15:16) might or might not
bind (see footnote 1), we have

VH (t0)

VL (t0)
� �L
�H

�
NL (t0)

NH (t0)

��
.

Substituting the discounted sum of pro�ts for the value functions, we haveR1
t0
�pH(t)

1=�H exp
�R t

t0
�r (s) ds

�
dtR1

t0
�pL(t)1=�L exp

�R t
t0
�r (s) ds

�
dt
� �L
�H

�
NL (t0)

NH (t0)

��
(I15.23)

Using (I15:22) in the inequality (I15:23), we have�
NL (t0)

NH (t0)

��
� �H

�L

R1
t0
�pL(t)

1=�
�
pH(t0)
pL(t0)

�1=�
H exp

�R t
t0
�r (s) ds

�
dtR1

t0
�pL(t)1=�L exp

�R t
t0
�r (s) ds

�
dt

=
�H
�L

H

L

�
pH (t0)

pL (t0)

�1=�
=

�H
�L

H

L

"
�

�
NH (t0)

NL (t0)

H

L

��1=�
.

Rearranging the NH(t0)
NL(t0)

terms, this implies�
NH (t0)

NL (t0)

�1=���
� �H
�L

�
H

L

�1�1=�

"
� =

 �
NH

NL

�BGP!1=���
, (I15.24)

where the equality follows from the de�nition of (NH=NL)
BGP . Since 1=� � � > 0, the

last inequality contradicts the assumption that NH(t0)
NL(t0)

>
�
NH
NL

�BGP
. This leads to a

contradiction and proves that there is relatively L-augmenting technological change when
NH(t0)
NL(t0)

>
�
NH
NL

�BGP
and 1=� � � > 0. By induction, this also shows that if NH(t0)

NL(t0)
>�

NH
NL

�BGP
and 1 � �� > 0, then there is relatively L-augmenting technological change until

NH(t)
NL(t)

=
�
NH
NL

�BGP
. Intuitively, when 1��� > 0, the price e¤ect is su¢ ciently strong (i.e. 1=�

is large, see Eq. (I15:21)) and knowledge spillovers are su¢ ciently weak (i.e. � is small) so
that technological change is directed towards the sector with the worse technology until the
technology ratio (and the e¤ective factor ratio) is back in proportion.

2To see this generalization, suppose Eq. (I15:22) is violated at some �t > t0. Eq. (I15:21) shows
pH (t)
pL(t)

is a continuous function of t, thus there exists ~t 2 [t0; �t] such that
pH(~t)
pL(~t)

= pH (t0)
pL(t0)

and pH (t)
pL(t)

increases in

a neighborhood of ~t. For this time ~t, Eq. (I15:21) implies
NH(~t)
NL(~t)

= NH (t0)
NL(t0)

and, by assumption, with this

technology ratio there is relatively H-augmenting research. More speci�cally, NH (t) =NL (t) increases in a
neighborhood of ~t, and by Eq. (I15:21), pH (t) =pL (t) decreases in a neighborhood of ~t, contradicting the
choice of ~t. This proves that Eq. (I15:22) holds for all t � t0.
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Step three. If NH(t0)NL(t0)
<
�
NH
NL

�BGP
and 1� �� < 0 (unstable case), then NH(t)

NL(t)
gradually

declines starting from NH(t0)
NL(t0)

, that is, technological change is relatively L-augmenting (by

symmetry, if NH(t0)
NL(t0)

>
�
NH
NL

�BGP
, then technological change is relatively H-augmenting).

Suppose the contrary, i.e. there is relatively H-augmenting technological change. The same
argument as in step three shows that Eqs. (I15:21) and (I15:23) also apply in this case and
lead to the inequality in (I15:24). But since 1=� � � < 0, this inequality implies

NH (t0)

NL (t0)
�
�
NH

NL

�BGP
,

which contradicts our assumption NH(t0)
NL(t0)

<
�
NH
NL

�BGP
for this case. This proves that tech-

nological change is relatively L-augmenting. By induction, there is always relatively L-
augmenting technological change and NH(t)

NL(t)
# 0. Intuitively, when 1 � �� < 0, the price

e¤ect is su¢ ciently weak (i.e. 1=� is small, see Eq. (I15:21)) and the knowledge spillovers
are su¢ ciently strong (i.e. � is large) so that research is directed towards the sector with
relatively better technology and the technology ratio diverges.

To summarize, if NH(t0)
NL(t0)

= (NH=NL)
BGP , then there is proportional research in each

sector so that the technology ratio remains constant for all t � t0. If
NH(t0)
NL(t0)

6=
�
NH
NL

�BGP
and 1=� � � > 0 (the stable case), then there is relatively more research in the sector with
worse initial technology so that the technology ratio converges to the BGP level. If NH(t0)NL(t0)

6=
(NH=NL)

BGP and 1=� � � < 0 (the unstable case), there is relatively more research in the
sector with the better initial technology so that the technology ratio diverges, in particular,
NH(t)
NL(t)

!1 if NH(t0)NL(t0)
> (NH=NL)

BGP and NH(t)
NL(t)

! 0 if NH(t0)NL(t0)
< (NH=NL)

BGP .

Exercise 15.11, Part (b): The discussion above shows why the condition is important:
if 1=� > � the technology ratio will converge to the BGP level for all initial conditions, i.e.
the economy is globally stable. If 1=� < � however, it will be unstable in the sense that
technological change will (even in the long run) be directed towards one sector. To see the
intuition, �rst note that by Eq. (I15:16) the incentive for H-augmenting technological change

relative to L-augmenting technological change depends on the ratio � (t) � NH(t)
�VH(t)

NL(t)�VL(t)
. Next,

consider this ratio on the BGP equilibrium, which is given by

�� =
NH(t)

�

NL(t)�

R1
t0
� (p�H)

1=� H exp
�R t

t0
�r�ds

�
dtR1

t0
�
�
p�L
�1=�

L exp
�R t

t0
�r�ds

�
dt

=
NH(t)

�

NL(t)�
(p�H)

1=��
p�L
�1=� HL

=
NH(t)

�

NL(t)�

"�
�

�
NH (t)

NL (t)

H

L

��1=� H
L
; (I15.25)

where the last line substitutes for relative prices from Eq. (I15:21). Even though �� is a BGP
value, the expression in Eq. (I15:25) captures the economic forces that are also present when

the technology ratio is not equal to the BGP value. In particular, the NH(t)
�

NL(t)�
term captures

the relative strength of the knowledge externalities for H-augmenting research. When there
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is already better technology in the H sector, then this term creates a destabilizing force
that generates even more H-augmenting research. Note that the parameter � captures the

strength of this destabilizing force. On the other hand, the term
�
NH(t)
NL(t)

��1=�
in Eq. (I15:25)

captures the relative strength of the price e¤ect. When there is better technology (and thus
more production) in the H sector, then the price of H complementary machines falls which
reduces incentives for H-augmenting research. Note that this is a stabilizing force that tends
to generate research directed towards the sector with worse technology. Note also that 1=�
controls the strength of this stabilizing force (i.e. the relative price responds more strongly
to output changes if the elasticity of substitution between e¤ective H and L factors is low).
When 1=� > � the stabilizing force due to the price e¤ect dominates the destabilizing force
due to knowledge spillovers and the equilibrium is stable.

Exercise 15.18

Exercise 15.18, Part (a). The change in the production function of intermediary
producers does not a¤ect the de�nition of an equilibrium. Hence, an equilibrium in
this economy consists of paths of factor prices and interest rates [wL(t); r(t); wH(t)]1t=0,
prices for machines [pxH(�; tjq); pxL(�; tjq)]1t=0;�2[0;1], prices for the two intermediary goods
[pL(t); pH(t)]

1
t=0, quantities of machines [xH(�; tjq); xL(�; tjq)]1t=0;�2[0;1], sequences of value

functions [VH(�; tjq); VL(�; tjq)]1t=0;�2[0;1], sequences of qualities [qH(�; t); qL(�; t)]
1
t=0;�2[0;1]

and consumption levels [C(t)]1t=0 such that consumers maximize utility, intermediary pro-
ducers set pro�t maximizing prices pxH(�; tjq) and pxL(�; tjq) monopolistically, �nal good pro-
ducers maximize pro�ts taking intermediary prices and wages as given, the wage rate clears
the labor market, the value functions VH(�; tjq) and VL(�; tjq) and quality levels qL(t; �) and
qH(t; �) are consistent with free entry and consumption levels, expenditures for machines and
research spending are consistent with the resource constraint. A BGP equilibrium is an equi-
librium where aggregate output grows at a constant rate and where interest and replacement
rates are constant.

Let us now characterize the BGP equilibrium in this economy. Consider �rst the static
equilibrium, i.e. the equilibrium for a given distribution of qualities [qH(�; t); qL(�; t)]1�=0.
Monopolistic machine producers set their prices pH(�; tjq) and pL(�; tjq) to maximize pro�ts.
The demand for L-complementary machines in sector � with current quality q is given by

xL(�; t j q) =
�
qL(�; t)pL(t)

pL(�; tjq)

� 1
�

L; (I15.26)

where recall pL(t) is the price of L-intermediaries in terms of the �nal good. With this
isoelastic demand function, monopolistic prices pL(�; tjq) are again given by

pL(�; t j q) =
 

1� � qL(�; t) = qL(�; t):

From (I15.26) we therefore get that

xL(�; t j q) = pL(t)
1
�L;

so that monopolistic pro�ts are

�L(�; tjq) = (1�  )q(�; t)xL(�; t j q) = �q(�; t)pL(t)
1
�L = �L(tjq):

This again shows that pro�ts are not dependent on the sector �, once quality is controlled for
(and with a slight abuse of notation we just denote the function again by �). Note however
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that the dependence on L-intermediary prices pL(t) (potentially) introduces a dependence
on time. To make some progress, let us solve for pL(t). As the market for intermediaries is
competitive, pL(t) will be given by the marginal product of L intermediates, i.e.

pL(t) = Y (t)
1
" LYL(t)

� 1
" = 

�
YL(t)

Y (t)

�� 1
"

: (I15.27)

Let us conjecture that along the BGP YL(t) and Y (t) will grow at the same rate so that pL(t)
will be constant. We will show below that this is actually the case. Hence, along the BGP,
pL(t) will be constant so that pro�ts are also constant (conditional on q), i.e. �L(tjq) = �L(q).

To characterize the research decisions, we have to derive the value of owning a patent
(which is now not perpetual due to the process of creative destruction). The value function
is characterized by the HJB equation

r(t)VL(�; t j q)� _VL(�; t j q) = �L(t; q)� zL(�; t j q)VL(�; t j q): (I15.28)

Along the BGP, interest rates and replacement rates will be constant, i.e. r(t) = r� and
zL(�; tjq) = z�L. As pro�ts are also constant as argued above, (I15.28) reduces to

r�VL(tjq)� _VL(tjq) = �L(q)� z�LVL(tjq); (I15.29)

where we already imposed that V will not be dependent on � as neither pro�ts nor replacement
rates are. The di¤erential equation in (I15.29) has the solution

VL(tjq) =
�L(q)

r� + z�L
+

�
VL(0jq)�

�L(q)

r� + z�L

�
exp ((r� + z�L)t) :

Along the BGP we therefore have to have �L(q)
r�+z�L

= VL(0jq) = VL(tjq). If VL(0jq) > �L(q)
r�+z�L

,

then VL(tjq)
t! 1, which violates the transversality condition. If VL(0jq) < �L(q)

r�+z�L
, then

VL(tjq) will be negative in �nite time. This cannot occur in equilibrium either. Hence, the
value function is given by

VL(tjq) = VL(q) =
�L(q)

r� + z�L
=
�qp

1
�

LL

r� + z�L
;

where we explicitly noted that pL will be constant along the BGP. The case of H-
complementary machines is analogous. With the value function at hand we can characterize
the decisions of research �rms. Along the BGP there will be positive research activity across
all sectors � for both machine types L and H. Hence the free entry conditions will hold with
equality, i.e.

�LVL(q) = ��1q (I15.30)

�HVH(q) = ��1q: (I15.31)

Combining (I15.30) and (I15.31), we can solve for the intermediary prices pL(t) and pH(t).
Doing so yields

1 =
�LVL(q)

�HVH(q)
=

�L�qp
1=�
L L

�H�qp
1=�
H H

so that
pH
pL

=

�
�L
�H

L

H

��
: (I15.32)

As we normalized the �nal good to be the numeraire, we also have that

"p1�"L + (1� )"p1�"H = 1;
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so that (using (I15.32)) we get

pH = H�����H [(L�L)
��1" + (1� )"(H�H)��1]

1
"�1 : (I15.33)

Until now we only used the two free entry conditions to make sure that research �rms are
indi¤erent where to direct their research e¤orts to. Additionally we also need that research
�rms do not make pro�ts. From (I15.31) we therefore get that

��1q = �HVH(q) =
�qp

1
�

HH

r� + z�H
;

so that the e¤ective discount rate r� + z�H is given by

r� + z�H = ���HHp
1
�

H = ��[(L�L)
��1" + (1� )"(H�H)��1]

1
��1 ; (I15.34)

where the second equality uses (I15.33) and we de�ned � = "� ("� 1)(1� �). Note however
that both r� and z�H are endogenous.

To derive the equilibrium growth rate, let us derive the expression for aggregate output.
Equilibrium intermediary productions are given by

YH(t) =
1

1� �

�Z 1

0
qH(�; t)xH(�; t j q)1��d�

�
H� =

1

1� �

�Z 1

0
qH(�; t)pH

1��
� d�

�
H

=
1

1� �Hp
(1��)=�
H QH(t): (I15.35)

The expression for YL(t) is of course analogous. Aggregate output is therefore given by

Y (t) =
�
LYL(t)

"�1
" + HYL(t)

"�1
"

� "
"�1

=
1

1� �

�
L(p

1��
�

L QL(t)L)
"�1
" + H(p

1��
�

H QH(t)H)
"�1
"

� "
"�1

: (I15.36)

To derive the BGP growth rate of QL(t), consider a small time interval �t. In this time
interval the probability for entrants to have an innovation is z�L�t (recall that innovation
rates are constant along the BGP) and the probability for two or more innovations is of order
o(�t). Hence

QL(t+�t) = �QL(t)z
�
L�t+ (1� z�L�t)QL(t) + o(�t)

so that

QL(t+�t)�QL(t)
�t

= (�� 1)QL(t)z�L +
o(�t)

�t
:

Taking the limit where �t goes to zero, we get that

g�L =
_QL(t)

QL(t)
= (�� 1)z�L:
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Now note that (I15.36) implies that

_Y (t)

Y (t)
=

L

�
p
1��
�

L QL(t)L

� "�1
" _QL(t)

QL(t)
+ H

�
p
1��
�

H QH(t)H

� "�1
" _QH(t)

Qh(t)

L

�
p
1��
�

L QL(t)L

� "�1
"

+ H

�
p
1��
�

H QH(t)H

� "�1
"

= g�L +

H

�
p
1��
�

H QH(t)H

� "�1
"

L

�
p
1��
�

L QL(t)L

� "�1
"

+ H

�
p
1��
�

H QH(t)H

� "�1
"

(g�H � g�L) : (I15.37)

Along the BGP, aggregate output grows at a constant rate, i.e.
_Y (t)
Y (t) = g�, so that (I15.37)

implies that
g� = g�L = g�H = (�� 1)z�L = (�� 1)z�H = (�� 1)z�:

This also veri�es that intermediary prices are indeed constant along the BGP (see (I15.27)).
Now we are in the position to disentangle r� and z�. From the consumer�s Euler equation we
have that

gC =
1

�
(r� � �):

Along the BGP consumption will be growing at rate g� = (�� 1)z�. Hence we get that
r� = �g� + � = �(�� 1)z� + �;

so that the e¤ective discount rate is given by

r� + z� = r� +
r� � �
�(�� 1) = r�

1 + �(�� 1)
�(�� 1) � �

�(�� 1) :

Using (I15.34), equilibrium interest rates are therefore given by

r� =
�(�� 1)

1 + �(�� 1)

�
r� + z� +

�

�(�� 1)

�

=
�(�� 1)

h
��[(L�L)

��1"L + H
"(H�H)

��1]
1

��1
i
+ �

1 + �(�� 1) :

This determines the interest rate as a function of exogenous parameters only, so that the
equilibrium growth rate is given by

g� =
1

�
(r� � �) = (�� 1)

�(�� 1) + 1(��[(L�L)
��1"L + H

"(H�H)
��1]

1
��1 � �): (I15.38)

Finally we have to make parametric restrictions such that the economy is actually growing
and that the transversality condition is satis�ed. The economy has positive growth if

��[(L�L)
��1"L + 

"
H(H�H)

��1]
1

��1 > �:

The transversality condition is satis�ed if

(1� �)g� < �:

Substituting the expression for the equilibrium growth rate in (I15.38), the transversality
condition requires that

� > (1� �)�� 1
�

��[(L�L)
��1"L + H

"(H�H)
��1]

1
��1 :
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Hence the allocation characterized above is a BGP equilibrium in this economy if

� > � > (1� �)�� 1
�

�;

where
� = ��[(L�L)

��1"L + H
"(H�H)

��1]
1

��1 :

Exercise 15.18, Part (b). To derive the equilibrium technology ratio, note that the
technologies in this economy are just given by the aggregate qualities QH(t) and QL(t). Using
(I15.32) we get that

YH
YL

=
QH(t)

QL(t)

H

L

�
pH
pL

� 1��
�

=
QH(t)

QL(t)

H

L

1��
�

�
pH
pL

��(1��)
"�

:

Additionally, (I15.35) implies that

YH
YL

=

1
1��Hp

(1��)=�
H QH(t)

1
1��Lp

(1��)=�
L QL(t)

=
HQH(t)

LQL(t)

�
�L
�H

L

H

�1��
;

where we again used (I15.32). Combining these two equation determines the equilibrium level
of qualities as

QH(t)

QL(t)
= "

�
�H
�L

�� �H
L

���1
; (I15.39)

which is exactly the same equation as in the baseline model of directed technological change.

Exercise 15.18, Part (c). Let us now show that this economy also features weak
equilibrium bias and that there is the possibility of strong equilibrium bias. The derived
production function of the �nal good is given in (I15.36) as

Y (t) =
1

1� �

 
L

�
p
1��
�

L QL(t)L

� "�1
"

+ H

�
p
1��
�

H QH(t)H

� "�1
"

! "
"�1

: (I15.40)

To see that an increase in H
L always induces H biased technological change, recall that we

called technological change H-biased, if

@MPH(t)=MPL(t)

@QH=QH
� 0;

whereMPW (t) denotes the marginal product of factorW . We said that the economy features
weak equilibrium bias if

@MPH(t)=MPL(t)

@QH(t)=QL(t)

@QH(t)=QL(t)

@H=L
� 0:

In this economy we have from (I15.40) that

MPH(t)

MPL(t)
=
H
L

�
H

L

��1
"
�
pH
pL

� 1��
�

"�1
"
�
QH(t)

QL(t)

� "�1
"

;

where pH
pL
is given in (I15.32). Hence we get that

@MPH(t)=MPL(t)

@QH(t)=QL(t)
=
� � 1
�"

MPH(t)=MPL(t)

QH(t)=QL(t)
;
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where we used that � � 1 = ("� 1)�. Additionally we have from (I15.39) that

@QH(t)=QL(t)

@H=L
= (� � 1)QH(t)=QL(t)

H=L
;

so that
@MPH(t)=MPL(t)

@QH(t)=QL(t)

@QH(t)=QL(t)

@H=L
=
(� � 1)2
�"

MPH(t)=MPL(t)

H=L
� 0:

Hence, the economy features weak equilibrium bias.
To study the conditions for strong equilibrium bias we need to look at equilibrium wages

in his economy. Using that the equilibrium level of qualities satis�es (I15.39) and that equi-
librium prices were given in (I15.32) as

pH
pL

=

�
�L
�H

L

H

��
;

it follows that equilibrium wages are given by

wH(t)

wL(t)
=

pH
@YH(t)
@H

pL
@YL(t)
@L

=
p
1=�
H QH(t)

p
1=�
L QL(t)

=
�L
�H

L

H

QH(t)

QL(t)

=
�L
�H

L

H
"
�
�L
�H

��� �H
L

���1
= "

�
�L
�H

�1�� �H
L

���2
:

Hence, we get exactly the same result as in the baseline model that there is strong equilibrium
bias if

� � 2 > 0:

Exercise 15.18, Part (d). Let us now turn to the transitional dynamics. We showed
in (I15.39) that along the BGP the relative qualities in the two sectors have to satisfy

QH(t)

QL(t)
= "

�
�L
�H

��� �H
L

���1
= QBGP : (I15.41)

As QL(0) and QH(0) are exogenously given, there is no reason why (I15.41) has to hold
at t = 0. We showed above that the BGP is unique and that (I15.41) has to hold at the
BGP. Although the BGP of this model is very similar to the baseline model, the transitional
dynamics are a little more di¢ cult. In the baseline model, the transitional dynamics are such
that o¤ the BGP there will never be both sectors innovating at the same time. This is not
necessarily the case here. What we will show is that the system will be globally stable such
that if QH(t)=QL(t) > QBGP , there will be faster innovation in the L sector and vice versa.
To show this, let us assume that even o¤ the BGP we have

zH(�; tjq) = zH(t) > 0 and zL(�; tjq) = zL(t) > 0

but not necessarily zH(t) = zL(t). With positive research expenditures we still get that the
free entry condition holds with equality so that

�HVH(t; � j q) = ��1qH(�; t) and �LVL(t; � j q) = ��1qL(�; t): (I15.42)

Integrating (I15.42) over all sectors yieldsZ
VH(�; tjq)d� =

1

��H
QH(t) and

Z
VL(�; tjq)d� =

1

��L
QL(t):
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Hence, we have that R
VH(�; t)d�R
VL(�; t)d�

=
�L
�H

QH(t)

QL(t)
: (I15.43)

But now note that (I15.42) still implies that _VS(t; �) = 0 so that the HJB equation reads

(r(t) + zH(t))VH(�; t) = �pH(t)
1
�HqH(�; t):

Hence we get that

(r(t) + zH(t))

(r(t) + zL(t))

R
VH(�; t)d�R
VL(�; t)d�

=

�
pH(t)

pL(t)

� 1
� QH(t)

QL(t)

H

L
: (I15.44)

As pH(t)
pL(t)

is determined by competition in the �nal good sector, we have that

pH(t)

pL(t)
= 

�
YH(t)

YL(t)

��1
"

= 

�
QH(t)H

QL(t)H

��1
"
�
pH(t)

pL(t)

��(1��)
�"

= 
�"

�"+(1��)

�
QH(t)H

QL(t)L

� ��
�"+(1��)

:

Substituting this and (I15.43) into (I15.44), we get that

(r(t) + zH(t))

(r(t) + zL(t))

�L
�H

QH(t)

QL(t)
=

�
pH
pL

� 1
� QH(t)

QL(t)

H

L
= 

"
�

�
QH(t)H

QL(t)L

���1
�

;

which we can write (using (I15.41)) as

(r(t) + zH(t))

(r(t) + zL(t))
=
�H
�L

�
1� 


� "
�
�
QH(t)

QL(t)

��1
�
�
H

L

���1
�

=

�
QBGP

QH(t)=QL(t)

� 1
�

: (I15.45)

From here it is then easy to characterize the transitional dynamics, as (I15.45) implies that

zH(t) > zL(t),
QH(t)

QL(t)
< QBGP ;

i.e. whenever H-complementary technology is too low (relative to the BGP level), research
directed towards H-technologies will be more intense than research directed towards L-
technologies. Hence, QH(t)

QL(t)
will grow over time until the qualities reach their BGP ratio

QBGP . Then (I15.45) shows that

zH(t) = zL(t) = z�

as required along the BGP. As we made no reference to the speci�c initial conditions, this
analysis showed that the system will be globally stable.

Exercise 15.18, Part (e). Let us now consider the Pareto optimal allocation. The
social planner solves the following maximization problem

max
[C(t);[xH(�;t);xL(�;t);zL(�;t);zH(�;t)]� ]

1
t=0

Z 1

0
exp (��) C(t)

1�� � 1
1� � dt
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subject to the constraints

Y (t) = X(t) + Z(t) + C(t)

Y (t) =

�
Y

"�1
"

L (t) + (1� )Y
"�1
"

H (t)

� "
"�1

YL(t) =
1

1� �

�Z 1

0
qL(�; t)xL(�; t j q)1��d�

�
L�

YH(t) =
1

1� �

�Z 1

0
qH(�; t)xH(�; t j q)1��d�

�
H�

X(t) = XH(t) +XL(t) =  

Z 1

0
xH(�; t)qH(�; t)d� +  

Z 1

0
xL(�; t)qL(�; t)d�

Z(t) =

Z 1

0
zH(�; t)d� +

Z 1

0
zL(�; t)d�

Additionally, the quality innovations have to satisfy the restrictions imposed by the R&D
technology (we will make that formal later). Let us �rst eliminate some constraints to
make the problem more tractable. Consider �rst the problem for the intermediary sectors.
The social planner will allocate [xH(�; t); xL(�; t)]1�=0 to maximize net output. Formally,
[xH(�; t); xL(�; t)]

1
�=0 will solve the problem

max
[xH(�;t);xL(�;t)]

1
�=0

Y (t)�X(t);

where Y (t) and X(t) are de�ned above. The necessary conditions are given by

@Y (t)

@YL(t)
qL(�; t)L

�xL(�; tjq)�� �  qL(�; t) = 0 (I15.46)

@Y (t)

@YH(t)
qH(�; t)H

�xH(�; tjq)�� �  qH(�; t) = 0:

These conditions immediately imply that

xL(�; tjq) = xL(t) and xH(�; tjq) = xH(t);

i.e. the allocation of machines is equalized across sectors and independent of q. Using this,
we get that

@Y (t)

@YL(t)
=

�
Y

"�1
"

L (t) + (1� )Y
"�1
"

H (t)

� 1
"�1

Y
�1
"

L (t) = 

�
Y (t)

YL(t)

�1="
and

YL(t) =
1

1� �

�Z 1

0
qL(�; t)d�

�
xL(t)

1��L� =
1

1� �xL(t)
1��L�QL(t): (I15.47)

As (I15.46) implies that

xL(t)
1�� = (1��)=�

�
Y (t)

YL(t)

�(1��)=(�")
L1��

�
1

1� �

�(1��)=�
;
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(I15.47) can be written as

YL(t) =

�
1

1� �

�1=�
(1��)=�

�
Y (t)

YL(t)

�(1��)=(�")
LQL(t)

=

�
1

1� �

�"=�
(1��)"=�Y (t)(1��)=� (LQL(t))

(�")=� ; (I15.48)

where we again de�ned

� = 1 + ("� 1)�:

As the analogous equation to (I15.48) holds also true for YH(t), we can write aggregate output
Y (t) as

Y (t) =
h
YL(t)

"�1
" + (1� )YH(t)

"�1
"

i "
"�1

=

�
1

1� �

�"=�
Y (t)(1��)=�

h
"=� (LQL(t))

(��1)=� + (1� )"=� (HQH(t))(��1)=�
i "
"�1

=

�
1

1� �

�1=� h
"=� (LQL(t))

(��1)=� + (1� )"=� (HQH(t))(��1)=�
i �
��1

:

Additionally we can use (I15.46) to get

XL(t) =

Z 1

0
 qL(�; t)xL(t)d� =

Z 1

0


�
Y (t)

YL(t)

�1="
qL(�; t)L

�xL(t)
1��d�

= (1� �)Y (t)1="YL(t)("�1)=":

As the same relation holds true for the H-machines, aggregate machine expenditures are
given by

X(t) = XL(t) +XH(t) = (1� �)Y (t)1="
h
YL(t)

("�1)=" + (1� )YH(t)("�1)="
i
= (1� �)Y (t):

Using those results, we can write the maximization problem as

max
[C(t);ZH(t);ZL(t)]

1
t=0

Z 1

0
exp (��) C(t)

1�� � 1
1� � dt

s.t. �Y (t) = C(t) + ZL(t) + ZH(t)

Y (t) =

�
1

1� �

�1=� h
"=� (LQL(t))

(��1)=� + (1� )"=� (HQH(t))(��1)=�
i �
��1

;

where QL(t) and QH(t) evolve according to the innovation possibilities frontier. As the social
planner takesQH(t) andQL(t) as the two appropriate state variables, he is indi¤erent between
the sectoral allocation of research expenditures [zL(�; t); zH(�; t)] but cares only about the
evolution of aggregate qualities QL(t) and QH(t). Therefore we already used the two control
variables ZH(t) and ZL(t) as the aggregate research expenditures directed towards H and L
technologies respectively. Using this notation, the innovation possibilities frontier is given by

_QL(t) = (�� 1)�LZL(t) and _QH(t) = (�� 1)�HZH(t):
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Hence, the Pareto optimal allocation is the solution to the problem

max
[C(t);ZL(t);ZH(t)]

1
t=0

Z 1

0
exp (��) C(t)

1�� � 1
1� � dt

s.t. �Y (t) = C(t) + ZH(t) + ZL(t)

_QL(t) = (�� 1)�LZL(t)
_QH(t) = (�� 1)�HZH(t)

Y (t) =

�
1

1� �

�1=� h
"=� (LQL(t))

(��1)=� + (1� )"=� (HQH(t))(��1)=�
i �
��1

:

This however is just a standard problem of optimal control with (once we solve the re-
source constraint for C(t)) two control variables (ZH(t); ZL(t)) and two state variables
(QL(t); QH(t)). The current value Hamiltonian for this problem is given by

Ĥ(ZH ; ZL; QH ; QL; �H ; �L) =
[�Y (t)� ZH(t)� ZL(t)]1�� � 1

1� �
+�H(t)(�� 1)�HZH(t) + �L(t)(�� 1)�LZL(t):

The necessary �rst-order conditions with respect to the two control variables are given by

ĤZH(t) = �C(t)�� � �H(t)(�� 1)�H = 0 (I15.49)

ĤZL(t) = �C(t)�� � �L(t)(�� 1)�L = 0:
Combining these, we get

1 =
�C(t)��
�C(t)�� =

�H(t)(�� 1)�H
�L(t)(�� 1)�L

;

so that
�H(t)

�L(t)
=
�L
�H

: (I15.50)

Note that this also implies that

_�H(t)

�H(t)
=
_�L(t)

�L(t)
=
_�(t)

�(t)
:

The �rst-order conditions with respect to the two state variables are given by

ĤQH = �C(t)��� @Y (t)

@QH(t)
= ��H(t)� _�H(t) (I15.51)

ĤQL = �C(t)��� @Y (t)

@QL(t)
= ��L(t)� _�L(t): (I15.52)

As

@Y (t)

@QH(t)
=

�
1

1� �

�(1��)=� h
"=� (LQL(t))

(��1)=� + (1� )"=� (HQH(t))(��1)=�
i 1
��1 �

(1� )"=�H(��1)=�QH(t)
�1=�; (I15.53)

(I15.51) and (I15.52) imply that

1 =

_�H(t)
�H(t)

_�L(t)
�L(t)

=
�H(t)

�1(1� )"=�H(��1)=�QH(t)
�1=� � �

�L(t)
�1"=�L(��1)=�QL(t)�1=� � �

;
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so that

�H(t)
�1(1� )"=�H(��1)=�QH(t)

�1=� = �L(t)
�1"=�L(��1)=�QL(t)

�1=�:

Using (I15.50), the relative technology ratio in the Pareto optimal solution is given by

QH(t)

QL(t)
=

�
�H
�L

�� �1� 


�"�H
L

�(��1)
: (I15.54)

Note that this coincides with the equilibrium technology ratio given in (I15.39). Hence,
despite there being monopolistic distortions in the intermediary sectors, relative equilibrium
technologies are chosen e¢ ciently. This however does not imply that the equilibrium is
e¢ cient. To see this, let us derive the Pareto optimal growth rate. From the �rst-order
condition in (I15.49) we know that

_C(t)

C(t)
= �1

�

_�H(t)

�H(t)
= �1

�

_�(t)

�(t)
:

The growth rate of the costate �H(t) however is given in (I15.51) as

_�H(t)

�H(t)
=

1

�H(t)
C(t)���

@Y (t)

@QH(t)
+ �

= �(�� 1)�H�
@Y (t)

@QH(t)
+ �; (I15.55)

where the second equality uses (I15.49). But now note that (I15.54) implies that

(LQL(t))
(��1)=� = (HQH(t))

(��1)=�
�
�L
�H

���1� 

1� 

�"(��1)=� � L
H

���1
;

so that (I15.53) reduces to

@Y (t)

@QH(t)
=

�
1

1� �

�1=� �
"(�LL)

��1 + (1� )"(�HH)��1
� 1
��1 ��1H :

Hence (I15.55) gives us

_�H(t)

�H(t)
= �(�� 1)�

�
1

1� �

�1=� �
"(�LL)

��1 + (1� )"(�HH)��1
� 1
��1 + �:

The Pareto optimal growth rate is therefore given by (I15.49) as

gS =
_C(t)

C(t)
=
1

�

 
(�� 1)�

�
1

1� �

�1=� �
"(�LL)

��1 + (1� )"(�HH)��1
� 1
��1 � �

!
;

(I15.56)
where we used that in the planner�s solution all variables will grow at the same rate. To
see if the Pareto optimal allocation features faster growth than the equilibrium, we have to
compare (I15.56) with the equilibrium growth rate given in (I15.38). Doing so reveals that
no unambiguous comparison can be made. The reason is that - as usual in Schumpeterian
models - there are two counteracting e¤ects, each of which can dominate. The distortion
caused by monopolistic machine producers tends to make equilibrium growth too low. The
business-stealing e¤ect however, tends to make equilibrium growth excessive. Hence, no clear
comparison can be made so that we can only conclude that the equilibrium growth rate
(generically) does not equal the optimal growth rate.
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Exercise 15.18, Part (f). In order to judge the relative merits of di¤erent models, it
all depends on the topic you want to study. When we are just interested in studying the
aggregate implications of directed technological change (for example the strong and weak
equilibrium bias), the baseline model of directed technological change is simpler and provides
the same economic intuition. However the Schumpeterian extension has some advantages.
One concerns the richer transitional dynamics. Whereas in the baseline model, there is
only research in one sector if the economy is o¤ the BGP, the ones here seem to have more
resemblance with real-world economies: there is an equilibrium where there is research in
all sectors, but those sectors that have to catch up will innovate faster on the �stable arm�.
This seems to be a reasonable prediction. The current model has potentially more testable
implications. One of those is, that - as innovation comes only from entrants - on the way to
the BGP it will be sectors which are �younger�, i.e. where quality is relatively low, where
entry is more likely. Hence, there will be more churning in the sectors of the industry which
grow faster. This could o¤er interesting applications in both political economy and when
thinking about industrial policy and could not have been analyzed in the baseline model
of directed technological change. Note however, that the last aspect is not speci�c to the
Schumpeterian version of the directed technological change model. It is rather a general
di¤erence between Schumpeterian models and models of expanding varieties. Hence, for the
speci�c aspect of directed technological change the simpler baseline model seems to be more
appropriate.

Exercise 15.19

Exercise 15.19, Part (a). In a neoclassical-type model, each �rm solves the problem

max
A;L

F (A;L)� wL� �(A):

Hence, the optimal technology and labor choices satisfy

FL(A
�; L�) = w (I15.57)

FA(A
�; L�) = �0(A�): (I15.58)

Now suppose that w increases. From (I15.57) we know that the endogenous variables A� and
L� change according to

dw = dFL(A
�; L�) = FLA(A

�; L�)dA� + FLL(A
�; L�)dL�: (I15.59)

Additionally we can totally di¤erentiate (I15.58). This yields

FAA(A
�; L�)dA� + FAL(A

�; L�)dL� = �00(A�)dA�;

which we can solve for

dL� =
�00(A�)� FAA(A�; L�)

FAL(A�; L�)
dA�:

Substituting this in (I15.59) yields

dw =

�
FLA(A

�; L�) + FLL(A
�; L�)

�00(A�)� FAA(A�; L�)
FAL(A�; L�)

�
dA�;

so that the implied change of the optimal technology level is given by

dA�

dw
=

FAL(A
�; L�)

FLL(A�; L�)

�
�00(A�)� FAA(A�; L�) +

F 2LA(A
�; L�)

FLL(A�; L�)

�
=

FAL(A
�; L�)

FLL(A�; L�)

�
�00(A�)� FLL(A

�; L�)FAA(A
�; L�)� F 2LA(A�; L�)

FLL(A�; L�)

�
:
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Now note that the last term FLLFAA � F 2LA is negative by the second order condition, that
FAL > 0 and FLL < 0 as the production function is neoclassical and that �00 � 0 as the
cost function is convex. Hence, dA

�

dw < 0 as required. The intuition is as follows: for a given
level of technology A, a higher wage will reduce labor demand. This however will decrease
the marginal returns of the technology level A (recall that FAL > 0) so that a lower level of
technology will be used.

Exercise 15.19, Part (b). Now consider the directed technological change model. As
the only change vis-a-vis the model laid out in the book concerns the process of technological
progress, the static equilibrium for given levels NL(t) and NH(t) is exactly the same as in the
baseline model of directed technological change. First of all note, that this economy will not
feature balanced growth. To see this, note that we can write the growth rate of output as

_Y (t)

Y (t)
=
LYL(t)

"�1
"

_YL(t)
YL(t)

+ HYH(t)
"�1
"

_YH(t)
YH(t)

LYL(t)
"�1
" + HYH(t)

"�1
"

;

so that growth is balanced if
_YL(t)

YL(t)
=
_YH(t)

YH(t)
=
_Y (t)

Y (t)
:

In equilibrium, intermediary production levels are given by

YL(t) =
1

1� � pL(t)
1��
� NL(t)L and YH(t) =

1

1� � pH(t)
1��
� NH(t)L

so that
_YL(t)

YL(t)
=
1� �
�

_pL(t)

pL(t)
+

_NL(t)

NL(t)
and

_YH(t)

YH(t)
=
1� �
�

_pH(t)

pH(t)
+

_NH(t)

NH(t)
:

Hence, growth is balanced if
_NL(t)

NL(t)
�

_NH(t)

NH(t)
=

_NL(t)

NL(t)
=
1� �
�

�
_pH(t)

pH(t)
� _pL(t)

pL(t)

�
; (I15.60)

where we used that _NH(t) = 0. Along the BGP interest rates r(t) would need to be constant.
From the free entry condition into research, the analysis in Chapter 15 established that this
also requires that

1 = �LVL(t) =
�L�pL(t)L

r�
;

which immediately shows that pL(t) would need to be constant, i.e.
_pL(t)
pL(t)

= 0. But as we
normalized the price of the �nal good to be one and this normalization is equivalent to setting

"LpL(t)
1�" + "HpH(t)

1�" = 1; (I15.61)

it is clear that whenever pL(t) is constant, pH(t) also has to be constant. This however is
only consistent with _NL(t) = 0 as shown in (I15.60). Hence, all equilibria in this economy
will either have no growth or will be unbalanced.

Let us focus on the �rst case. So suppose there was a steady state equilibrium where
_NL(t) = 0;

i.e. NL(t) is constant at a level N�
L. The equilibrium intermediary prices in the steady state

of this economy are given by

pH(t)

pL(t)
=
@Y (t)=@YH(t)

@Y (t)=@YL(t)
=

�
H
L

� "�
�
�
NHH

N�
LL

���
�

; (I15.62)
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which together with (I15.61) implies that intermediary prices are constant in the steady state.
In the steady state �nal output is constant over time so that the consumer�s Euler equation
implies that

r(t) = �;

as consumption also has to be constant for product markets to clear. The value function of
machine producers is still implicitly de�ned by the HJB equation

r(t)VL(t)� _VL(t) = �(t) = �pL(t)
1=�L:

In the steady state we have that r(t) = � and pL(t) = pL, so that VL(t) will be constant over
time. In particular, the stable solution of the di¤erential equation above is given by

VL(t) = VL =
�p

1=�
L L

�
: (I15.63)

Hence, for this conjectured allocation to be an equilibrium, research �rms�free entry condition
has to be satis�ed, i.e.

1 � �LVL = �L
�p

1=�
L L

�
: (I15.64)

Let us focus on the case, where this condition holds with equality. Prices pL however are
of course endogenous. Hence we have to use the price normalization and the equilibrium
condition for intermediary prices (I15.62) to solve for pL in terms of exogenous parameters.
These two conditions are given by

1 = "Lp
1�"
L + "Hp

1�"
H (I15.65)

pH
pL

=

�
H
L

� "�
�
�
NHH

N�
LL

���
�

: (I15.66)

Clearly (I15.65) and (I15.66) give us two equations in two unknowns (pL and pH) which we
can solve for pL. Doing so yields

1 = "Lp
1�"
L + "Hp

1�"
H

= "Lp
1�"
L + "H

 �
H
L

� "�
�
�
NH

N�
L

H

L

���
�

pL

!1�"

= p1�"L

�

"�("�1)

�
L (LN�

L)
���1

�

�h

"=�
L (LN�

L)
(��1)=� + 

"=�
H (HNH)

(��1)=�
i
;

where we again made use of our de�nition of the derived elasticity of substitution � =
1 + ("� 1)�. Solving for pL we get that

pL =

24"=�L (LN�
L)
(��1)=� + 

"
�
H (HNH)

��1
�


� "�("�1)

�
L

�
LN�

L

���1
�

351=("�1)

=

"

"(��1)

�
L + 

"
�
H

"�("�1)
�

L

�
HNH

LN�
L

���1
�

#�=(��1)
: (I15.67)
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Substituting this in (I15.64) shows that the steady state level of labor-augmenting technology
N�
L solves

� = �LL�p
1=�
L = �L�

"
L��1

"(��1)
�

L + 
"
�
H

"�("�1)
�

L

�
HNH

N�
L

���1
�

L
(��1)2

�

# 1
��1

: (I15.68)

Using this we can now analyze the Habakkuk hypothesis which is developed in Habakkuk
(1962). First of all note that (I15.68) implies that

@N�
L

@H
> 0; (I15.69)

i.e. the more land there is in a country (for a given level of labor), the higher the steady
state level of labor-augmenting technology will be. To see this simply note that (I15.68)
requires H

N�
L
to be constant, so that (I15.69) immediately follows. If we think of the US

being characterized by a larger supply of land, this shows that the Habakkuk hypothesis is
con�rmed by the directed technological change model, i.e. a larger supply of land triggers
labor-augmenting technological progress.

However we could of course also consider the comparative statics of the steady state level
of technology N�

L with respect to L. From (I15.68) we �nd that

@N�
L

@L
> 0 if � > 1 and

@N�
L

@L
< 0 if � su¢ ciently low.

For � > 1, the RHS of (I15.68) is increasing in L. Hence, for (I15.68) to be satis�ed at the

higher level of L, the term
�
HNH
N�
L

���1
�
has to decrease, which (as � > 1) requires N�

L to

increase. For the second case, note that (I15.68) requires (after cancelling L on both sides)

(N�
L)

�(��1)
� L

(��1)(2��1)
�

to be constant. Hence,
@N�

L

@L
_ 2� � 1;

so that @N�
L

@L < 0 if � < 1=2.
The intuition for this ambiguous result is again rooted in the two counteracting forces

of the market size and the price e¤ect. Everything else equal, an increase in L makes the
development of L-technologies more attractive (see (I15.63) which shows that the value of
L-patents is increasing in L for given prices and interest rates). Hence, the price of L-
intermediaries has to decrease in order for the free entry condition to be satis�ed. From
(I15.67) we see that pL is decreasing in LN�

L. Hence, LN
�
L has to increase. If � is very small

however, price are very responsive to such changes. To see this note that

lim
�!0

d

LN�
L

�
HNH

LN�
L

���1
�

= lim
�!0

1� �
�

�
HNH

LN�
L

���1
� 1

LN�
L

=1:

This of course just revisits the special case of the production function being Leontief if the
elasticity of substitution goes to zero. Hence, the price e¤ect induced by an increase in
the labor force would be so strong that it would dominate the market size e¤ect and hence
violate the free entry condition. If that is the case, N�

L will decrease to add upward pressure
to intermediary prices. If � > 1=2; the price e¤ect is su¢ ciently weak such that if the
technology level would not adjust, the market size e¤ect would dominate and research would
be pro�table (which is inconsistent with being at a steady state).
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The Habakkuk hypothesis conjectures that countries which are labor scarce have a higher
technology level to respond to high wages. Hence, this hypothesis requires that

@N�
L

@L
< 0:

The discussion above then established that the directed technological model is consistent
with the Habakkuk hypothesis if the elasticity of substitution � is su¢ ciently small. For a
more detailed discussion of the Habakkuk hypothesis in the context of models of directed
technological change, see also Acemoglu (2002).

Exercise 15.20

Exercise 15.20, Part (a). Following the analysis in the chapter, relative prices for
given technologies NL(t) and NH(t) are given by

pH(t)

pL(t)
=

�
H
L

� "�
�
�
NH(t)

NL(t)

���
�
�
H

L

���
�

: (I15.70)

The BGP ratio was shown to be�
NH

NL

�BGP
=

�
�H
�L

�� �H
L

�"�H
L

���1
;

so that using both these conditions we get that along the the BGP

pH
pL

=

�
�H
�L

��� �H
L

���
: (I15.71)

Hence the relative price is proportional to
�
H
L

���
.

Exercise 15.20, Part (b). Now assume that prices are exogenously given by the world
market price p0 = p0H

p0L
< p, i.e. the skilled intermediate gets relatively cheaper. Intermediate

producers take those prices as given. Hence the demand functions for L-machines are now

given by xL(t) = (p0L(t))
1
�L so that pro�ts of machine producers are given by

�L(t) = �(p0L)
1
�L: (I15.72)

To show that this economy does not have a BGP, let us suppose there was one. Along such
a BGP, interest rates would have to be constant, say equal to r�. From the value function of
monopolistic producers, we again get the equilibrium condition for the technology market

�L
�(p0L)

1
�L

r�
= �H

�(p0H)
1
�H

r�
; (I15.73)

i.e. research �rms have to be indi¤erent between skilled and unskilled technologies. Hence
(I15.73) implies that

p0H
p0L

=

�
�H
�L

��� �H
L

���
;

which obviously does not hold if p0 6= p (see (I15.71)). Hence, this equation will not be
satis�ed when prices cannot adjust so that a BGP does not exist.

To understand the intuition for this result, consider the closed economy equilibrium and
open the economy to world trade. At the old prices and interest rates, research �rms were just
indi¤erent where to innovate. Now, prices for L-intermediaries are relatively higher. From
(I15.72) it is clear that this will raise the pro�ts of producers selling L-machines. Hence, at
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given interest rates it is now more pro�table to produce L-blueprints. Normally, this would
increase p (see (I15.70)) so that the research arbitrage equation again holds. With prices
being determined however, this price e¤ect is absent and the economy will specialize to direct
their innovation e¤orts towards the L-technology. Hence, growth will not be balanced.

Exercise 15.24*

Let us �rst show that the model has a BGP with constant interest rates (and consumption
and income growth) and then show that it is indeed the only one. To reduce notation, let us
drop the time indices. Recall �rst that equilibrium intermediate prices are given by

pK
pL

=

�
K
L

� "�
�
�
NK

NL

���
�
�
K

L

���
�

: (I15.74)

Equilibrium factor payments are given by

wK
wL

=
r

w
=

�
K
L

� "
�
�
NK

NL

���1
�
�
K

L

��1
�

;

so that
rK

wL
=

�
K
L

� "
�
�
NK

NL

���1
�
�
K

L

���1
�

: (I15.75)

The innovation possibilities frontier featuring extreme state dependence reads

_NL = NL�LSL and _NK = NK�KSK

so that equilibrium on the technology market requires that

wS(t) = �LNLVL = �KNKVK : (I15.76)

Along the BGP interest rates are constant so that the value functions are given by VL =
�L
r

and VK =
�K
r so that (I15.76) implies that

NK

NL
=

�
�K
�L

��1 �L
�K

=

�
�K
�L

��1� pL
pK

� 1
� L

K
;

where we used the usual expression of equilibrium pro�ts �L = �p
1=�
L L. From (I15.74) we

then get that along the BGP technologies are given by�
NK

NL

���1
�

=

�
�K
�L

��1�K
L

����1
�
�
K
L

�� "
�

: (I15.77)

From (I15.75) and (I15.77) we therefore get that along the BGP factor shares are constant,
i.e.

rK

wL
=

�
�K
�L

��1
:

Now note that (I15.75) and (I15.77) imply that NK
NL

K
L is constant, as

NK

NL

K

L
=

�
rK

wL

��=(��1)�K
L

��"=(��1)
=

�
�K
�L

� ��
��1

�
K
L

� �"
��1

: (I15.78)

Hence,

0 =
_NK

NK
�

_NL

NL
+
_K

K
�
_L

L
:
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And as _L = 0, we get
_NL

NL
�

_NK

NK
=

_K

K
= sK : (I15.79)

Along the conjectured BGP allocation, interest rates have to be constant. Interest rates are
given by

r = pK
@YK
@K

= pK
�

1� �NKp
1��
�

K =
�

1� �NKp
1
�

K :

As intermediate prices are equal to

pK =
@Y

@YK
= [LY

"�1
"

L + KY
"�1
"

K ]
1

"�1KY
� 1
"

K ;

and equilibrium intermediate productions are just

YL =
1

1� � p
(1��)=�
L NLL and YL =

1

1� � p
(1��)=�
K NKK;

we get

pK =

�
LY

"�1
"

L + KY
"�1
"

K

� 1
"�1

KY
� 1
"

K

=

 
L

�
YL
YK

� "�1
"

+ K

! 1
"�1

KY
� 1
"

K Y
1
"
K

=

0B@L
 �

pL
pK

� 1��
� NLL

NKK

! "�1
"

+ K

1CA
1

"�1

K

and hence

r =
�

1� �NK
1
�

K

0B@L
 �

pL
pK

� 1��
� NLL

NKK

! "�1
"

+ K

1CA
1

("�1)�

:

Substituting from (I15.74) we also know that

 �
pL
pK

� 1��
� NLL

NKK

! "�1
"

=

0B@ � L
K

� "�
�
�
NLL

NKK

���
�

! 1��
�

NLL

NKK

1CA
"�1
"

=

�
L
K

� ("�1)(1��)
�

�
NLL

NKK

���(1��)
�

"�1
"

:

Now observe that

� � (1� �)
�

"� 1
"

=
1 + ("� 1)� � (1� �)

�

� � 1
�"

=
� � 1
�

and
("� 1) (1� �)

�
=
"� 1� ("� 1)�

�
=
"� �
�
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to �nally arrive at equilibrium interest rates, which are given by

r =
�

1� �NK
1
�

K

 
L

�
L
K

� "��
�
�
NLL

NKK

���1
�

+ K

! 1
("�1)�

=
�

1� �NK
"
�
K

 

"
�
L

�
NLL

NKK

���1
�

+ 
"
�
K

! 1
��1

: (I15.80)

As NLL
NKK

is constant (see (I15.78)), (I15.80) implies that interest rates are constant, whenever
NK is constant. Using (I15.79), this implies that

_NL

NL
=

_K

K
= sK ;

i.e. there is a BGP, where interest rates are constant and technological progress is purely
labor-augmenting. This proves existence of a BGP.

Let us now turn to uniqueness. Given the results above, this is also easily veri�ed. For
a BGP we need that interest rates are constant. In such a BGP interest rates are given in
(I15.80). From the equilibrium on the innovation market we also know that NLL

NKK
is constant

(see (I15.78)). But then it is immediately clear that there is no capital-augmenting progress,
i.e. _NK = 0 as otherwise interest rates could not be constant. Then it follows from (I15.79)
that in any BGP equilibrium, technological progress is purely labor-augmenting.

Exercise 15.27

Exercise 15.27, Part (a). To show the required result, we have to determine the value
of having skills and confront this with the costs of acquiring those. To derive the value of
being skilled, let us use the HJB equation. We denote the value of being skilled at time t for
an individual x by VHS(x; t). The HJB equation de�nes VHS(x; t) implicitly by

r(t)VHS(x; t)� _VHS(x; t) = wH(t)� vVHS(x; t): (I15.81)

To understand (I15.81) consider the asset-pricing interpretation of the HJB equation. The
return to the asset of being skilled consist of three parts. First of all we have the current
dividends wH(t). Secondly we have the equilibrium appreciation of the asset _VHS(x; t). And
�nally the asset could lose its value if the individual dies. In equilibrium the assets must
be �priced� such that those returns are equal to r(t)VHS(x; t). Note we appeal here to a
separation theorem (see Section 10.1). VHS(x; t) only measures the value of acquiring skills
in monetary terms. By assuming that individuals chose their schooling decisions to maximize
VHS(x; t), we implicitly assume that individuals maximize their lifetime wealth and then
chose consumption expenditures given this wealth. See the discussion following Theorem
10.1 and the solution to exercise 10.2 for an analysis when this approach is appropriate.

Along the BGP interest rates are constant and equal to r�. This however is not true for
wages. Equilibrium wages are given by

wH(t) =
@pH(t)YH(t)

@H
=

�

1� � pH(t)
1=�NH(t):

The analysis in the Chapter established that along the BGP intermediary prices pH(t) and
pL(t) are constant so that wages grow at the rate of technological progress (which is also
equal to the growth rate of the economy), say g. As neither wages, nor interest rates depend



320 Solutions Manual for Introduction to Modern Economic Growth

on x, VHS(x; t) will also be independent of x. Hence, let us denote the value of being skilled
by VHS(t). Using those results, (I15.81) simpli�es to

r�VHS(t)� _VHS(t) =
�

1� � pH
1=�NH(t)� vVHS(t):

The stable solution of this di¤erential equation is given by

VHS(t) =
wH(t)

r� + v � g =
�
1��pH

1=�

r� + v � gNH(t):

The same reasoning holds true for the value of not having skills VLS(t). Hence it is clear that

VHS(t)

VLS(t)
=
wH(t)

wL(t)
� !(t): (I15.82)

Now let us determine the costs of acquiring skills �(t; x). The costs are just the discounted
value of foregone earnings (priced at the low wage). As individual x starting education at
time t foregoes wages in the interval [t; t+Kx], �(t; x) is given by

�(t; x) =

Z t+Kx

t
exp (�(r� + v)(� � t))wL(�)d�

= wL(t)

Z t+Kx

t
exp (�(r� + v � g)(� � t)) d�

=
wL(t)

r� + v � g (1� exp (�(r
� + v � g)Kx))

= VLS(t)(1� exp (�(r� + v � g)Kx));

where we used that wL(�) = wL(t) exp(g(� � t)) as wages grow at the (constant) rate g. As
the bene�ts of having acquired skills only accrue in the future, the net value of skill acquisition
of individual x is given by

US(t; x) = exp[�(r� + v)Kx] (VHS(t+Kx)� VLS(t+Kx))� �(t; x)
= exp[�(r� + v � g)Kx] (VHS(t)� VLS(t))� VLS(t)(1� exp[�(r� + v � g)Kx])

= exp[�(r� + v � g)Kx]VHS(t)� VLS(t):

This is an intuitive expression: you could either start earning high wages in Kx periods or
you could start earning low skilled wages today. In case the former exceed the latter, the net
value of acquiring skills is positive and the individual will join the skilled workforce. Now
consider two individuals x0 < x (where we �order� the individuals such that Kx0 < Kx).
From above we get that

US(t; x0)� US(t; x) = (exp[�(r� + v � g)Kx0 ]� exp[�(r� + v � g)Kx])VHS(t) > 0

as VHS(t) > 0 and Kx0 < Kx. Hence, whenever it is worthwhile for x to acquire skills, all
individuals x0 < x will also acquire skills as their net value of acquiring skills is strictly higher.

To prove the cuto¤-form of the equilibrium, i.e. that there exits some �x such that x
acquires skills if and only if x � �x, consider again US(t; x). As

lim
Kx!0

US(t; x) = VHS(t)� VLS(t) > 0 and lim
Kx!1

US(t; x) = �VLS(t) < 0;

and
@US(t; x)

@x
= �(r� + v � g) exp[�(r� + v � g)Kx]VHS(t)

@Kx

@x
< 0;
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as @Kx
@x > 0 and US(t; x) is continuous by the continuity of Kx, there exists �x such that

US(t; �x) = exp[�(r� + v � g)K�x]VHS(t)� VLS(t) = 0:
And as �x is indi¤erent between acquiring skills or not, all individuals x < �x strictly prefer
acquiring skills, whereas all x > �x are better o¤ staying unskilled.

Exercise 15.27, Part (b). Let us now derive the equilibrium supply of skilled and
unskilled workers. Note that at every point in time, people can be in three possible states
- they could either be skilled or unskilled workers or they could be in school. Hence let us
denote these states by L(t); S(t) and H(t) respectively. Let us �rst start to characterize L(t).
The dynamics of L(t) are given by

_L(t) = �vL(t) + v(1� �(K�x)); (I15.83)

as each period there is a �ow rate of death of v in the population of low skilled workers and
each period v people are born and a fraction 1� �(K�x) (namely those with x > �x) enter the
labor force immediately. Now consider the skilled workforce. Let us de�ne the density of �
by . Using this, the set of people H(t) evolves according to

_H(t) = �vH(t) +
Z �K

0
v(k) exp(�vk)dk: (I15.84)

To understand (I15.84) note that each period a fraction v of skilled people dies. This is
captured by the �rst term. Additionally, the skilled workforce accumulates by individuals
graduating. Consider the set of individuals characterized by having a schooling requirement
of k periods. At t � k periods ago, this set had a measure v(k) because the entire new
born population has a size v and each population is drawn randomly from �. However, from
this set each period a fraction v dies. Hence, from all those individuals who need k periods
of schooling and were born k periods ago, only exp(�vk) survive. Putting this together
shows that v(k) exp(�vk) denotes exactly the size of graduates in t who need k periods of
schooling. Aggregating this over all schooling requirements k = [0; �K] which actually decide
to go to school yields the number of graduates in t.

The number of people at school S(t) can then simply be derived using the accounting
identity

S(t) = 1� L(t)�H(t): (I15.85)

Let us �rst consider the case of v > 0. Along the BGP, L(t); S(t) and H(t) are constant and
equal to its respective BGP values L�; S� and H�. Using (I15.83), (I15.84) and (I15.85) we
get that

_L(t) = 0) L� = 1� �(K�x) (I15.86)
_S(t) = 0) S� = 1� L� �H�

_H(t) = 0) H� =

Z �K

0
(k) exp(�vk)dk: (I15.87)

Using those BGP values from (I15.86) and (I15.87) we therefore �nd that

H�

L�
=

R �K
0 (k) exp(�vk)dk

1� �(K�x)
:

Let us now consider the limiting case, where the population stays the same, i.e. v ! 0. As

lim
v!0

Z �K

0
(k) exp(�vk)dk =

Z �K

0
(k)dk = �( �K)
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we get that

lim
v!0

H�

L�
=

�( �K)

1� �( �K)
;

where we used that �(K�x) = �( �K). This indeed shows that

H�

L�
� �( �K)

1� �( �K)
(I15.88)

if v is small. The intuition for this result is, that if there is no replacement in the population,
at some point everyone who decided to acquire skills (i.e. a measure �( �K) of the population)
will have graduated and hence will have joined the skilled work force.

Exercise 15.27, Part (c). Up to now we have characterized the economy for a given
value of the cuto¤Kx̂ � �K. But �K is of course endogenous as it is implicitly de�ned by.

US(t; �x) = exp[�(r� + v � g) �K]VHS(t)� VLS(t) = 0:
Solving this for �K yields

�K =
1

r� + v � g log
�
VHS(t)

VLS(t)

�
;

which - upon substituting (I15.82) - gives us the required equation

�K =
log!

r� + v � g :

Note that we explicitly noted that along the BGP the skill premium will be constant. Using
this in (I15.88), we can express the relative skill supply as a function of the skill-premium
!(t) as

HSS

LSS
=

�
�

log!
r�+v�g

�
1� �

�
log!

r�+v�g

� : (I15.89)

Exercise 15.27, Part (d). In equilibrium, the relative demand for skills has to be
equal to the relative supply. In the baseline model of directed technological change, the labor
demand curve was given in (15.30) as

! = ��"
�
H

L

���2
:

Combining this with the supply curve in (I15.89), we get that the equilibrium level of relative
skills solves the equation

H

L
=

�

�
log(��")+(��2) log(HL )

r�+v�g

�
1� �

�
log(��")+(��2) log(HL )

r�+v�g

� : (I15.90)

Hence, this economy has a unique equilibrium if and only if (I15.90) has a unique solution.
To show that this is not necessarily the case, note that the RHS of (I15.90) is not necessarily
decreasing in H

L . This is seen as

@

@HL

2664 �

�
log(��")+(��2) log(HL )

r�+v�g

�
1� �

�
log(��")+(��2) log(HL )

r�+v�g

�
3775 =

1
r�+v�g

�
H
L

��1


�
log(��")+(��2) log(HL )

r�+v�g

�
�
1� �

�
log(��")+(��2) log(HL )

r�+v�g

��2 (� � 2) ;
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where again (:) denotes the pdf of �. Note in particular that

sgn

0@ @

@HL

24 �(
log(��")+(��2) log(HL )

r�+v�g )

1� �( log(�
�")+(��2) log(HL )

r�+v�g )

351A = sgn (� � 2) :

So the RHS of (I15.90) is increasing if there is strong equilibrium bias. Hence, the existence
of strong equilibrium bias is a necessary condition for there to exist multiple equilibria. If (in
case � > 2) this economy will have multiple equilibria is then dependent on the functional
form of � and other parameters (determining r� and g). The economic intuition is as follows.
If ! is low, not many people acquire skill and research �rms respond to this by only directing
little research e¤orts towards NH(t). As this in turn implies that ! is indeed low, this is one
equilibrium. But suppose ! is high. Then many people acquire skills. The market size e¤ect
induces directed technological change, i.e. �rm invest in technology which is biased towards
high skilled labor. This increases their relative marginal product ceteris paribus and if � > 2
this e¤ect is strong enough to make the demand curve upward sloping so that ! is indeed high
and this can also be an equilibrium. Hence, the reason why multiple equilibria can exist, is
exactly the complementarity (on the aggregate level) between individuals�skill decision and
research �rms�innovation decision. For further discussions we also refer to Acemoglu (2003).

Exercise 15.28*

Exercise 15.28, Part (a). We call the goods that are produced using skilled labor the
new goods, and we denote them with a superscript of N . We also call the goods that are
produced using unskilled labor the old goods and we denote them by a superscript of O. In
particular, we denote by yO (t) the supply of each old good and by yN (t) the supply of each
new good. Without loss of generality, we take the set of old goods to be f� j � 2 [0;m (t)]g,
and the set of new goods to be f� j � 2 [m (t) ; n (t)]g. We normalize the price of the �nal
good to 1 for all t � 0.

We �rst characterize the static equilibrium wages v (t) ; w (t) given the measure of two
types of varieties, m (t) and n (t) � m (t). The maximization by the �nal good producers
yields the following demand for machines

y (�; t) = p (�; t)�" Y (t) . (I15.91)

Since the new good producers face iso-elastic demand for their products, they price at a
constant markup over their marginal costs

pN (t) =
"

"� 1v (t) . (I15.92)

On the other hand, the old good producers face competition from the ex-monopolists who
could produce the same good using skilled labor, thus they may have to charge a limit price
v (t). For simplicity (and without loss of any essential intuition), we consider the case

v (t) � "

"� 1w (t) (I15.93)

so that the old good producers can also charge a constant markup over their marginal costs,
i.e.

pO (t) =
"

"� 1w (t) . (I15.94)

We will establish below the condition which ensures that the assumption in (I15:93) holds
in equilibrium. Having characterized the prices, we next turn to the quantities. The market
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clearing in high and low skilled labor implies

L = m (t) yO (t)

H = (n (t)�m (t)) yN (t) ,
which, using the demand Eq. (I15:91) shows that the relative quantities satisfy�

pO (t)

pN (t)

��"
=
yO (t)

yN (t)
=
L

H

n (t)�m (t)
m (t)

.

Combining this with the pricing Eqs. (I15:92) and (I15:94) yields

w (t)

v (t)
=
"� 1
"

�
L

H

n (t)�m (t)
m (t)

��1="
, (I15.95)

which characterizes the relative equilibrium wages in terms of the labor supplies and the
measures of the two types of varieties. This equation also implies that the assumption in
(I15:93) holds if and only if

L

H

n (t)�m (t)
m (t)

� 1. (I15.96)

Next we calculate the static equilibrium pro�ts �N (t) and �O (t). Normalizing the price
of the �nal good to 1 implies that the ideal price index is 1, which after plugging in the
pricing Eqs. (I15:92) and (I15:94) gives

"

"� 1

�
m (t)w (t)1�" + (n (t)�m (t)) v (t)1�"

�
= 1. (I15.97)

Under condition (I15:96), the equilibrium wages v (t) and w (t) are characterized by solving
Eqs. (I15:95) and (I15:97). The pro�ts of the new and old good producers are then given by

�N (t) =
1

"� 1v (t) y
N (t) =

1

"� 1
v (t)H

n (t)�m (t) , (I15.98)

�O (t) =
1

"� 1w (t) y
O (t) =

1

"� 1
w (t)L

m (t)
,

as desired.

Exercise 15.28, Part (b). We next consider the dynamic equilibrium. We consider
a BGP equilibrium in which both n (t) and m (t) grows at the same rate g so that � �
m (t) =n (t) is constant. Eq. (I15:95) implies that relative wages are also constant, i.e.

w (t)

v (t)
=
"� 1
"

�
L

H

1� �
�

��1="
� �. (I15.99)

Di¤erentiating Eq. (I15:97) and dividing by m (t)w (t) gives

gw (t)�"+(1� ")w (t)�" _w (t)
w (t)

+
�
g��1 � g

�
w (t)�" �"�1+(1� ")

�
��1 � 1

�
w (t)�" �"�1

_v (t)

v (t)
= 0.

Since the relative wages are constant, w (t) and v (t) grow at the same rate, hence the previous
equality implies

_w (t)

w (t)
=

_v (t)

v (t)
=

g
�
1 +

�
��1 � 1

�
�"�1

�
("� 1) [1 + (��1 � 1) �"�1]

=
g

"� 1 ,
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as desired. Hence, when m (t) and n (t) grow at the same constant rate g, w (t) and v (t)
grow at the constant rate g= ("� 1) and the relative wages are given by (I15:99).

Exercise 15.28, Part (c). Since the representative consumer is risk neutral, consumer
optimization implies r (t) = r. Note that V N (t) satis�es the Bellman equation

rV N (t) = �N (t) + _V N (t)� _m (t)

n (t)�m (t)V
N (t) ,

where the last term captures the event in which a new good producing �rm is replaced by
a �rm that �nds a way to produce the same good using unskilled labor. Since pro�ts are
growing at the constant rate gv � g = g= ("� 1)� g (cf. Eq. (I15:98)), the stable solution to
the previous Bellman equation is given by

V N (t) =
�N (t)

r + g m(t)
n(t)�m(t) � g= ("� 1) + g

(I15.100)

=
1

"� 1
vH= (n (t)�m (t))

r + g (2� ") = ("� 1) + g�= (1� �) ,

where we have used Eq. (I15:98) in the second line. Similarly, the Bellman equation for
V O (t) is given by

rV O (t) = �O (t) + _V O (t) ,

and the stable solution is given by

V O (t) =
1

"� 1
w (t)L=m (t)

r + g (2� ") = ("� 1) . (I15.101)

Next consider the R&D sector. Note that both m (t) and n (t) are growing implies that
there is positive R&D in both sectors. Hence, the R&D arbitrage equations are satis�ed with
equality which implies

bnm (t)�
��V N (t) = bmn (t)�

�V O (t) = ! (t) . (I15.102)

Plugging in the expression for V O (t), we have that the wage of the scientists must satisfy

! (t) = bmn (t)�
� 1

"� 1
w (t)L=m (t)

r + g (2� ") = ("� 1) =
bm�

��1

"� 1
w (t)L

r + g (2� ") = ("� 1) .

Hence, ! (t) grows at the same rate as w (t) in equilibrium, that is, at rate g= ("� 1).

Exercise 15.28, Part (d). Combining Eqs. (I15:100), (I15:101) and the R&D arbitrage
equation (I15:102), we have

bn
m (t)���

"� 1
v (t)H= (n (t)�m (t))

r + g (2� ") = ("� 1) + g�= (1� �) = bm
n (t)��

"� 1
w (t)L=m (t)

r + g (2� ") = ("� 1) ,

which, after simpli�cation, gives

bn�
1�2� vH

r � (2� ") g= (1� ") + �g= (1� �) = bm
wL

r � (2� ") g= (1� ") (I15.103)

as required.



326 Solutions Manual for Introduction to Modern Economic Growth

Exercise 15.28, Part (e). Plugging the expression for the constant value of relative
wages from Eq. (I15:99) in (I15:103), we have

bn�
1�2� 1

r + (2� ") g= (1� ") + �g= (1� �) = bm
"� 1
"

�
1� �
�

L

H

�("�1)=" 1

r + (2� ") g= (1� ") ,

(I15.104)
which characterizes � given the growth rate g. We next characterize the growth rate. From
the R&D technology equations in this economy, we have

g =
_n (t)

n (t)
= bn�

1��Sn (t) and g =
_m (t)

m (t)
= bm�

��1Sm (t) ;

Solving for Sn (t) and Sm (t) from this equation and using market clearing for scientists, we
have

g

bn�1��
+

g

bm���1
= S,

which gives

g = S

�
1

bn�1��
+

1

bm���1

��1
. (I15.105)

In particular, the growth rate is constant when � = 1 but it has a non-linear and potentially
non-monotonic relationship with � when � < 1. Eq. (I15:104) and (I15:105) constitute two
equations in unknowns g,�, which pin down the BGP growth rate and relative amounts of
old and new goods in equilibrium. The described path will indeed be a BGP if it satis�es
the transversality condition. The transversality condition in this economy takes the form

lim
t!1

exp (�rt)
�
V N (t) (n (t)�m (t)) + V O (t)m (t)

�
= 0,

and is satis�ed when g= ("� 1) < r. Finally, note also that the BGP equilibrium may not
always be stable: we need � to be su¢ ciently low and " to be su¢ ciently close to 1, so that
a new innovation generates relatively small externalities and su¢ ciently large price e¤ects.
These e¤ects in turn ensure that it becomes relatively more pro�table to innovate in old
goods when there are few old goods, which stabilizes the system.

We next consider the e¤ect of an increase in H=L on �. We claim that an increase in
H=L decreases � on any stable BGP equilibrium. We �rst ignore the dependence of g on �
(which does not represent strong economic forces) and consider Eq. (I15:104) for a constant
g. The direct e¤ect of higher H=L is to increase the relative value of innovation in new goods

as seen by Eq. (I15:98), and as captured by the term
�
1��
�

L
H

�("�1)="
in Eq. (I15:104). This

market size e¤ect causes more innovation in new goods, hence the direct e¤ect of an increase
in H=L is to decrease �. However, a decrease in � creates further e¤ects. First, it creates a
price e¤ect towards old goods which increases the relative value of old goods, as captured by

the term
�
1��
�

L
H

�("�1)="
in Eq. (I15:104). Second, when � > 1=2, it creates relatively more

spillovers towards innovation in new goods, captured by the term �1�2� in Eq. (I15:104).
Third, it also decreases the rate at which each new good is replaced (since, on BGP, they
get replaced by probability g�= (1� �), which will be lower after � declines). The �rst e¤ect
tends to increase innovation in old goods, but the last two e¤ects tend to increase innovation
in new good. However, on a stable BGP, the �rst price e¤ect must dominate the latter two
e¤ects, since otherwise a small decrease in � would cause further reduction in � and the
equilibrium would be unstable. Then, the net e¤ect of an decrease in � is to increase the
relative value of the old goods which counters the initial increase in the value of new goods
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and stabilizes the system. It follows that � also stabilizes at a lower level than the initial
level, that is, � decreases in response to an increase in H=L. Next we take into account the
response of g to �. The same reasoning above applies and implies that � must go down on
any stable BGP in response to an increase in H=L. Intuitively, the change in g is brought
about by the initial change in � itself hence it cannot completely o¤set the change in �. We
conclude that on a stable BGP an increase in H=L decreases � and increases the relative
level of new machines in equilibrium.

Exercise 15.28, Part (f). The condition � < 1 is necessary (but may not be su¢ cient)
for the stability of the BGP that we have described. In particular, when � = 1, the R&D
technology equation is

_n (t) = bnn (t)Sn (t) and _m (t) = bmm (t)Sm (t) ;

hence innovation in an old good creates linear spillovers towards further innovation in old
goods. The price of new goods increases in response, but this stabilizing price e¤ect is only
of order ("� 1) =" < 1 (as can be seen by Eq. (I15:104)), hence the system will be unstable
when � = 1. To ensure a stable BGP in which there is innovation of both old and new goods,
we need each innovation line to have small spillovers from its own line (small �) and we need
the price e¤ects to be relatively strong (" relatively close to 1). If these conditions are not
met, we would instead expect this economy to innovate only new goods or to innovate no
new goods in an asymptotic growth path, that is, we would expect either �! 0 or �! 1.

Exercise 15.29

We can actually get the desired result using only two production technologies. Suppose
that technologies are given by

Y1 = minfK;Lg (I15.106)

Y2 = minf 1
�
K;�Lg; (I15.107)

and � < 1. Let the factor endowment be given by ( �K; �L) = (1; 1�). If only one technology
could be used, both technologies would give a value of one. Hence, technology one is (weakly)
better. Now consider the allocation in a competitive equilibrium. In particular we claim that
the following allocation is an equilibrium. Firm 1, which has access to production technology
(I15.106), uses (1��) units of capital and labor and �rm 2 (using the technology in (I15.107))
uses �+�3��2 < � units of capital and 1

� � (1��) units of labor. Note that this allocation
is feasible. Let equilibrium factor prices be given by

w =
�� �2
1� �2 and r =

1� �
1� �2 : (I15.108)

In this equilibrium aggregate production is given by

Y1 + Y2 = minf1� �; 1� �g+min
�
1

�
�; �

�
1

�
� (1� �)

��
= 1� �+ 1� �+ �2

= 1 + (1� �)2 > 1:
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Let us now show that the allocation is a competitive equilibrium when factor prices are given
in (I15.108). Firm 1 makes zero pro�ts as

�1 = minfK;Lg � wL� rK
= L� (w + r)L
= 0;

as w + r = 1 (see (I15.108)). Similarly, �rm 2�s pro�ts are zero as

�2 = minf 1
�
K;�Lg � wL� rK

= �L� �� �2
1� �2 L�

1� �
1� �2�

2L

= 0:

Hence, the above allocation is a competitive equilibrium and aggregate output exceeds the
output the economy would achieve if only one technology would be used.

Let us now show that the aggregation result does no longer hold, when we allow for two
technologies being active. Let us again assume that

Y (t) = minfbiK(t); aiL(t)g. (I15.109)

If each technology (ai; bi) is drawn from a Pareto distribution and ai and bi are drawn
independently, we get for a � a > 0 and b � b > 0, that

Pr[ai � a] = 1�
�
a

a

���
and Pr[bi � b] = 1�

�
b

b

���
:

Let us now derive the distribution of output Y (t). With bi and ai drawn from a Pareto
distribution, output Y (t) is a random variable whose conditional distribution (conditional on
K(t) and L(t)) we can characterize. Let

y � maxfbK(t); aL(t)g

and note that the distribution of Y (t) is given by

Pr[Y � y] = 1� Pr[minfbiK(t); aiL(t)g > y]

= 1� Pr[biK(t) > y and aiL(t) > y]

= 1�
�
1� Pr

�
ai �

y

L(t)

���
1� Pr

�
bi �

y

K(t)

��
= 1�

�
1

a

y

L

���� 1
b

y

K

���
= 1� L(t)�K(t)�y�(�+�);

where we again de�ned  = �a
�
b . Then, the production level of a single technology has a

Pareto distribution and this yields the aggregation theorem shown in the book.3

Next we consider the distribution of aggregate output if more than one technology is used,
each of which takes the form given in (I15.109). As in the text, suppose the independently

3If bK(t) 6= aL(t), the distribution will not be Pareto for y 2
(min (bK(t); aL(t)) ;max (bK(t); aL(t))). For simplicity, we assume bK(t) = aL(t).
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drawn technologies J (t) =
�
(a1; b1) ; (a2; b2) ; :::;

�
ajJ (t)j; bJ (t)

�	
are available at time t. Given

resources (K(t); L(t)), the output is given by

Y (J (t) ;K(t); L (t)) = max
(Kj(t);Lj(t))j2J (t)

X
j2J (t)

Yj (t)

s.t. Yj(t) = minfbjKj(t); ajLj(t)g; for j 2 J (t) ,X
j2J (t)

Kj (t) = K (t) and
X
j2J (t)

Lj (t) = L (t) .

As our example above demonstrates, the solution can feature positive output Yj (t) > 0 for
more than one technology. Then, the whole distribution of technologies matters for character-
izing the maximum output that can be produced, thus we cannot simply look at the output
from the best technology (i.e. the technology that would produce the maximum output if only
one idea could be used). The approach in Section 15.8 relies on the fact that the distribution
of the maximum of a number of random variables has a simple characterization (in particular,
the maximum has a Fréchet distribution when the random variables have independent Pareto
distributions). Since the whole distribution (and not just the maximum) is important in the
characterization of output, this approach no longer applies and the aggregation results do
not generalize.

Exercise 15.31*

The density is given by gY (y) = �By���1. The conditional expected value is therefore
given by

E[y j y � y0] =

R
y�y0 ygY (y)dyR
y�y0 gY (y)dy

=

Z
y�y0

y�By���1
1

By0��
dy

= �
1

y0��

Z
y�y0

y��dy

=
�

1� �
1

y0��
y1�� j1y0 :

If � > 1, we get that
E[y j y � y0] =

�

�� 1y
0:

If � < 1 the conditional expectation is 1 as there is too much mass on the tails of the
distribution.





Chapter 16: Stochastic Dynamic Programming

Exercise 16.3*

Exercise 16.3, Part (a). We endow Z with the discrete topology. Since any function
is continuous with the discrete topology, U (x; y; :) is continuous in z over Z for each (x; y).
Since U is also continuous in (x; y) over X �X for each z, we conclude that U is continuous
on X �X �Z, as desired.

Exercise 16.3, Part (b). Consider the product topology on
Q1
t=0X � X � Z. The

constraint set can be represented as
Q1
t=0 Yt, where each Yt is a compact subset of X�X�Z.

Hence, by Theorem A.13, the constraint set is compact in the product topology. Then,
Problem 16.1 is a maximization problem of a continuous function over a compact set so that
V � (x (0) ; z (0)) is well de�ned by Theorem A.9. Moreover, the constraint set is represented
by an upper hemicontinuous correspondence hence Theorem A.16 applies and shows that
V � (x (0) ; z (0)) is continuous. Since V � (x (0) ; z (0)) is continuous over the compact set
X �Z, it is also bounded.

Exercise 16.3, Part (c). By Theorem 16.1, any solution to Problem 16.1 V � (x; z) is
also a solution to Problem 16.2. Since we have shown that V � (x; z) exists, is continuous
and bounded, it follows that there exists a continuous and bounded solution V (x; z) to the
functional equation, Problem 16.2. Conversely, Theorem 16.1 shows that any solution to
Problem 16.2 is also a solution to Problem 16.1. Since Problem 16.1 has a unique solution,
V � (x; z) must also be the unique continuous and bounded solution to Problem 16.2, proving
Theorem 16.3.

Exercise 16.4*

Consider the mapping

Tf (x; z) = max
y2G(x;z)

�
U (x; y; z) + �

Z
f
�
y; z0

�
Q
�
z; dz0

��
. (I16.1)

Note that when f is continuous and bounded, Tf is also continuous from Berge�s Maximum
Theorem (cf. Theorem A.16) and bounded. We also claim that when f (x; z) is concave in x
for all z 2 Z, Tf (x; z) is strictly concave in x for all z 2 Z. To see this, let z 2 Z, x0; x00 2 X
such that x0 6= x00 and � 2 (0; 1), and de�ne x� � �x0 + (1� �)x00. Let y0 2 G (x0; z) and
y00 2 G (x00; z) be solutions to Problem (I16:1) with vectors x0 and x00, so that

Tf
�
x0; z

�
= U

�
x0; y0; z

�
+ �

Z
f
�
y0; z0

�
Q
�
z; dz0

�
(I16.2)

Tf
�
x00; z

�
= U

�
x00; y00; z

�
+ �

Z
f
�
y00; z0

�
Q
�
z; dz0

�
.
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By Assumption 16.3, G (x; z) is convex in x, hence y� � �y0+(1� �) y00 2 G (x�; z), moreover

Tf (x�; z) � U (x�; y�; z) + �

Z
f
�
y�; z

0�Q �z; dz0�
> �

�
U
�
x0; y0; z

�
+ �

Z
f
�
y0; z0

�
Q
�
z; dz0

��
+(1� �)

�
U
�
x00; y00; z

�
+ �

Z
f
�
y00; z0

�
Q
�
z; dz0

��
= �Tf

�
x0; z

�
+ (1� �)Tf

�
x00; z

�
where the �rst line follows since Tf is the solution to Problem (I16:1), the second line since
U is strictly concave from Assumption 16.3 and f is assumed to be concave, and the last line
from Eq. (I16:2). This proves our claim that Tf is strictly concave.

Let C
0
(X �Z) be the set of continuous, bounded functions that are concave in x for all

z, and C
00
(X �Z) the set of continuous, bounded functions that are strictly concave in x

for all z. We have shown that for all f 2 C0
(X �Z), Tf lies in C00

(X �Z). Note that the
set C

0
(X �Z) is complete in the sup norm. Moreover, the operator T satis�es Blackwell�s

(1965) su¢ cient conditions and hence is a contraction mapping over C
0
(X �Z). Hence, by

Theorem 6.7, there exists V 2 C0
(X �Z) such that T V = V , that is, the unique solution to

Problem 16.2 is concave in x for all z. Moreover, since T maps C
0
(X �Z) to C00

(X �Z),
we also have that V = TV is strictly concave in x for all z, as desired.

Since V is strictly concave and continuous, Problem 16.2 has a unique solution for each z,
which we denote by the policy function � (x; z). By Berge�s Maximum Theorem (cf. Theorem
A.16), the policy function is continuous, as desired.

Exercise 16.8

Let us consider CRRA preferences for simplicity, i.e. let u (c) =
�
c1�� � 1

�
=1 � � for

� > 0. Then, the stochastic Euler equation implies

Et

"�
c (t+ 1)

c (t)

���#
=

1

� (1 + r)
. (I16.3)

An excess sensitivity test regresses consumption growth c (t+ 1) =c (t) on current income w (t)
and some control variables x (t) � [x (1) ; ::; x (n)] to see whether current income predicts
future consumption growth, that is it runs a regression along the lines

c (t+ 1)

c (t)
= 0 + w (t) w + x (t)x + " (t) , for t = 0; :::; T .

A positive coe¢ cient on current income is interpreted as excess sensitivity. In general, for
a stochastic income stream, Eq. (I16:3) does not rule out excess sensitivity for any � other
than � = �1 which corresponds to the case of quadratic utility. To see this formally, note
that when � = �1, Eq. (I16:3) implies Et [c (t+ 1) =c (t)] = 1=� (1 + r), thus if the data is
generated by the model, the plim of the OLS estimate ̂ = (̂0; ̂w; ̂x) will be given by

̂0 =
1

� (1 + r)
; ̂w = 0; ̂x = 0.

Hence if � = �1, the coe¢ cient on w (t) will be asymptotically 0. However, this is not
necessarily the case if � 6= 1 and the regression coe¢ cient on w (t) could be signi�cant even
if the data is generated by the above model. Zeldes (1989) provides numerical solutions
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when � > 0 and shows that consumption will typically display excess sensitivity, especially
when consumption is close to zero. Caballero (1990) analyzes the behavior of consumption
with CARA utility and shows that the precautionary savings motive can generate excess
sensitivity.

Exercise 16.9

Exercise 16.9, Part (a). We assume that investment and consumption decisions are
made at end of the period, hence one unit of investment at the end of time t results in
1 + r (t+ 1) units at end of time t+ 1. The Euler equation is then given by

u0 (c (t)) = � (1 + r (t+ 1))Et
�
u0 (c (t+ 1))

�
.

Plugging in the quadratic form for the utility function, u (c) = �c� 1
2c
2, we have

c (t) = � (1� � (1 + r (t+ 1))) + � (1 + r (t+ 1))Et [c (t+ 1)] ,
which is the equivalent of Eq. (16.26) in this case. This equation implies that, controlling for
current consumption, current income should not predict consumption growth, hence excess
sensitivity tests can also be applied in this case.

Exercise 16.9, Part (b). In this case, the consumer�s value function equation is given
as the solution to the recursive problem

V (a;w; r) = max
a02[�b1;(1+r)a+w]

u
�
a (1 + r) + w � a0

�
+ �E(w0;r0)

�
V
�
a0; w0; r0

��
,

where �b1 is an endogenous or exogenous borrowing limit. The Euler equation can be derived
as in Section 16.5.1 and is given by

u0 (c (t)) = �E(w0;r0)
�
(1 + r (t+ 1))u0 (c (t+ 1))

�
= �

NX
i=1

qi (1 + ri)Ew0
�
u0 (c (t+ 1)) j ri

�
,

where we have used qi to denote the probability that the interest rate equals ri. With
quadratic utility, u (c) = �c� 1

2c
2, the previous equation can be rewritten as

c (t) = �

 
1� �

NX
i=1

qi (1 + ri)

!
+ �

NX
i=1

qi (1 + ri)Ew0 [c (t+ 1) j ri] ,

which is the analogue of Eq. (16.26) in this case. This equation also implies that, controlling
for current consumption, current income should not predict consumption growth so that the
excess sensitivity tests can be applied.

Exercise 16.10

In this case, the consumer�s value function equation is still given by

V (a;w) = max
a02[�b1;(1+r)a+w]

u
�
a (1 + r) + w � a0

�
+ �E

�
V
�
a0; w0

�
j w
�
.

A similar analysis as in Section 16.5.1 yields the Euler equation

u0 (c (t)) = � (1 + r)E
�
u0 (c (t+ 1)) j 
t

�
,

where 
t denotes the information set of the household at time t, which includes the wages
w (t) and the current asset level a (t). With quadratic utility, this Euler equation implies

c (t) = � (1� � (1 + r)) + � (1 + r)E [c (t+ 1) j 
t] . (I16.4)
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Let 
0t = f! j c (t j !) = c (t)g be the set of events over which the consumption at time t
is equal to c (t). Note that 
t � 
0t but 


0
t potentially has some events !

0 =2 
t such that
w (t j !0) 6= w (t) and a (t j !0) 6= a (t), that is, other income and current asset level pairs
that yield a current consumption c (t). Taking expectations of Eq. (I16:4) conditional on 
0t,
we have

c (t) = � (1� � (1 + r)) + � (1 + r)E
�
E [c (t+ 1) j 
t] j 
0t

�
= � (1� � (1 + r)) + � (1 + r)E

�
c (t+ 1) j 
0t

�
, (I16.5)

where the second line uses the law of iterated expectations. In words, when the excess
sensitivity test holds for an information set, it also holds for coarser information sets in
which the current level of consumption is held constant at c (t).

Note that an econometrician who believes that w is independently distributed will not
control for w (t) even if he observes it. Hence, he will run a regression identical to the one
that an econometrician who does not observe w (t) would run. Eq. (I16:5) shows that this
regression should also �nd a zero coe¢ cient on current income as long as the econometri-
cian conditions on c (t). Thus, the excess sensitivity test will not reject simply because the
econometrician incorrectly believes that w (t) is independently distributed.

Exercise 16.11*

Exercise 16.11, Part (a). Recall that the consumer chooses a stochastic process for
consumption fc (t)g1t=0 to maximize utility subject to budget constraints, that is she solves

V � (a (0) ; w (0)) = max
fc(t)g1t=0

E0

" 1X
t=0

�tu (c (t))

#
(I16.6)

1X
t=0

1

(1 + r)t
c (t) �

1X
t=0

1

(1 + r)t
w (t) + a (0) , a.s.

Suppose, to get a contradiction, that c (t) converges to some c, that is c (t) !a:s: c for some
c. Consider any � > 0 and note that there exists t� > 0 such that

jc (t)� cj < � for all t � t�, a.s. (I16.7)

Consider any history up to t�, wt��1 =
�
w (0) ; ::; w

�
t� � 1

��
, denote the level of assets at

this history with a
�
t�
�
and note that the lifetime budget constraint at time t� following this

history can be written as
1X
t=0

1

(1 + r)t
c
�
t� + t

�
=

1X
t=0

1

(1 + r)t
w
�
t� + t

�
+ a

�
t�
�
, a.s. (I16.8)

We have used the fact that the lifetime budget constraint at this history must hold with
equality except for a measure zero of events, since otherwise the consumer could increase
consumption in the events in which this condition is violated and thus increase the objective
value for Problem I16.6.

Next, for any positive integer T we de�ne the event

Emin (T ) =
n
w 2 W1 j wt�+T�1 =

�
wt� ; w

�
t�
�
= wmin; :::; w

�
t� + T � 1

�
= wmin

�o
in which the agent receives the lowest wage shock wmin � minw2W w for T periods following
history wt��1. Since Emin (T ) has positive probability and since Eqs. (I16:7) and (I16:8) hold
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a.s., there exists w1 2 Emin (T ) for which both of these conditions hold, which implies
T�1X
t=0

1

(1 + r)t
wmin +

1X
t=T

1

(1 + r)t
w
�
t� + t

�
+ a

�
t�
�
�

1X
t=0

1

(1 + r)t
c
�
t� + t

�
� 1 + r

r
(c� �) .

Since T is arbitrary, we can take the limit of the previous inequality over T to obtain

1 + r

r
wmin + a

�
t�
�
� 1 + r

r
(c� �) . (I16.9)

In words, the agent�s accumulated assets at time t� should be su¢ ciently large that she can
consume at least c� � in every period even after long spells of low income.

Similarly, for any positive integer T we de�ne the event

Emax (T ) =
n
w 2 W1 j wt�+T�1 =

�
wt� ; w

�
t�
�
= wmax;::::;w

�
t� + T � 1

�
= wmax

�o
,

that is, Emax (T ) denotes the event in which the agent receives the highest wage shock wmax =
maxw2W w for T periods following history wt��1. Since Emax (T ) has a positive probability
and since Eqs. (I16:7) and (I16:8) hold a.s., there exists w1 2 Emin (T ) for which both of
these conditions are satis�ed, which implies

T�1X
t=0

1

(1 + r)t
wmax +

1X
t=T

1

(1 + r)t
w
�
t� + t

�
+ a

�
t�
�
=

1X
t=0

1

(1 + r)t
c
�
t� + t

�
� 1 + r

r
(c+ �) .

As T !1, the previous inequality implies
1 + r

r
wmax + a

�
t�
�
� 1 + r

r
(c+ �) . (I16.10)

In words, the agent�s accumulated assets at time t� should be su¢ ciently small that her
budget constraint is not slack even at very lucky histories at which she receives the highest
income for many periods (given that she consumes at most c+ � in every period).

Next, we note that Eqs. (I16:9) and (I16:10) together imply wmax�wmin � 2�. The analy-
sis so far can be repeated for any � > 0, in particular, it also applies for � < (wmax � wmin) =2,
which yields a contradiction and proves that consumption cannot converge to a constant level.
Intuitively, when the income stream is stochastic, the consumption stream must necessarily
also be stochastic, otherwise, for long enough spells of good or bad shocks, either the budget
constraint would be violated, or it would be slack, which means that the agent is sub-optimally
leaving resources unconsumed.

Exercise 16.11, Part (b). To prove this result, we consider the recursive formulation
of the problem. Recall that w (t) is distributed independently over time, thus the functional
equation corresponding to Problem (I16:6) is

V (a;w) = max
a0

u

�
a+ w � a0

1 + r

�
+ �Ew0

�
V
�
a0; w0

��
(I16.11)

s.t. a0 �
1X
s=0

1

(1 + r)s
wmin = 0,
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where we have used the fact that the budget constraint a0

1+r + c � a+ w holds with equality
and we have noted the natural borrowing constraint. Recall that the natural borrowing
constraint holds since otherwise the consumer cannot pay her debt o¤ after a very long spell
of minimum wage shocks (which is zero in this problem since the exercise states that the
lower support of the wage distribution is zero).

Since the operator in (I16:30) is a contraction mapping, there exists a unique continuous
V that satis�es Eq. (I16:11). Moreover, since u is strictly concave, continuously di¤erentiable
and increasing (cf. Section 16.5), V is strictly concave in a and strictly increasing in a and
w, which also implies that the solution to Problem (I16:11) (the policy function) is single
valued. Note also that the only payo¤ relevant state variable for Problem (I16:11) is the
current wealth a+w (since the wage shocks are i.i.d.) thus without loss of generality we can
denote the optimal policy as a function of current wealth, i.e. by A (a+ w). Finally, note
that V (a;w) is di¤erentiable in a whenever a > 0 and A (a+ w) > 0, with derivative

@V (a;w)

@a
= u0 (c (a+ w)) , (I16.12)

where we have de�ned c (a+ w) = a + w � A(a+w)
1+r as the current consumption given the

optimal policy. Note that the derivative in Eq. (I16:12) is continuous thus it can also be
extended to the boundary cases a = 0 and A (a+ w) = 0.

Next note that the �rst-order condition for Problem (I16:11) is

u0 (c (a+ w)) � � (1 + r)Ew0

�
@V (A (a+ w) ; w0)

@a

�
with equality if A (a+ w) > 0,

(I16.13)
which, after combining with Eq. (I16:12), yields the Euler equation

u0 (c (a+ w)) � � (1 + r)Ew0
�
u0
�
c
�
A (a+ w) + w0

���
with equality if A (a+ w) > 0.

(I16.14)
Note that with CRRA utility and a possibility of a wage shock of w0 = 0, the consumer
would never choose A (a+ w) = 0. Suppose that she did, then with positive probability her
consumption would drop to 0 and this would violate Eq. (I16:14) in view of u0 (0) = 1.
Therefore, as long as a > 0, we have A (a+ w) > 0 and Eqs. (I16:13) and (I16:14) hold with
equality. Moreover, since V and u are strictly concave and since the budget constraint

A (a+ w)

1 + r
+ c (a+ w) = a+ w

holds with equality, Eq. (I16:13) implies that A0 (x) > 0 and c0 (x) 2 (0; 1) (where we use
x to denote the total wealth x = a + w), that is, the consumer splits an additional unit of
wealth between consumption and investment.

We next claim that there exists some ~a such that,

if a (t) > ~a then A (a (t) + w) < a (t) for any w 2 W; (I16.15)

that is, if the level of assets is above ~a then the consumer necessarily lowers the level of assets
in the following period. Note that this claim implies that the asset levels in this economy will
always be bounded by a = max (a (0) ; ~a), completing the proof for this part of the exercise.
Note that if the function A (x) is bounded above by K, the claim trivially holds by taking
~a = K, thus suppose

lim
x!1

A (x) =1:

Under this assumption, we prove the claim in (I16:15) in three steps.
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As the �rst step, we show that consumption is unbounded as a function of wealth, that
is1

lim
x!1

c (x) =1: (I16.16)

Suppose, to reach a contradiction, that limx!1 c (x) < c for some c. By the intertemporal
condition (I16:12), for any (a 2 R+; w 2 W) we have

V 0 (a;w) > u0 (c) .

Integrating the previous inequality over a 2 R+ (for a given w 2 W), we have
V (a;w) > V (0; w) + u0 (c) a, (I16.17)

i.e. V (:; w) is bounded below by a linear function with positive slope. Next, let wmax �
(w (t) = wmax; t 2 f0; 1; ::g) denote the best possible history in the sense that the highest
income shock is realized in every period. Since V (:; w) solves the sequence problem (I16:6),
it is equal to E0

�P1
t=0 �

tu (c (t))
�
and this expectation is less than the realization for the

best possible history wmax. This implies

V (a;w) �
1X
t=0

�tu (c (t j wmax))

� u

 1X
t=0

�tc (t j wmax)
!

� u

 1X
t=0

c (t j wmax)
(1 + r)t

!

� u

 1X
t=0

wmax

(1 + r)t
+ a

!
=

�
1+r
r wmax + a

�1�� � 1
1� � , (I16.18)

where the �rst line follows from Jensen�s inequality and the concavity of the utility function
u (:), the second line uses � (1 + r) < 1 and the last line follows since the lifetime budget
constraint holds for history wmax. Combining Eqs. (I16:17) and (I16:18), we have for all
a 2 R+

V (0; w) + u0 (c) a < V (a;w) <

�
1+r
r wmax + a

�1�� � 1
1� �

Note, however that since 1 � � < 1 the di¤erence between the left and the right hand side
terms satisfy

lim
a!1

 
V (0; w) + u0 (c) a�

�
1+r
r wmax + a

�1�� � 1
1� �

!
=1,

in particular, this di¤erence is positive for su¢ ciently large a 2 R+, providing a contradiction.
Intuitively, Eq. (I16:17) bounds V (a;w) below by a linear function and Eq. (I16:18) bounds
it above by a strictly concave function that satis�es the Inada condition, which yields a
contradiction for su¢ ciently large levels of assets. This shows (I16:16) and completes the
�rst step.

1Our approach in this exercise closely follows Aiyagari (1993). However, the proof for Eq. (I16:16) in
Aiyagari (1993) is not entirely correct since it posits that the value function V (a;w) is bounded, which is not
necessarily the case since we have to allow assets to take values in R+ to avoid circular reasoning. We provide
an alternative analysis here.
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As the second step, we claim

c (A (x))

c (x)
� (� (1 + r))1=� < 1 for all x 2 R+. (I16.19)

To prove this step, note that the Euler equation (I16:13) implies

1 =
u0 (c (x))

� (1 + r)Ew0 [u0 (c (A (x) + w0))]
� u0 (c (x))

� (1 + r)u0 (c (A (x)))
,

where the inequality follows by replacing w0 with the worst possible shock wmin = 0 and
using the fact that c (:) is an increasing function (and u0 (:) is a decreasing function). Using
the CRRA utility u (c) =

�
c1�� � 1

�
= (1� �) in the previous displayed inequality proves Eq.

(I16:19) and completes the second step.
As the third and the �nal step, we combine Eqs. (I16:16) and (I16:19) to prove the claim

in (I16:15). Suppose, to reach a contradiction, that the claim does not hold. Then, for any
~a there exists a > ~a and w 2 W such that A (a+ w) > a > ~a. We then have

c (A (a+ w)) � c (A (a+ w) + w)� w
� c (a+ w)� w
� c (a+ w)� wmax,

where the �rst inequality uses the fact that c0 (x) < 1, the second inequality uses the assump-
tion that A (a+ w) > a and the last inequality uses w � wmax. The last displayed inequality
further implies

c (A (a+ w))

c (a+ w)
+

wmax
c (a+ w)

> 1.

Taking the limit as ~a!1 and using Eq. (I16:16) from step 1, we have lim~a!1 c (a+ w) =1
(since a > ~a goes to 1 and w 2 W is bounded), which implies lim~a!1

c(A(a+w))
c(a+w) � 1. This

further implies that Eq. (I16:19) from Step 2 is violated for su¢ ciently large levels of wealth,
providing a contradiction and proving the claim in Eq. (I16:15).

The intuition for this result is as follows: with CRRA utility, as the consumer accumulates
wealth, the coe¢ cient of absolute risk aversion declines and the elasticity of intertemporal
substitution increases. As the consumer becomes less risk averse, the precautionary savings
motive weakens and consumer is tempted to save less. As the intertemporal substitution
becomes more elastic, low interest rates (recall that � (1 + r) < 1) induce the consumer to
consume immediately. Since both e¤ects work in the same direction, a su¢ ciently wealthy
consumer would decumulate assets (cf. Eq. (I16:15)) and the level of assets would remain
bounded.

Exercise 16.11, Part (c). We claim that, with CARA utility, u (c) = � exp (�c), the
assets may grow arbitrarily large. To prove the result, we will derive a closed form solution
for the asset policy A (a+ w) and will use the expression to show that the level of assets
grow arbitrarily large after a long spell of favorable wage shocks. To simplify the analysis,
we allow for negative consumption and negative levels of wealth, that is, the consumption
policy function c (x) is a mapping from R to R. We �rst show that consumption is linear in
wealth, in particular

c (x) = c (0) +
xr

1 + r
. (I16.20)

We can see this directly from the sequence problem (I16:6). Let w (0) 2 W and a (0) = �w (0)
so that the initial level of wealth is zero and consider any x 2 R. A stochastic process [c (t)]1t=0
is feasible starting with aggregate wealth 0 if and only if the process [c (t) + xr= (1 + r)]1t=0 is
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feasible starting with aggregate wealth x. Moreover, the CARA assumption implies that the
expected utility from the process [c (t) + xr= (1 + r)]1t=0 is a constant multiple of the expected
utility from the process [c (t)]1t=0, that is

E0

" 1X
t=0

�tu

�
c (t) +

xr

1 + r

�#
= � exp

�
� xr

1 + r

�
E0

" 1X
t=0

�tu (c (t))

#
.

It then follows that the stochastic process [c (t)]1t=0 is optimal starting with wealth 0 if and
only if the stochastic process [c (t) + xr= (1 + r)]1t=0 is optimal starting with wealth x. Since
the optimal process is unique, we have c (x) = c (0)+xr= (1 + r), proving Eq. (I16:20). From
(I16:20), we also have

A (x) = (1 + r) [x� c (x)] (I16.21)

= x� (1 + r) c (0) ,
which gives the asset policy in terms of c (0)

To calculate c (0), note that the Euler equation (I16:14) in this case holds with equality
since we do not have the restriction c (0) > 0. Plugging a + w = 0 and u (c) = � exp (�c)
in this equation, we have

 exp (�c (0)) = � (1 + r)Ew0
�
 exp

�
�c

�
A (0) + w0

���
= � (1 + r)  exp (�c (0)) exp

�
�A (0) r

1 + r

�
Ew0

�
exp

�
�w0 r

1 + r

��
,

where the second line uses Eq. (I16:20). Combining this with the budget constraint A (0) =
� (1 + r) c (0), we calculate c (0) as

c (0) =
1

r

�
� log � (1 + r)� logEw0

�
exp

�
�w0 r

1 + r

���
.

Plugging this in Eq. (I16:21) gives

A (x) = x+
1 + r

r

�
log � (1 + r) + logEw0

�
exp

�
�w0 r

1 + r

���
.

Letting x = a+w and rearranging terms, for all a 2 R and w 2 W we obtain the asset policy

A (a+ w)� a = w � w +
�
1 + r

r
log � (1 + r)

�
(I16.22)

+
1 + r

r
logEw0

�
exp

�
�
�
w0 � w

� r

1 + r

��
,

where w = Ew0 [w
0] denotes the expected wage. Eq. (I16:22) is an intuitive expression.

The left hand side shows the increase in the consumer�s asset holdings after receiving wage
shock w. The w�w term on the right hand side captures the fact that the consumer tends to
increase asset holdings in response to more than expected wage shocks to smooth consumption
over time. The second term on the �rst line captures the fact that, when � (1 + r) < 1 the
consumer tends to decrease asset level with a drift term which captures the desire of the agent
to consume sooner than later. Finally, the term on the second line captures the fact that the
consumer tends to increase savings due to the precautionary motive. It can be checked that
this term is positive since the CARA utility satis�es u000 > 0 and features the precautionary
savings motive.

The expression for asset policy in Eq. (I16:22) implies that the asset level may increase
after a more than expected wage shock. First suppose � (1 + r) = 1. In this case, the drift
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term is zero and the asset level always increases when w > w. In particular, if the agent
receives the shock w0 = wmax > w for T periods in a row, then the asset level will increase
at least by T (wmax � w), which limits to 1 as T increases. Thus the asset level cannot be
bounded from above. The same intuition generalizes to the case in which � (1 + r) < 1. In
this case, even though there is a downward drift in the asset policy, the asset level will breach
any bound with positive probability if wmax � w is su¢ ciently large, in particular if

wmax � w > �1 + r
r

log � (1 + r) .

The intuition for this result is as follows. As the consumer with CARA utility accumulates
wealth, she has the same coe¢ cient of absolute risk aversion and the same elasticity of
intertemporal substitution. Consequently, no matter how rich she is, when she gets a favorable
wage shock she would like to save some of it for consumption smoothing and precautionary
saving purposes (cf. Eq. (I16:22)). Consequently, after a long spell of good wage shocks, the
consumer�s asset levels will get arbitrarily large.

Exercise 16.11, Part (d). Multiplying both sides of the Euler equation (I16:14) with
(� (1 + r))t, we have

(� (1 + r))t u0 (c (t)) � (� (1 + r))t+1Et
�
u0 (c (t+ 1))

�
,

which shows that the random variable (� (1 + r))t u0 (c (t)) is a non-negative supermartingale.
Then, the martingale convergence theorem implies that (� (1 + r))t u0 (c (t)) converges almost
surely to a nonnegative and �nite random variable m. First consider the case � (1 + r) > 1
and note that in this case (� (1 + r))t u0 (c (t))!a:s: m can only hold if u0 (c (t))!a:s: 0. This
further implies c (t)!a:s: 1, proving the result. Next suppose � (1 + r) = 1. The argument
is slightly more complicated but Chamberlain-Wilson (2000) show that consumption also
diverges to in�nity in this case (when the income stream is su¢ ciently stochastic, which is
the case in our setup). Hence, we conclude that c (t)!a:s: 1 when � (1 + r) � 1.

Exercise 16.11, Part (e). Note that in Part (d) we have not used u000 > 0. Therefore
the same analysis shows that c (t) !a:s: 1 also in the case in which u000 may sometimes be
negative. However, we can prove a stronger result than in Part (d) when u000 > 0, that is we
claim

Et [c (t+ 1)] > c (t) , (I16.23)

whenever u000 > 0. To prove the claim, note that the Euler equation (I16:14) implies

u0 (c (t)) � Et
�
u0 (c (t+ 1))

�
:

When u000 > 0, u0 (:) is a concave function and hence Jensen�s inequality implies

Et
�
u0 (c (t+ 1))

�
> u0 (Et (c (t+ 1))) ,

where the inequality is strict since c (t+ 1) does not converge to a constant (see Part (a)).
Combining the last two inequalities and using the fact that u0 (:) is a decreasing function
proves the claim in Eq. (I16:23). Intuitively, when u000 > 0, the convergence to 1 is more
orderly in the sense that expected consumption tomorrow is always greater than consump-
tion today. When u000 may sometimes be negative, Eq. (I16:23) does not necessarily apply
and expected consumption may be lower than current consumption for some periods, but
nevertheless consumption eventually limits to 1.
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Exercise 16.12

Exercise 16.12, Part (a). Let am (t) = maxt02[0;t] a (t0) denote the best technique avail-
able to the entrepreneur at time t. The entrepreneur would not accept any technique in
fa (0) ; ::; a (t)g that is not equal to am (t), so am (t) is the payo¤ relevant state variable at
time t. Suppose the entrepreneur searches at time t. Then she produces at technique am (t)
and receives the continuation value V (am (t+ 1) = am (t)) since she doesn�t discover a new
technique. Suppose instead the entrepreneur searches at time t. In this case, the entrepreneur
doesn�t produce at time t but receives the continuation value V (am (t+ 1) = max (am (t) ; ~a))
where ~a is the technique discovered at time t. Combining these observations, the recursive
problem of the entrepreneur can be formulated as

V (am) = max fam + �V (am) ; �E [V (max (am; ~a))]g

= max

�
am + �V (am) ; �

Z a

0
V (max (am; ~a)) dH (~a)

�
.

Note that V is a �xed point of a contraction mapping T over the set of continuous and
bounded functions over [0; a]. Moreover, T takes weakly increasing functions to weakly
increasing functions, hence V is weakly increasing.

Exercise 16.12, Part (b). Without loss of any essential generality, assume that the
entrepreneur accepts a technique when he is indi¤erent between accepting and searching
more. Suppose, to reach a contradiction, that an entrepreneur who has access to at =
(a (0) ; ::; a0; ::; a (t)) chooses to search at time t and accepts technique a0 at time t + s for
some s > 0. Since the entrepreneur decides to search at time t, we have

am (t) + �V (am (t)) < �

Z a

0
V (max (am (t) ; ~a)) dH (~a) ,

and since he accepts technique a0 at time t+ s, we have am (t+ s) = a0 and thus

am (t+ s) + �V (am (t+ s)) � �

Z a

0
V (max (am (t+ s) ; ~a)) dH (~a) .

Since am (t+ s) � am (t) for any realization of events between t and t + s, and since V is
weakly increasing, the last two equations imply

am (t+ s) + �V (am (t+ s)) > am (t) + �V (am (t)) .

Since V is weakly increasing, this further implies am (t+ s) > am (t). On the other hand,
we have a0 = am (t+ s) and at = (a (0) ; ::; a0; ::; a (t)), which implies am (t+ s) = am (t).
This yields a contradiction and proves that the entrepreneur never recalls a technique she
has rejected in the past.

Exercise 16.12, Part (c). Suppose the entrepreneur accepts technique a0 at time t,
that is, am (t) = a0 and

a0 + �V
�
a0
�
� �

Z a

0
V
�
max

�
a0; ~a

��
dH (~a) . (I16.24)

Since the entrepreneur does not search at time t + 1, we have am (t+ 1) = am (t) = a0.
Hence by Eq. (I16:24), the entrepreneur also accepts technique a0 at time t+1. It follows by
induction that the entrepreneur will continue to produce with technique a0 for all dates s � t
and will never go back to searching.
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Exercise 16.12, Part (d). Part (b) shows that the entrepreneur never recalls a tech-
nique from the past so there is no loss of generality in assuming that the payo¤ relevant state
variable is the latest technique discovered. Part (c) shows that the entrepreneur never goes
back to searching after accepting a technique, so the value of accepting technique a is given
by V accept (a) = a= (1� �). Hence, the maximization problem of the entrepreneur can be
formulated as in (16:28).

Exercise 16.12, Part (e). We assume b < a, since otherwise it is never optimal for the
entrepreneur to accept any technique and the optimal solution is trivially characterized as
always searching. When b < a, a similar analysis to Parts 2-4 establishes that, without loss
of generality, the recursive problem of the entrepreneur can be written as

V (a) = max

�
a

1� � ; b+ �
Z a

0
V (~a) dH (~a)

�
.

Since V is a maximum of a linear function and a constant function, V is piecewise linear and
the optimal policy takes a cuto¤ rule. The cuto¤ technology level, which we denote by R,
satis�es

R

1� � = b+ �

Z a

0
V (~a) dH (~a) .

Moreover, for a < R, we have V (a) = V (R) and for a > R, we have V (a) = a= (1� �). The
previous displayed equation then implies

R

1� � = b+
�R

1� �H (R) + �
Z a

R

a

1� �dH (a) . (I16.25)

Subtracting the identity

�R

1� � =
�R

1� �H (R) + �
Z a

R

R

1� �dH (a)

from both sides of Eq. (I16:25), we have that the cuto¤ rule R solves

R = b+
�

1� �

Z a

R
(a�R) dH (a) .

We denote the right hand side of this expression with  (b; R), which is decreasing in R.
Moreover,  (b; 0) > 0 and  (b; a) = b < a by assumption, which implies that the function
 (b; :) crosses the 45 degree line. Since it is a decreasing function, it crosses the 45 degree
line exactly once, hence the equation R =  (b; R) has a unique solution R 2 (0; a) for any b.
Moreover, since  (b; R) is increasing in b, the unique solution R is also increasing in b, which
proves that the cuto¤ threshold increases as b increases. Intuitively, when the entrepreneur
receives more bene�ts while searching, she has more incentives to search and requires a higher
threshold to accept a technique.

Exercise 16.13

Exercise 16.13, Part (a). The recursive problem of a worker who has a current job
o¤er with wage w is

V (w) = max

�
w

1� � ; �
Z w

0
V ( ~w) dH (w)

�
,

where we have assumed that the worker will not quit a job that she has accepted. Note that
this problem is mathematically equivalent to the problem analyzed in subsection 16.5.2.
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Exercise 16.13, Part (b). The argument is identical to the one in Part (c) of Ex-
ercise 16.12. If the worker accepts a job with wage w at time t, then w= (1� �) �
�
R w
0 V ( ~w) dH (w). At time t + 1, the worker has the same wage as time t and faces the

same expected value in case she quits the job, hence she faces the same trade-o¤ as in time t.
Therefore, a worker who accepted a job at time t does not quit at time t+ 1. By induction,
the worker never quits after accepting a job.

Exercise 16.13, Part (c). Since the problem is mathematically equivalent to the one
analyzed in subsection 16.5.2, the same analysis in the text applies and shows that the worker
will use a reservation wage R given as the unique solution to

R =
�

1� �

Z w

R
(w �R) dH (w) . (I16.26)

Intuitively, the reservation wage on the left hand side is the worker�s immediate gain from
accepting the job. The worker trades o¤ this gain with the option value of waiting for a
better job o¤er, which is captured in the right hand side. By rejecting the current o¤er, the
worker can potentially receive a better o¤er next period and earn w � R more wages than
the current o¤er. The � term in front takes into account the time cost of waiting for a new
job o¤er, and the term 1

1�� takes into account that a better job o¤er next period will yield
the higher wage bene�ts in all future periods.

Exercise 16.13, Part (d). The worker will be unemployed until she receives a wage
o¤er that is above the threshold level R. Let tu denote the random variable for the �rst
period at which the worker receives a wage o¤er weakly greater than R. Let q (t) denote the
probability that tu = t for t 2 f0; 1; 2; ::g. Then, we have q (t) = H (R)t (1�H (R)), and the
expected duration of unemployment is given by

E [tu] =
1X
t=0

tq (t) = (1�H (R))
1X
t=0

tH (R)t

= (1�H (R)) H (R)

(1�H (R))2

=
H (R)

1�H (R) .

Since H (R) is increasing in R, the expected duration of unemployment is increasing in the
threshold at which the worker accepts a wage o¤er.

Exercise 16.13, Part (e). First, consider a �rm that o¤ers wages w > R. Any worker
that receives this o¤er accepts this o¤er. Suppose the �rm instead o¤ered wages w � " > R
for su¢ ciently small " > 0. Then, every worker still accepts the job o¤er, but the �rm cuts
its wage costs by " in every period, thus o¤ering wages w > R cannot be optimal. Second,
consider a �rm that o¤ers wages w < R. Then, the �rm never attracts any workers and makes
0 pro�ts. The �rms that o¤er wages w � R and attract workers should be making positive
(at the least, non-negative) expected pro�ts since otherwise, they would just terminate the
relationship with the worker. Since all �rms are identical, the �rm that o¤ers wages w < R
can increase pro�ts by switching to wages w = R and attracting some workers. Hence, wage
o¤ers of all �rms other than those o¤ering w = R are not pro�t-maximizing. Therefore, for
the McCall model to be consistent with �rm optimization, the distribution H (w) should put
all weight on a single wage level w� and the workers should have the threshold rule R = w�.
Plugging in R = w� and the distribution H (w) that puts all weight on w� in Eq. (I16:26),
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we also have w� = R = 0. Hence, the only equilibrium consistent with �rm and worker
optimization is one in which all �rms o¤er wages w� = 0 and workers accept all non-negative
wage o¤ers.

This observation shows that the McCall search model generates interesting insights for
workers� job search in partial equilibrium in which the distribution of wage o¤ers is taken
exogenous; however, these insights do not necessarily apply once the distribution of wage
o¤ers is endogenized.

Exercise 16.14

Exercise 16.14, Part (a). The time t budget constraint of a household with claims
x (t) on the tree and with the realization of state, z (t), is given by

c (t) + p (z (t))x (t+ 1) � z (t)x (t) + p (z (t))x (t)

= (z (t) + p (z (t)))x (t) :

The right hand side of this constraint is the income of the household. The term z (t)x (t) is the
amount of consumption goods delivered at time t by the claims on the tree, and p (z (t))x (t)
is the market value of the claims. The left hand side of the same constraint is the expenditure
of the household. The household spends c (t) of its time t income on consumption goods and
reinvests the remaining to buy x (t+ 1) claims at the current market price p (z (t)) to bring
into next period.

Exercise 16.14, Part (b). Given a stationary price function, p (z), the payo¤ relevant
state variables for a household are her current claims on the tree, x, and the current state, z.
Given the payo¤ relevant state, the household�s problem can be represented with the following
recursive formulation

V (x; z) = sup
c�0;y�0

�
u (c) + �E

�
V
�
y; z0

�
j z
�	

s.t. c+ p (z) y � (z + p (z))x,

where the second line is the budget constraint we have derived in Part (a). Since u is
increasing in c, any solution to this problem satis�es the budget constraint with equality.
Hence we can substitute c = (z + p (z))x� p (z) y and reduce the problem to one of choosing
y, the level of claims for next period. With this substitution, the constraint c � 0 is equivalent
to y � p (z)�1 (z + p (z))x, hence the recursive problem can be written as

V (x; z) = sup
y2[0;p(z)�1(z+p(z))x]

�
u ((z + p (z))x� p (z) y) + �E

�
V
�
y; z0

�
j z
�	
. (I16.27)

Exercise 16.14, Part (c). Market clearing in claims ensures that x = 1 in equilibrium
(see Part (e)), thus without loss of generality we restrict the domain of Problem (I16:27)

to the compact set X = [0; 1] and the constraint set to y 2
h
0; p (z)�1 (z + p (z))x

i
\ X.

The restricted problem satis�es Assumptions 16.1 and 16.2 hence Theorem 16.3 applies and
shows that there exists a unique, continuous and bounded solution V : X � Z !R. Since u
is strictly concave in x and y, Assumption 16.3 is also satis�ed and Theorem 16.4 applies,
showing that the solution V is strictly concave and the optimal plan can be expressed with
a policy function � (x; z). Moreover, since p (z) � 0, u is strictly increasing in x, hence
Assumption 16.4 is satis�ed and Theorem 16.5 applies, showing that V is strictly increasing
in x. Finally, u is continuously di¤erentiable in x, hence Assumption 16.5 is satis�ed and
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Theorem 16.6 applies, showing that V (x; z) is continuously di¤erentiable in x for x 2 Int X
and � (x; z) 2 Int

�h
0; p (z)�1 (z + p (z))x

i
\X

�
, with derivative

rxV (x; z) = (z + p (z))u
0 ((z + p (z))x� p (z)� (x; z)) . (I16.28)

Exercise 16.14, Part (d). We have established that V is continuously di¤erentiable
and strictly concave which implies that the objective function for the optimization problem
(I16:28) is also continuously di¤erentiable and strictly concave. The �rst-order conditions for
optimality are

p (z)u0 ((z + p (z))x� p (z) y) = �E
�
DyV

�
y; z0

�
j z
�
.

Substituting Eq. (I16:28) on the right hand side of this expression and using the notation for
consumption yields the stochastic Euler equation

p (z)u0 (c (t)) = �Et
��
z0 + p

�
z0
��
u0 (c (t+ 1))

�
. (I16.29)

Exercise 16.14, Part (e). The market clearing condition for claims on trees is x (t) = 1.
This condition is su¢ cient for market clearing since when each individual holds one unit of
the tree at all times the aggregate holding of claims necessarily equates aggregate supply of
claims, which is also one unit per individual. To see why this condition is also necessary, note
that individuals are symmetric and they face the same shocks, thus the recursive optimization
problem (I16:27) has a unique solution as we have established in Part (c). Then, all individuals
hold the same amount of claims at all times, showing that market clearing can be satis�ed
only if they all hold at most 1 claim, that is, x (t) � 1. Note also that x (t) < 1 would
imply that the price of claims is 0, which in turn would generate in�nite demand for claims
from problem (I16:27), creating a contradiction. Hence x (t) = 1 is also necessary for market
clearing on claims on trees.

Exercise 16.14, Part (f). Using the fact that the �ow budget constraint is satis�ed
with equality and that market clearing implies x (t) = 1, we have

c (t) = [z (t) + p (z (t))]x (t)� p (z (t))x (t+ 1) = z (t) . (I16.30)

Using this in the stochastic Euler equation (I16:29), we have

p (zj)u
0 (zj) = �Et

��
z0 + p

�
z0
��
u0
�
z0
�
j zj
�

= �

NX
i=1

(zi + p (zi))u
0 (zi) qji, for all j 2 f1; :::; Ng , (I16.31)

where qji = q (zi j zj) denotes the transition probability from state zj to state zi. The
system in (I16:31) has N equations in N unknown prices, fp (zj)gzj2Z . Hence, this system
of equations characterizes the price of the tree in each state of the world. Intuitively, as in
Lucas (1978), the tree is in �xed supply, thus asset prices adjust so that individuals optimally
demand and consume exactly the amount z (t) delivered by the trees at time t. More generally,
the dual facts that asset markets clear and consumers choose optimal consumption paths
(consistent with Euler equation) determine asset prices in an exchange economy. A large
literature on asset pricing is built on this insight.
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Exercise 16.14, Part (g). Let pB (z (t)) denote the price of the riskless bond when
the current state realization is z (t). The household�s �rst-order condition for bond trades is
given by

pB (z (t))u
0 (c (t)) = �Et

�
u0 (c (t+ 1))

�
:

Since each household is identical and since the riskless bond is in zero net supply, in equilib-
rium each household holds zero unit of the riskless bond thus the market clearing equation
c (t) = z (t) continues to apply (cf. Eq. (I16:30)). Using this in the previous displayed
equation, we have

pB (zj) = �

NX
i=1

(zi + p (zi))
u0 (zi)

u0 (zj)
qji for all z,

which characterizes the price of the riskless bond at any state z in terms of the price vector
for the trees, fp (zj)gzj2Z .

Exercise 16.15

Exercise 16.15, Part (a). Let Z �fz1; :::; zNg denote the set of possible productivity
shocks. The sequence problem is

V � (k (0) ; z (0)) : (I16.32)

sup
f~k[zt�1]�0;i[zt]g1

t=0

E0
1X
t=0

f
�
~k
�
zt�1

�
; z (t)

�
� i
�
zt
�
� �

�
i
�
zt
��

(1 + r)t

s.t. ~k
�
zt
�
= i
�
zt
�
+ (1� �) ~k

�
zt�1

�
for any zt.

Here we assume that k (t) = ~k
�
zt�1

�
, that is, capital level at time t is determined in the

previous period.

Exercise 16.15, Part (b). Let Q =
�
qjj0
�
denote the transition matrix for the Markov

chain where qjj0 = q
�
zj0 j zj

�
denotes the probability of state zj0 given state zj . The �rm can

potentially achieve any capital level k0 � 0 in the next period by investing i = k0 � (1� �) k,
hence the recursive problem can be written as

V (k; zj) : (I16.33)

max
k0�0

f (k; z)�
�
k0 � (1� �) k

�
� �

��
k0 � (1� �) k

��
+ �

NX
j0=1

V
�
k0; zj0

�
qjj0 .

Exercise 16.15, Part (c). We assume that f (k; z) is strictly concave and continuously
di¤erentiable in k and � (i) is convex and continuously di¤erentiable. To ensure that the
choice of the capital stock remains in a compact set K, we assume limk!1 df (k; z) =dk = 0
for all z 2 Z. With this assumption, kz � argmax k�0 (f (k; z)� �k) is �nite for all z. Let
k = maxz2Z kz, and note that for any k 2

�
0; k
�
, choosing k0 > k cannot be optimal since

by reducing the capital stock to k00 = k, the �rm attains a higher level of output next period
with a lower level of investment this period. Consequently, the choice of capital next period
always remains below k and there is no loss of generality in assuming K =

�
0; k
�
. Under

these conditions, Assumptions 16.1 and 16.2 are satis�ed and Theorems 16.1 and 16.2 apply,
proving, in particular, that Problems (I16:32) and (I16:33) have the same solutions.
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Exercise 16.15, Part (d). Let us denote the optimal solution to Problem (I16:33) with
k0 [k; z], or equivalently with

i [k; z] = k0 [k; z]� (1� �) k: (I16.34)

From Eq. (I16:33), the �rst-order condition for an interior solution k0 > 0 is

�
NX
j0=1

@V
�
k0; zj0

�
@k0

qjj0 = 1 + �
0 �k0 � (1� �) k� .

Moreover, Theorem 16.6 applies and shows that V is di¤erentiable for an interior solution
with derivative

@V (k; zj)

@k
=
@f (k; zj)

@k
+ (1� �)

�
1 + �0

��
k0 � (1� �) k

���
.

Combining the last two equations and substituting the k0 [k; z] and i [k; z] notation from Eq.
(I16:34), we derive the stochastic Euler equation

1 + �0 (i [k; zj ]) =

�
NX
j0=1

qjj0

"
@f
�
k0 [k; zj ] ; zj0

�
@k

+ (1� �)
�
1 + �0

�
i
�
k0 [k; zj ] ; zj0

���#
, (I16.35)

for all k 2 K and zj 2 Z.
This is a sensible equation: the �rm chooses the next period�s capital stock to trade o¤
current investment costs (including adjustment costs) against the expected marginal bene�ts
next period. The marginal bene�ts in the next period include the direct bene�ts in terms of
pro�ts as well as the potential bene�ts (costs) for future adjustments in investment.

Eq. (I16:35) is intuitively the stochastic version of Eq. (7:86) in Section 7.8. There, we
have the continuous time framework and the setup is deterministic so we can characterize
the behavior of the marginal value of capital q (t) with a di¤erential equation, which in turn
allows us to characterize the optimal solution with two di¤erential equations. In the present
problem with a discrete time setting and stochastic shocks, Eq. (I16:35) provides a �xed
point characterization of the optimal solution. To compute the solution, we can consider a
discrete representation of the state space K �Z, denoted by Kd�Zd. If Eq. Kd�Zd has a
�nite number of elements, then Eq. (I16:35) corresponds to

��Kd�Zd�� equations in ��Kd�Zd��
unknowns fk0 [k; zj ]gk2K;z2Z which can be solved, providing an approximation to the optimal
investment plan.

Exercise 16.16

Exercise 16.16, Part (a). Let the state space be given by Z = fz1; :::; zNg. The only
payo¤ relevant state is the current value of the random variable, z (t). If the individual stops
the process at time s, then she receives u (z (s)) for all t � s hence time s utility from stopping
is V stop

t = u (z (s)) = (1� �). Then, the individual solves the following stochastic dynamic
programming problem

V (zj) = max

�
u (zj)

1� � ; u (0) + �E [V (~z) j zj ]
�

= max

 
u (zj)

1� � ; u (0) + �
NX
i=1

V (zi) qji

!
, (I16.36)
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where qji � q (zi j zj) denotes the transition probability from state zj to state zi. By standard
arguments, V is a �xed point of a contraction mapping and hence there exists a unique
continuous and bounded solution V .

To establish that the optimal solution takes the form of a cuto¤ rule, we need to make
some assumptions on the Markov chain. For general Markov chains, a cuto¤ rule is not
warranted. To see this, consider an example with Z = fz1 = 1; z2 = 2; z3 = 3g and

Q = [qji] =

24 1 0 0
0 0 1
0 0 1

35 ,
so z1 and z3 are absorbing states, and state z2 always transitions into state z3. Then, when
� is su¢ ciently large, the optimal rule is to stop at z1 and z3, and to search at z2 because
this will yield u (z3) > u (z2) in every period in the future. Since the individual stops at z1
and searches at z2, the optimal rule is non-monotonic and does not take a cuto¤ rule. The
issue is that the transition probabilities for states z1 and z2 are structurally very di¤erent,
z1 leading to smaller states with high likelihood and z2 leading to larger states with high
likelihood. The following assumption rules out such cases while allowing for persistence in
the Markov chain.

Assumption 3. The next period�s state z0 given z is a random variable given by

z0 j z =
�

z with probability a
y with probability (1� a) ,

where a 2 [0; 1] is a constant and y is an independent random variable over Z with probability
vector

n
(qi)

N
i=1 j

PN
i=1 qi = 1

o
, so the transition probabilities are given by

qji = a1 (i = j) + (1� a) qi for each j; i 2 f1; ::; Ng .

We claim that, under Assumption 3, the optimal solution takes a cuto¤ rule, that is,
there exists some R� such that the individual stops the process at time t if z (t) � R�. If the
individual chooses not to stop at zj 2 Z, from Eq. (I16:36), she receives

V continue (zj) = u (0) + �
NX
i=1

V (zi) (a1 (i = j) + (1� a) qi)

= u (0) + �aV continue (zj) + � (1� a)
NX
i=1

V (zi) qi

=
1

1� �a

 
u (0) + � (1� a)

NX
i=1

V (zi) qi

!
,

which is a constant independent of zj . If the individual stops at zj , she receives V stop (zj) =
u (zj) = (1� �), which is increasing in zj . Then, the individual stops at z if V stop (zj) �
V continue (zj), or equivalently if

zj � u0�1

"
1� �
1� �a

 
u (0) + � (1� a)

NX
i=1

V (zi) qi

!#
� R�,

proving that the optimal solution takes a cuto¤ rule.
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Exercise 16.16, Part (b). Let � take values in the �nite set f�1; :::; �Mg. The payo¤
relevant state is now (z (t) ; � (t)). The stochastic dynamic programming problem for the
individual is

V (zj ; �k) = max

�
u (zj)

1� � ; u (0) + �E [V (~z) j zj ; �k]
�

= max

�
u (zj)

1� � ; u (0) + �
Z
Z
V (~z) dH (~z j �k)

�
.

Since H (z j � (t)) only depends on � (t) and not on z (t), the value from not stopping only
depends on the state �k and is independent of the payo¤ state zj . Then, the individual stops
if u (zj) = (1� �) exceeds the value from not stopping, or equivalently, if

zj > u�1
�
(1� �)

�
u (0) + �

Z
Z
V (~z) dH (~z j �k)

��
� R� (�k) , (I16.37)

where the last equality de�nes R� : f�1; :::; �Mg ! R+. This proves that the optimal solution
always takes a stopping rule, but the stopping rule depends on state �k.

2 The stopping rule is
not constant, since the state �k a¤ects the transition probabilities and hence the value from
not stopping. For example, we can assume that the distribution H (z j �k) puts relatively
more weight on lower z�s when �k is lower, which by Eq. (I16:37) implies that R

� (�k) is
lower when �k is lower.

In the context of Exercise 16.13, the state �k could be interpreted as an inverse measure of
the tightness of the labor market (from the workers�perspective). During periods of recession,
the labor market is tight (captured by a low �k) and the chances of �nding a job with a high
wage are slim, which induces workers to lower their acceptance thresholds (captured by a low
R� (�k)). Thus the model suggests that, during a recession, the workers will search less and
will be more likely to accept the job o¤ers they receive.

2In this case, the optimal solution always takes a stopping rule since the transition probabilities are
independent of the current payo¤ state z. Intuitively, Assumption 3 applies with a = 0.





Chapter 17: Stochastic Growth Models

Exercise 17.5

Exercise 17.5, Part (a). To prove that (17.10) will only be satis�ed for B0 = 0,
rearrange the equation to get

1 = �E

"
�z0 (B0 +B1zk�)

��1 ((1�B1) zk� �B0)
z0 (B0 +B1zk�)

� �B0 �B1z0 (B0 +B1zk�)�

����� z
#
: (I17.1)

As (I17.1) has to hold for all k, consider the limit where k ! 0. (I17.1) then implies that

1 = �E
�

��z0B�
0

z0B�
0 �B0 �B1z0B�

0

���� z� :
Dividing this equation by z0 yields

1 = �E
�

��B�
0

B�
0 �B0z0�1 �B1B�

0

���� z� :
This however cannot be true for all distributions z0jz unless B0 = 0.

Exercise 17.5, Part (b). Let us now conjecture a speci�c form of the value function,
namely

V (k; z) = B2 +B3 log k +B4 log z: (I17.2)

From the recursive formulation, (I17.2) has to solve the functional equation

V (k; z) = max
k0

�
log(zk� � k0) + �E[V (k0; z0) j z]

	
: (I17.3)

The necessary �rst-order condition is
1

zk� � k0 = �E[V 0(k0; z0) j z] = �E[B3
1

k0
j z] = �B3

1

k0
:

The policy function is therefore given by

k0 = �(k; z) =
�B3

1 + �B3
zk�: (I17.4)

The Envelope Condition for this problem reads

V 0(k; z) = B3
1

k
=

1

zk� � k0�zk
��1;

so that - using the expression for the policy function given in (I17.4) - we get

B3 =
�zk�

zk� � k0 =
�zk�

zk� � �(k; z) =
�zk�

zk� � �B3
1+�B3

zk�
= (1 + �B3)�:

This equation can be solved for the coe¢ cient on the capital stock, i.e.

B3 =
�

1� ��: (I17.5)

351
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In particular, note that the coe¢ cient given in (I17.5) is indeed consistent with the policy
function given in Example 17.1, as

�(k; z) =
�B3

1 + �B3
zk� = ��zk�:

To match the other coe¢ cients, let us go back to the recursive formulation given in (I17.3).
From there we get that

V (k; z) = max
k0

�
log(zk� � k0) + �E[V (k0; z0) j z]

	
= log(zk� � �(k; z)) + �E[V (�(k; z); z0) j z]
= log((1� ��)zk�) + �(B2 +B3 log �(k; z) +B4E[ log z0 j z])
= log((1� ��) (��)�B3) + �B2 + (1 + �B3)� log(k) + �(1 +B3) log(z) +

B4E[ log z0jz]
� 2 + 3 log(k) + 4 log(z):

This indeed matches the conjectured form given in (I17.2) if the stochastic innovations z are
independent.1 If that is the case, we get that

E[ log z0jz] = E[ log z0] � �

where � is constant. In particular, note that B3 given in (I17.5) indeed solves

B3 = 3 = (1 + �B3)�

as required. Additionally we have that

B4 = 4 = �(1 +B3) = �
1 + �(1� �)
1� �� :

Using those two results, the constant is then simply given by

B2 = 2 = log(1� ��) + �B2 + �B3 log(��) +B4�

=
log(1� ��) + �B3 log(��) +B4�

1� � :

To see that the independence assumption is necessary for the required form, note that other-
wise E[ log z0 j z] will be measurable with respect to z (and hence to log(z)) but not necessarily
in a linear fashion. Our conjecture above however required that V is linear in log(z). Hence,
the independence assumption is in fact crucial for the result.

Exercise 17.7

Exercise 17.7, Part (a). To characterize the limiting invariant distribution of the
capital-labor ratio we will �rst show that (after �nitely many periods) the capital-labor ratio
will be contained in a compact set [kmin; kmax]. To see that the economy characterized in
Example 17.1 satis�es this requirement, recall that the policy function was given by

�(k; z) = ��zk�:

Let us �rst show that there exists some minimal capital-labor ratio kmin, such that the
economy will never shrink below this level, once its capital-labor ratio is at least as large as
this level. This minimal capital-labor ratio is de�ned implicitly by

�(kmin; z1) = ��z1(k
min)� = kmin;

1The independence assumption is necessary to get the required form, hence it should have been noted in
the exercise statement.
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which yields
kmin = (��z1)

1=(1��) > 0: (I17.6)

Note that kmin is dependent on the worst shock z1. By construction we therefore have

�(k; z) � �(k; z1) � �(kmin; z1) = kmin if k � kmin:

This shows that if there exists �t such that k(�t) � kmin, the capital-labor ratio will satisfy
k(t) � kmin, for all t > �t. Hence, if k(0) � kmin, this lower bound will exist for all for all t.
If on the other hand k(0) < kmin, we can also show that the capital-labor ratio kmin will be
reached in �nite time. To see this, note that

k(t+ 1)� k(t)
k(t)

=
��zk(t)�

k(t)
� 1 � ��z1k(t)

��1 � 1 = ��z1(k(t)
��1 � (kmin)��1); (I17.7)

where we used that ��z1(kmin)��1 = 1 (see (I17.6)). As �� 1 < 0, (I17.7) shows that
k(t) < kmin ) k(t+ 1) > k(t);

i.e. if k(t) < kmin, the capital stock will increase with probability one so that kmin will be
reached in �nitely many periods. Once it reached that level, it will never shrink below kmin

as was established above. Hence, wherever the economy starts, the capital-labor ratio will
be bounded from below by kmin after �nitely many periods.

Similarly we can show that the capital-labor ratio will be bounded from above. To do,
de�ne the upper bound kmax by

�(kmax; zN ) = ��zN (k
max)� = kmax;

which can be solved for
kmax = (��zN )

1=(1��) <1:
Note that kmax is dependent on zN . Using this we get that

k(t+ 1) = ��zk(t)� � ��zNk(t)
�: (I17.8)

But as
k(t) � kmax ) ��zNk(t)

� � ��zN (k
max)� = kmax;

we get from (I17.8) that
k(t) � kmax ) k(t+ 1) � kmax;

i.e., once the capital-labor ratio is below kmax, it will be below kmax forever. Additionally
we can show by a similar argument as above, that if k(0) > kmax the capital-labor ratio will
decline with probability one so that the economy reaches a capital-labor ratio below kmax in
�nite time. Hence, after �nitely many periods, the capital-labor ratio will be given by

k(t) 2 [kmin; kmax] 8t:
The invariant distribution of the capital-labor ratio is therefore contained in the compact set
[kmin; kmax].

To characterize the invariant distribution of the capital-labor ratio, let us introduce some
notation. Let F (kjz) denote the conditional probability that the capital-labor ratio is equal
to k if the current state is equal to z. Using the accumulation equation

k0 = �(k; z) = ��zk�

we get that for all k 2 [kmin; kmax]

F (kjzj) =
NX
i=1

qjiF

 �
k

��zi

�1=������ zi
!
pi, j = 1; ::; N; (I17.9)



354 Solutions Manual for Introduction to Modern Economic Growth

where recall qji denotes the transition probability to go from state zi to state zj and pi denotes
the unconditional probability of state zi occurring. To understand why F (kjzj) is given in
(I17.9) let us do some counting. What are the possible ways to reach k in state zj? Suppose
the economy is currently in state zi. For next period�s capital-labor ratio to be equal to k,

the current capital-labor ratio has to be equal to
�

k
��zi

�1=�
, because then

�

 �
k

��zi

�1=�
; zi

!
= ��zi

"�
k

��zi

�1=�#�
= k:

The probability that the economy is currently in state zi with a capital-labor ratio of�
k

��zi

�1=�
is given by F

��
k

��zi

�1=�
jzi
�
pi, as F is the conditional distribution of k given z

and pi is the unconditional probability that z = zi. As the probability that the economy�s
state goes from zi to zj is given by the transition probability qji, the term

qjiF

 �
k

��zi

�1=������ zi
!
pi

gives exactly the unconditional probability that the economy reaches the state (k; zj) starting
from zi. As there are N possible values z1; z2; :::; zN to start with, (I17.9) gives exactly the
the conditional probability of having a capital-labor ratio k in state zj . As the pis are known
(they correspond to the unit eigenvector of the transition matrix, normalized to length one),
(I17.9) gives us N functional equations (recall that (I17.9) holds for all k 2 [kmin; kmax]) to
characterize the N functions (F (:jz1); F (:jz2); :::; F (:jzN )).

Using this we can now characterize the invariant distribution of the capital-labor ratio.
Let us call this invariant distribution by G. The invariant distribution is given by

G(k) =
NX
i=1

piF (kjzi): (I17.10)

To see this, note that there are N ways such that the economy can have a capital-labor
ratio of k, as the capital-labor ratio can be equal to k in any of the N states z1; z2; :::; zN . As
F (kjzi) denotes the conditional probability of k given zi, piF (kjzi) is exactly the unconditional
probability that the capital-labor ratio is equal to k and z = zi. Summing this expression
over all N states gives the unconditional probability that the capital-labor ratio is equal to
k. This however is exactly the invariant distribution on the support [kmin; kmax].

This discussion also shows that the evolution of the capital-labor ratio can be represented
by Figure 17.1 in Section 17.5. The lower line denoted zmin (which corresponds to the lowest
realization of the shock z) refers to the locus

�(k; z1) = ��z1k
�; (I17.11)

whereas the line zmax refers to

�(k; zN ) = ��zNk
�: (I17.12)

In the discussion above we showed that the support of the invariant distribution is exactly
given by the interval [kmin; kmax] whose boundaries are determined by the intersection of the
two loci given in (I17.11) and (I17.12) with the 45-degree line.
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Exercise 17.7, Part (b). In the special case of only two possible cases for z we can
explicitly consider the transition matrix between the states zl and zh In this example, this
matrix is given by

Q =

�
qll qhl
qlh qhh

�
=

�
q 1� q

1� q q

�
:

For any q < 1, the unconditional probabilities in the stationary distribution are given by

pql = 1� p
q
h =

1

2
:

To see this, note that pql solves the identity

pql = Pr[zl] = Pr[zljzl] Pr[zl] + Pr[zljzh] Pr[zh]
= qpql + (1� q)(1� p

q
l )

so that indeed

pql =
1

2
:

The invariant distribution of the capital stock k is therefore characterized by (see (I17.10))

G(k) =
1

2
[F (kjzl) + F (kjzh)] : (I17.13)

The conditional probabilities F (jzi) in turn are given by (I17.9), which in this example can
be written as

F (kjzl) =
1

2

"
qF

 �
k

��zl

�1=������ zl
!
+ (1� q)F

 �
k

��zh

�1=������ zh
!#

(I17.14)

F (kjzh) =
1

2

"
(1� q)F

 �
k

��zl

�1=������ zl
!
+ qF

 �
k

��zh

�1=������ zh
!#

: (I17.15)

Let us now consider the limit where q ! 1. Note that in the limit the unconditional proba-
bilities in the stationary distribution are not anymore given by pql = pqh = 1=2. Instead they
are dependent on the initial condition and given by

p1l =

�
1 if z(0) = zl
0 if z(0) = zh

and p1h = 1� p1l , (I17.16)

where z(0) is the initial condition. Using this, (I17.14) and (I17.15) reduce to

F (kjzl) = F

 �
k

��zl

�1=������ zl
!

(I17.17)

F (kjzh) = F

 �
k

��zh

�1=������ zh
!
;

where we used that F (:jzi) is only de�ned if p1i = 1. Speci�cally, we have to �nd the functions
F (:jzl) and F (:jzh) such that these two equations are satis�ed for all k 2 [kmin; kmax]. Now
note however that for k = kmin, which was characterized in (I17.6), we get that

F

 �
kmin

��zl

�1=������ zl
!

= F

0@ (��zl) 1
1��

��zl

!1=������� zl
1A = F

�
(��zl)

1
1��
��� zl�

= F
�
kminjzl

�
;
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so that (I17.17) is satis�ed if F (:jzl) is the Dirac measure

F (kjzl) = �l(k) =

�
1 if k = kmin

0 otherwise
: (I17.18)

Similarly we get that

F (kjzh) = �h(k) =

�
1 if k = kmax

0 otherwise
: (I17.19)

Standard arguments show that this system of functional equations has a unique solution.
Hence, (I17.18) and (I17.19) are in fact the only solution.

Now note that kmin is constructed to solve the equation

k = a�zlk
�;

i.e. kmin equals the steady state the deterministic economy with z = zl. Similarly, kmax equals
the steady state in a deterministic economy with z = zh. Hence the invariant distribution of
this limiting economy where q ! 1 is given in (I17.13) as

G(k; z0) = p1l �l(k) + p
1
h�h(k) =

8><>:
1 if kmin = (a�zl)

1
1�� and z0 = zl

1 if kmax = (a�zh)
1

1�� and z0 = zh
0 otherwise

;

where pl and ph are given in (I17.16). This readily veri�es that the invariant distribution
of this economy is degenerate, i.e. it converges to a single point. This of course is just a
di¤erent representation of the convergence properties of the neoclassical growth model under
certainty: there exists unique steady state, which is globally stable. Hence, the behavior of
the capital-labor ratio converges to the behavior of its counterpart of the neoclassical growth
model under certainty.

Exercise 17.13

To prove that the equilibrium allocation is Pareto optimal (i.e. that the optimal and
competitive growth paths coincide), we are going to apply Theorem 16.8 to the social planner�s
problem. Theorem 16.8 shows that (under Assumptions 16.1-16.5) the solution is completely
characterized by the Euler equations and the transversality condition. To be more precise,
this theorem shows that a plan is optimal if and only if it satis�ed the Euler equations and
the transversality condition of the social planner�s problem. Then we are going to show that
the equilibrium allocation will satisfy the same Euler equations and that the transversality
condition will also hold.

Hence let us now verify that Theorem 16.8 applies to the social planner�s problem. The
recursive formulation of the optimal growth problem is given by

V (k; z) = max
k02[0;f(k;z)+(1��)k]

(
u
�
f(k; z) + (1� �)k � k0

�
+ �

X
z02Z

q
�
z0jz
�
V
�
k0; z0

�)
;

(I17.20)
where we already substituted the resource constraint

c = f(k; z)� (1� �)k � k0.

Hence, let us now verify that Assumptions 16.1-16.5 are applicable so that Theorem 16.8 can
be applied. As

f(k; z) + (1� �)k > 0 for all k 2 R+; z 2 Z
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we get that the constraint correspondence

G(k; z) = [0; f(k; z) + (1� �)k] (I17.21)

is nonempty-valued for all k 2 R+ and z 2 Z. The limit condition on expected utility is
satis�ed as u is continuous and the support for k is bounded. To see that k(t) is contained
in a compact set, note that the resource constraint requires that

k(t+ 1) � f(k(t); z) + (1� �)k(t)
� max

z2Z
f(k(t); z) + (1� �)k(t):

Then de�ne the �xed point
~kmax = max

z2Z
f(~kmax; z) + (1� �)~kmax:

This �xed point exists as ~kmax solves

maxz2Z f(~kmax; z)
~kmax

= �

and f(k;z)
k is decreasing in k for all z. Hence, by construction we have

k(t) � ~kmax =) k(t+ 1) � ~kmax
and

k(t) > ~kmax =) k(t+ 1) � k(t):

To see the last statement, note that

k(t+ 1)� k(t)
k(t)

=
f(k(t); z)� �k(t)

k(t)
� maxz2Z f(k(t); z)

k(t)
� �

=
maxz2Z f(k(t); z)

k(t)
� maxz2Z f(

~kmax; z)
~kmax

< 0

where the last inequality follows from the fact that

maxz2Z f(k; z)

k

is decreasing in k and k(t) > ~kmax. This shows that

0 � k(t) � maxf~kmax; k(0)g; (I17.22)

i.e. k(t) is contained in a compact set. Furthermore, G is also continuous and compact-valued
(see (I17.21)) and U is continuous by the assumptions made on u. This veri�es Assumptions
16.1 and 16.2. Assumptions 16.3 and 16.5. are also satis�ed as u is assumed to be strictly
concave and di¤erentiable. Furthermore, U is strictly increasing in its �rst argument as

@

@k
U(k; k0; z) = u0(c)

�
f 0(k; z) + 1� �

�
> 0 for all k; z;

as u0(c) > 0 and f 0(k; z) > 0 for all k; z and � < 1. This also shows that G is monotone in k
for all z and hence veri�es Assumption 16.5.

As the social planner�s problem satis�es Assumptions 16.1 to 16.5, Theorem 16.8 implies
that the Euler equations and the transversality condition are necessary and su¢ cient for the
characterization of the optimal plan. From (I17.20) we �nd that the necessary condition for
the choice of future capital is given by

�u0
�
f(k; z) + (1� �)k � k0

�
+ �

X
z02Z

q
�
z0 j z

�
V 0
�
k0; z0

�
= 0;
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and that the Envelope Condition reads

V 0(k; z) = u0
�
f(k; z) + (1� �)k � k0

�
[f 0(k; z) + (1� �)]:

Combining these equation and explicitly denoting the dependence on the history zt gives the
Euler equations

u0
�
c
�
zt
��
= �

X
z(t+1)

q
�
zt+1jzt

�
u0
�
c
�
zt+1

��
R(zt+1) (I17.23)

where

R[zt+1] = f 0(k
�
zt
�
; z(t+ 1)) + (1� �): (I17.24)

Additionally, the appropriate transversality condition for problem (I17.20) is

lim
t!1

�tE
�
u0
�
c
�
zt
��
R[zt]k

�
zt�1

�
j z (0)

�
= 0: (I17.25)

From Theorem 16.8 we know that any plan fc[zt]; k[zt]gzt which satis�es (I17.23) and (I17.25)
will be a solution to the social planner�s problem.

Now consider the characterization of the competitive equilibrium. We are going to show
that the equilibrium allocation satis�es (I17.23) and (I17.25). The �rst part, i.e. that the
equilibrium satis�es (I17.23) follows directly from (17.22), which is exactly the required Euler
equation and was shown to hold in the competitive equilibrium. In order to see that the
transversality condition contained in (I17.25) is also satis�ed, let us go back to the �ow
constraint of the consumer. Hence, we have to go to the sequential trading formulation of
the equilibrium. Letting a[zt+1] be the claims bought in history zt for history (zt; z(t + 1))
and �p[zt+1] their price, the �ow constraint of the consumer is given by

c[zt] +
X
z(t+1)

�p[zt+1]a[zt+1] = w[zt] + a[zt]:

Hence

a[zt] = c[zt]� w[zt] +
X
z(t+1)

�p[zt+1]a[zt+1]

= c[zt]� w[zt] +
X
z(t+1)

�p[zt+1](c[zt+1]� w[zt+1]) +
X
z(t+1)

�p[zt+1]
X
z(t+2)

�p[zt+2]a[zt+2]

= :::

=

TX
s=t

24X
zst

p
�
zt; zst

� �
c[zt; zst ]� w[zt; zst ]

�35+ X
zT+1t

p[zt; zT+1t ]a[zt; zT+1t ] (I17.26)

where we recursively de�ned

p
�
zt; z(t+ 1); z(t+ 2)

�
= �p[zt�1; z(t+ 1)]�p[zt�1; z(t+ 1); z(t+ 2)]

and let
P

zst
denote the summation over all histories of length (s� t) starting at t. At t = 0

and zt = z0 = z(0), (I17.26) reads

a[z(0)] =
TX
s=0

24X
zs0

p [z(0); zs0] (c[z(0); z
s
0]� w[z(0); zs0])

35+ X
zT+10

p
h
z(0); zT+10

i
a[(0); zT+10 ]:



Solutions Manual for Introduction to Modern Economic Growth 359

Now de�ne p [z(0); zs0] = p0 [z
s], [z(0); zs0] = [z

s], p [z(0); zs0]w[z(0); z
s
0] = w0[z

s] and reintro-
duce the index t instead of s. Then we get from above that

a[z(0)] +
TX
t=0

X
zt

w0[z
t] =

TX
t=0

X
zt

p0
�
zt
�
c[zt] +

X
zT+1

p0

h
zT+10

i
a[zT+1]: (I17.27)

Now observe that the lifetime budget constraint in (17.11) requires that

lim
T!1

"
a[z(0)] +

TX
t=0

X
zt

w0[z
t]�

TX
t=0

X
zt

p0
�
zt
�
c[zt]

#
� 0;

so that (I17.27) implies that

lim
T!1

X
zT+10

p0

h
zT+10

i
a[zT+1] � 0:

Using that in equilibrium the assets available have to be equal to the capital stock, we arrive
at

lim
T!1

X
zT+10

p0

h
zT+10

i
k[zT+1] � 0; (I17.28)

Now observe that (see (17.21) and (17.22))

p0

h
zT�10

i
= ��T�1u0(c[zT�1])q[zT�1jz(0)]

= ��T�1q[zT�1jz(0)]�
X
zT

q[zT jzT�1]R[zT ]u0(c[zT ]);

where � is the Lagrange multiplier and where we again used R(zT ) de�ned in (I17.24). As

(I17.28) has to hold with equality, we can substitute the above expression for p0
h
zT�10

i
(and

rede�ne the time indices) to arrive at

0 = lim
T!1

X
zT�10

p0

h
zT�10

i
k[zT�1]

= � lim
T!1

X
zT�10

k[zT�1]�T q[zT�1jz(0)]
X
z(T )

q[zT jzT�1]R[zT ]u0(c[zT ])

= � lim
T!1

E
�
�Tk[zT�1]E

�
R[zT ]u0(c[zT ])jzT�1

�
jz(0)

�
= � lim

T!1
E
�
�Tk[zT�1]R[zT ]u0(c[zT ])jz(0)

�
; (I17.29)

where the last line follows from the law of iterated expectations. As � > 0, (I17.29) is exactly
the same condition as (I17.25). This shows that the competitive equilibrium satis�es both the
Euler equation and the transversality condition of the social planner�s problem. As Theorem
16.8 shows that those conditions are necessary and su¢ cient to characterize the solution,
we conclude that the solution to the optimal growth problem coincides with the equilibrium
allocation. This proves Proposition 17.3.
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Exercise 17.15

The value function de�ned in (17.24) was given by

V (a; z) = max
fa0[z0jz]gz02Z

(
u

 
a+ w �

X
z02Z

�p
�
z0jz
�
a0
�
z0jz
�!
+ �

X
z02Z

q
�
z0jz
�
V
�
a0
�
z0jz
�
; z0
�)

:

To show that Theorems 16.1-16.7 are in fact applicable in this problem, we just have to show
that this example satis�es Assumptions 16.1 - 16.5. Let us consider those assumptions in
turn.

To see that Assumptions 16.1 and 16.2 are satis�ed, note �rst that u is continuous. In
order to characterize the constraint correspondence G we have to be a little more careful.
The budget constraint is given by

c+
X
z02Z

�p
�
z0 j z

�
a0
�
z0 j z

�
= a+ w:

As consumption has to be non-negative, G is given by

G(a; z) =

(
~a0
�
z0 j z

��� a+ w � X
z02Z

�p
�
z0 j z

�
~a0
�
z0 j z

�
� 0
)
:

Clearly G is continuous and convex. To prove that G is in fact compact-valued, we just
have to make sure that a0 [z0 j z] lies in a compact set for all z0. To do so it turns out to be
convenient to use that in equilibrium we need that

~a0
�
z0 j z

�
= k[z];

i.e. for all future states of the world z0, prices will be such that consumers are happy to hold
exactly the capital-labor ratio k decided in state z. Hence if we prove that the capital-labor
ratio is contained in a compact set, we can restrict the consumer�s choice to a compact set
without loss of generality.

So let us prove that the capital-labor ratio is contained in a compact set. By de�nition
we have that k[zt] � 0. Hence, we just have to �nd an upper bound on k[zt]. In exercise
17.13 (see especially (I17.22)) however we established there exists kmax <1 such that

k[zt] � maxfk(z(0)); kmaxg:
We therefore refer to the proof given there. Hence, G satis�es the requirements of As-
sumptions 16.1 and 16.2. Assumption 16.3 requires that u is concave and G is convex in
a. Concavity of u is satis�ed by assumption. Convexity of G is also obvious as (for given
prices �p [z0 j z]) the constraint is linear in a and each of the a0 [z0 j z]. Similarly both G and
u are monotone in current assets a as required for Assumption 16.4. For a given portfolio
fa0 [z0 j z]gz02Z , consumption is increasing in a and a higher a allows to purchase a "larger"
portfolio in the sense that the old portfolio fa0 [z0 j z]gz02Z is still available and the quantity
of at least one asset a0[z0 j z] could be increased.

As the utility function U(x; y; z) is just given by

u(a; fa0
�
z0 j z

�
gz02Z ; z) = u

 
a+ w �

X
z02Z

�p
�
z0 j z

�
a0
�
z0 j z

�!
;

it is continuously di¤erentiable in a so that Assumption 16.5 is satis�ed. To �nally verify
Assumption 16.6, recall that we showed above (see Exercise 17.13) that the equilibrium formu-
lation above coincided with the optimal growth problem. Hence, we consider the constraint
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the social planner faces

G(k; z) = fk0 2 R+ j f(k; z) + (1� �)k � k0 � 0g:
As we ordered the shocks z1; z2; :::; zN such that

z0 > z () f(k; z0) > f(k; z);

(see the discussion of the Brock-Mirman model in Section 17.1), G satis�es the monotonicity
requirement, i.e. G(a; z) is increasing in z at equilibrium prices. Similarly we have that

u(k; k0; z) = u(f(k; z) + (1� �)k � k0);
so that for given (k; k0), utility is increasing in z. That the Markov chain is monotone in the
sense of the third part of Assumption 16.6. is an assumption we made when we introduced
the Brock-Mirman model. This proves that Theorems 16.1-16.7 are applicable. Hence we
can conclude that V (a; z) is continuous from Theorem 16.3. To show monotonicity, we can
apply Theorem 16.5 to see that V (a; z) is increasing in a for given z and Theorem 16.7 to
argue that V (a; z) is increasing in z for given a. To �nally conclude that the value function is
concave and di¤erentiable in a for given z, note that this follows immediately from Theorem
16.6 and Theorem 16.4.

Exercise 17.18

Consider the social planner�s problem of the RBC model presented in Section 17.3. Let
us directly start with the recursive formulation of the problem. The economy-wide resource
constraint is given by

C[zt] +K[zt] = F
�
K[zt�1]; ztA(t)L[zt]

�
+ (1� �)K[zt�1];

where we explicitly noted that the current capital stock K[zt�1] was decided based on in-
formation available in t � 1. Another problem is of course the apparent nonstationarity of
the problem as technology A grows at rate g. This however we can deal with by introducing
the current level of technology as a state variable. The recursive formulation of the problem
reads

V (K; z;A) = max
K0;L

fu(F (K; zAL) + (1� �)K �K 0; L) + �E[V (K 0; z0; A(1 + g)) j z]g:

As there are two choice variables K 0 and L, we also have two necessary conditions. These are

uC(C;L) = �E[V 0(K 0; z0; A(1 + g))jz] (I17.30)

uC(C;L)FL(K; zAL)Az = �uL(C;L); (I17.31)

where (I17.31) is the intratemporal condition to allocate between leisure and consumption.
Additionally we have the Envelope Condition

V 0(K; z;A) = uC(C;L)[FK(K; zAL) + (1� �)];
so that - iterating this forward and again using the policy functions �C ; �K and �L- we have

V 0(K 0; z0; A(1 + g)) = uC(�
C ; �L)[FK(�

K ; z0A(1 + g)�L) + (1� �)]; (I17.32)

where we suppressed the arguments of the policy functions to save on notation. Using (I17.32)
and (I17.30) we get the Euler equation

uC(C;L) = �E[uC(�c; �L)[FK(�K ; z0A(1 + g)�L) + (1� �)]jz]; (I17.33)

which together with the intratemporal condition (I17.31) characterizes the solution to the
planners problem.
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To �nd restrictions on the preferences to guarantee balanced growth, let us �rst be precise
what we mean by a balanced growth path in this economy. We de�ne a balanced growth
allocation as one, where the policy function of CA ; L and K

A have invariant distributions over
the state space K�Z, where Z is the set of N states and K is a compact set K = [kmin; kmax]
where the e¤ective capital stock k = K

A is contained in. Hence along such a conjectured BGP
we can write

C

A
= c(k; z); L = l(k; z);

K 0

A
= k0(k; z): (I17.34)

We have to �nd restrictions on preferences such that the necessary conditions (I17.31) and
(I17.33) are satis�ed for policy functions of the form given in (I17.34). Let us start with the
Euler equation given in (I17.33). Using the notation of the conjectured policy functions we
can write this condition for the current state (k; z) as

uC(cA; l) = �E[uC(c0A(1 + g); l0)[FK(k0A(1 + g); z0A(1 + g)l0) + (1� �)]jz] (I17.35)

where
c = c(k; z); l = l(k; z); c0 = c(k0; z0); l0 = l(k0; z0); k0 = k0(k; z):

Note in particular the appearance of the A(1 + g) terms on the RHS. To see where these
come from, go back to (I17.33) and observe that

�C(K 0; z0; A(1 + g)) = C =
C

A(1 + g)
A(1 + g) = c(k0; z0)A(1 + g);

i.e. the appropriate state variables for RHS of the general problem are given by K 0; z0 and
A(1+ g). The reasoning for the other A(1+ g) terms on the RHS of (I17.35) is similar. Now
note that F has constant returns to scale so that

FK(k
0A(1 + g); z0A(1 + g)l0) = FK(k

0; z0l0):

Consequently, (I17.35) simpli�es to

uC(cA; l) = �E[uC(c0A(1 + g); l0)[FK(k0; z0l0) + (1� �)]jz];
or rather

1 = �E
�
uC(c

0A(1 + g); l0)

uC(cA; l)
[FK(k

0; z0l0) + (1� �)]
���� z� : (I17.36)

As (I17.36) has to hold for all A, we get that

0 =
d

dA

�
uC(c

0A(1 + g); l0)

uC(cA; l)

�
=

uCC(c
0A(1 + g); l0)c0(1 + g)uC(cA; l)� uC(c0A(1 + g); l0)uCC(cA; l)c

uC(cA; l)2
:

In particular, this has to hold for A = 1 so that we need that

uCC(c
0(1 + g); l0)c0(1 + g)

uC(c0(1 + g); l0)
=
uCC(c; l)c

uC(c; l)
:

Hence the elasticity of substitution

"u(c; l) � �
uCC(c; l)c

uC(c; l)

is neither a function of c nor of l. This is only possible if the utility function takes the form
of

u(C;L) =
C1��

1� �v(L) + w(L); (I17.37)
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for some functions v and w, which are only dependent on L.
Let us now go back to the intratemporal condition given in (I17.31). Using the notation

of the policy functions in (I17.34) we get that

uC(c(k; z)A; l(k; z))FL(kA; zAl(k; z))Az = �uL(c(k; z)A; l(k; z)): (I17.38)

By constant returns to scale of F we again know that

FL(kA; zAl(k; z)) = FL(k; zl(k; z)):

If we additionally use the functional form restriction contained in (I17.37), (I17.38) can be
written as

(Ac)�� v(l)FL(k; zl(k; z))Az = �
(cA)1��

1� � v0(l) + w0(l); (I17.39)

where we again denoted c = c(k; z) and l = l(k; z) for brevity. To see how (I17.39) restricts
the function w and v, consider �rst the case of � 6= 1. In that case, we can write (I17.39) as

c��v(l)FL(k; zl(k; z))z = �
c1��

1� �v
0(l) + w0(l)A��1: (I17.40)

As (I17.40) has to hold for all A, this clearly requires that

w0(L) = 0;

so that the utility function in (I17.37) reduces to

u(C;L) =
C1��

1� �v(L) + w;

where w is some constant.
If on the other hand we have � = 1, (I17.39) implies that

1

c
v(l)FL(k; zl(k; z))z = � log(cA)v0(l) + w0(l): (I17.41)

Again, (I17.41) has to hold for all A, which directly implies that v0(l) = 0. With v(:) being
a constant, we can write (I17.37) as

u(C;L) = v log(C) + w(L): (I17.42)

Now note that we can normalize w to zero in the case of � 6= 1 and multiply the utility
function in (I17.42) by v�1 and de�ne ~w(L) = v�1w(L) in the case of � = 1. This is possible
because those are only a¢ ne transformations. We therefore conclude that preferences will
have to take to the form

u(C;L) =

�
C1��

1�� v(L) if � 6= 1
log(C) + ~w(L) if � = 1

for growth to be balanced in the sense de�ned above. So if there exists an invariant dis-
tribution of (k; z) on the space K � Z, labor supply does not go to zero or in�nity (with
probability one) as it itself has an invariant distribution on the K � Z space. Hence there
will be �uctuations in labor supply due to the stochastic behavior of k and z, but it will not
converge to zero or in�nity (with probability one).
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Exercise 17.22

We �rst de�ne and characterize the equilibrium. Let J (t) denote the set of open projects
at time t. Each �nancial intermediary charges p (j; t) = 1 for investment in project j since
Bertrand competition with other intermediaries drives down its pro�ts to 0. Denote the set
of young households at time t with Nt. Each household � 2 Nt solves

max
s(t);X(t);fI(j;t)gj2[0;1]

u (c1 (t)) + �Etu (c2 (t+ 1)) (I17.43)

s.t. c1 (t) + s (t) � w (t)

X (t) +

Z 1

0
I (j; t) dj = s (t)

c2 (j; t+ 1) = R (j; t+ 1) (qX (t) +QI (j; t)) ,

I (j; t) = 0, 8j =2 J (t) .
We denote the optimal choice of individual � withh
s� (t) ; c1� (t) ; c2� (t) ; fI� (j; t)g1j=1 ; X� (t)

i
. Note that the �nancial intermediaries open

only the sectors that meet the minimum size requirement, that is,Z
Nt
I� (j; t) d� �M (j; t) , for all j 2 J (t) (I17.44)

and they open as many sectors as they can, in the sense that, if another sector j0 =2 J (t)
was opened, the solution to individuals�modi�ed optimization problem (I17:43) (which we
denote by I� (j0; t)) would violate the minimum size constraint, that isZ

Nt

I�
�
j0; t
�
d� < M

�
j0; t
�
: (I17.45)

Note also that capital market clearing requires

K (j; t+ 1) = qX (t) +Q

Z
�2Nt

I (j; t) d�, (I17.46)

and the �nal good sector maximizes pro�ts, which implies that the prices are given by

w (j; t+ 1) = (1� �)K (j; t+ 1)� , (I17.47)

R (j; t+ 1) = �K (j; t+ 1)��1 . (I17.48)

A static equilibrium (given w (t)) is a collection of consumption, savings and portfolio

choices
h
s� (t) ; c1� (t) ; c2� (t) ; fI� (j; t)g1j=1 ; X� (t)

i
�2N

, a set of open sectors J (t), capital

levels and prices fK (j; t+ 1) ; R (j; t+ 1)gj2J(t) such that consumers solve (I17:43), �nal good
�rms maximize (cf. Eqs. (I17:47) and (I17:48)) , capital markets clear (cf. Eq. (I17:46)),
�nancial intermediaries maximize (cf. Eqs. (I17:44) and (I17:45)).

We next consider symmetric static equilibria, that is, equilibria in which R (j; t+ 1) �
RG (t+ 1) for all states corresponding to open sectors j 2 J (t). We denote by RB (t+ 1) �
R (j0; t+ 1) the common return corresponding to states for the sectors j0 =2 J (t) that are not
open. 2 Consider the �rst-order condition for Problem (I17:43) with respect to I (j; t) for

2Note that there may be static equilibria in this setup with asymmetric prices fR (j; t+ 1)gj2J(t) for
various open sectors. To see this possibility, note that Eq. (I17:49) pins down I (j; t) in terms of R (j; t+ 1)
and �, however, the relationship between I (j; t) and R (j; t+ 1) is not necessarily monotonic. In particular,
I (j; t) is increasing in the return R (j; t+ 1) if the substitution e¤ect dominates (i.e. � < 1 with the CRRA
utility

�
c1�� � 1

�
= (1� �)) and it is decreasing in R (j; t+ 1) is the income e¤ect dominates. There may be
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some j 2 J (t),
� = �R (j; t+ 1) qu0 (R (j; t+ 1) (qX� (t) +QI� (j; t))) , (I17.49)

where � is the Lagrange multiplier for the budget constraint. By Eq. (I17:49), each consumer
invests the same amount in all open sectors j 2 J (t). Using the arguments in Section 17.6,
the optimization by �nancial intermediaries imply that J (t) takes the form J (t) = [0; n (t)].
Using these observations, we rewrite the consumer problem (I17:43) for a given n (t) as

max
s(t);X(t);I(t)

u (c1 (t)) + �Etu (c2 (t+ 1)) (I17.50)

s.t. c1 (t) + s (t) � w (t) ,

X (t) + n (t) I (t) � s (t)

c2 (j; t+ 1) = RG (t+ 1) (qX (t) +QI (t)) , for j � n (t)

c2 (j; t+ 1) = RB (t+ 1) qX (t) , for j � n (t) .

For each n (t), this is a strictly concave problem and thus has a unique solution, which we
denote by [s� (t) ; I� (t) ; X� (t)]. The equilibrium return in good and bad states are then given
by

RG (t+ 1) = � (qX� (t) +QI� (t))��1 (I17.51)

RB (t+ 1) = � (qX� (t))��1 . (I17.52)

Note that, given n (t), the level of investment in risky and safe assets, (I� (t) ; X� (t)), is
characterized with a �xed point argument. In particular, there exists functions I� (n (t)) and
X� (n (t)) such that the prices RG (t+ 1) and RB (t+ 1) are determined by Eqs. (I17:51) and
(I17:52) given these levels of investment, and I� (n (t)) and X� (n (t)) solve Problem (I17:50)
given the prices RG (t+ 1) and RB (t+ 1). We next characterize the equilibrium level of
diversi�cation, n� (t). The conditions (I17:44) and (I17:45) imply that the investment in the
last open sector should be equal to the minimum size requirement, that is

I� (n� (t)) =M (n� (t)) ,

which characterizes n� (t) as an intersection of the curve I� (:) with the function M (:). Once
n� (t) is characterized, the rest of the equilibrium variables are determined as described above,
which completes the characterization of the static equilibrium given the wage level w (t).

Next we consider the dynamic equilibrium, which is found by linking the static equilibria
through Eqs. (I17:47). The growth process for capital in this economy is given by

K (t+ 1) =

�
qX� (n� (t)) +QI� (n� (t)) , with probability n� (t)

qX� (n� (t)) , with probability 1� n� (t) . (I17.53)

Once the next period capital level K (t+ 1) is determined, w (t+ 1) is determined from Eq.
(I17:47) and the static equilibrium allocations given w (t+ 1) can be characterized as above.
This completes the characterization of the dynamic equilibrium when the preferences take
the more general form.

equilibria with asymmetric prices when the income e¤ect dominates. In this case, a project with a relatively
low return receives a relatively high investment, which, by Eqs. (I17:48) and (I17:46),is consistent with that
project yielding a relatively low return in equilibrium. Note that this issue does not arise with log preferences
analyzed in Section 17.6 since the income and substitution e¤ects exactly cancel and I (j; t) is independent
of R (j; t), which directly implies that aggregate investment in all open sectors is the same and equilibrium
returns are symmetric across open sectors.
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We next consider the e¤ects of an increase in the concavity of the utility function, that is,
the e¤ects of higher risk aversion. At this level of generality, it is di¢ cult to make progress
thus we assume that the preferences take the CRRA form,

u (c) =
�
c1�� � 1

�
= (1� �) ;

and we interpret the increase in the concavity of u as an increase in �. We �rst claim that,
conditional on the savings s� (t) and the level of diversi�cation n� (t), a higher risk aversion
(higher �) always implies more investment in the safe asset and less in the risky asset, that is
a higher X� (t) and a lower n� (t) I� (t) (remember that we have s� (t) = X� (t)+n� (t) I� (t)).
To see this, consider Problem (I17:50) and note that the �rst-order condition between X (t)
and I (t) yields

�RG (t+ 1)Qu0
�
cG2 (t+ 1)

�
= �RB (t+ 1) q

�
u0
�
cG2 (t+ 1)

�
n� (t) + u0

�
cB2 (t+ 1)

�
(1� n� (t))

�
.

(I17.54)
Using

cG2 (t+ 1) = RG (t+ 1) (qX� (t) +QI� (t)) and cB2 (t+ 1) = RB (t+ 1) qX� (t)

and the form of the CRRA utility in Eq. (I17:54), the optimal level of investment I� (t) can
be characterized as

I� (t) =
s� (t)�QI� (t)

Q

RB (t+ 1)

RG (t+ 1)"�
RB (t+ 1) q �RB (t+ 1) qn� (t)
RG (t+ 1)Q�RB (t+ 1) qn� (t)

��1=�
� RG (t+ 1)

RB (t+ 1)

#
.

The term in curly brackets is less than 1 since RB (t+ 1) q < RG (t+ 1)Q in any equilibrium
with an interior solution for I� (t) (otherwise the expected return in safe asset would be
greater than the expected return in risky assets and the investment in the risky asset would
be zero). This further implies that the unique I� (t) that solves the previous displayed
equation is decreasing in �, proving our claim that a higher � leads to a higher X� (t) and a
lower n� (t) I� (t) (controlling for s� (t) and n (t)). Intuitively, with higher risk aversion, the
consumer reallocates some of her savings in the risky assets to the safe asset. We next consider
the general equilibrium e¤ects of this portfolio reallocation and show that they do not overturn
the reallocation. When individual invests more in safe assets, by Eqs. (I17:51)�(I17:52), for a
given level of s� (t), RB (t+ 1) decreases and RG (t+ 1) increases. Hence, if the substitution
e¤ects dominate, this makes the consumer invest less in the safe asset and more in the risky
asset, o¤setting some of the previous portfolio reallocation. However, this o¤setting will
only be partial and will not overturn the result since the o¤setting itself is the result of
the initial portfolio reallocation. Finally, let us also consider the endogenous change in the
level of diversi�cation, n� (t). Keeping s� (t) constant, I� (t) decreases for a given level of
n (t), therefore the I� (n (t)) curve shifts down. In the neighborhood of n� (t), the curve
I� (n (t)) always intersects M� (n (t)) from above (since otherwise a new sector could be
opened), thus a downward shift of I� (n (t)) results in a lower level of diversi�cation n� (t).
This in turn makes the consumer yet more willing to hold the safe asset, reinforcing the initial
portfolio reallocation. To conclude, controlling for total savings s� (t) , the equilibrium level
of investment in the safe asset X� (t) increases and the equilibrium level of investment in
the risky assets n� (t) I� (t) decreases in response to an increase in � (i.e. with higher risk
aversion).
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We next consider the savings decision of the individual. The �rst order condition for
choice of s (t) in Problem (I17:50) gives the Euler equation

u0 (w (t)� s� (t)) = �RG (t+ 1)Qn� (t)u0
�
RG (t+ 1) (qX� (t) +QI� (t))

�
+�RB (t+ 1) q (1� n� (t))u0

�
RB (t+ 1) qX� (t)

�
.

Higher risk aversion (i.e. a higher �) has two e¤ects on the level of savings. First, due
to the time-separable preferences, the risk aversion coe¢ cient is also the inverse elasticity
of substitution, hence a higher � reduces the intertemporal substitution, which tends to
reduce s� (t) along the convergence path to the steady state starting from a lower level of
capital.3 The second e¤ect of higher risk aversion on savings works through the precautionary
motive. When preferences satisfy u000 (:) > 0 (which is the case for CRRA preferences), the
individuals have a precautionary savings motive which implies that s� (t) tends to be higher
when the individuals are more risk averse (i.e. � is higher). Hence, for a given level of
diversi�cation n� (t), the net e¤ect on s� (t) is ambiguous: the intertemporal substitution
tends to lower s� (t), but the precautionary motive tends to increase it. Under regularity
conditions, endogenizing n� (t) does not overturn these two economic forces and the e¤ect on
s� (t) remains ambiguous.

Our analysis for the individual�s savings and portfolio choice reveals that increasing risk
aversion has a clear e¤ect on the individuals�portfolio choice between the safe and the risky
assets, but it has an ambiguous e¤ect on the individuals�savings decisions. It follows that
the growth rate may increase or decrease. More speci�cally, with a higher risk aversion (i.e.
a higher � for the CRRA preferences) we have:

� Individuals invest more in safe assets conditional on the level of savings, that is
n� (t) I� (t) decreases conditional on s� (t).

� Individuals may increase total savings s� (t) if there is a strong precautionary motive.
� The increase in s� (t) due to the precautionary motive may be so large that it over-
comes the portfolio reallocation e¤ect, i.e. the investment in risky assets n� (t) I� (t)
may increase in equilibrium.

� Regardless of whether I� (t)n� (t) increases or decreases in equilibrium, the growth
rate of the economy may increase if s� (t) increases su¢ ciently due to the precau-
tionary motive. To see this, note that Eq. (I17:53) implies

E [K (t+ 1)] = qs� (t) + (Q� q)n� (t) I� (t) .

If s� (t) increases su¢ ciently, the �rst term in this expression may dominate
the potential decrease in n� (t) I� (t) and the expected growth rate of capital,
E [K (t+ 1)] =K (t), may increase. Hence the growth rate may go up in equilib-
rium if the individuals have a strong precautionary savings motive.

3In general, a reduction in intertemporal substitution may increase or decrease savings depending on
the parameters. If �RG (t+ 1)Q and �RB (t+ 1) q are greater than 1 so that the average consumption is
increasing, a reduction in intertemporal substitution shifts some of the consumption to the �rst stage and
reduces savings. However, if average consumption is declining, then a reduction in intertemporal substitution
increases savings to �atten the consumption path. This model is designed to study long run development,
hence the more relevant part of the model is the convergence path to the steady state from a lower capital
level. Along this convergence path, we expect the average consumption to be increasing, thus a reduction in
intertemporal substitution is likely to reduce savings. We consider this case in our analysis.
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Exercise 17.30*

Exercise 17.30, Part (a). To get a contradiction, suppose the contrary. First consider
the case in which the equilibrium investment price in a sector j is equal to some p (j) < 1. In
this case, the intermediary j is losing money on her investment in the project, which yields
a contradiction. Consider next the case in which p (j) > 1. Then, intermediary j is making
expected pro�ts. Consider another intermediary that o¤ers the contract which invests in
project j at price p (j) � " for su¢ ciently small ". This intermediary will attract all the
consumers of the incumbent intermediary that is currently investing in project j, hence it
will attract an investment level at least as high as K (j). Since K (j) �M (j), it will indeed
be able to invest in project j and promise positive expected returns. Moreover, this new
intermediary makes positive pro�ts after entry. Therefore, it will choose to enter and hence
equilibrium price cannot be p (j), yielding a contradiction. In essence, Bertrand competition
between �nancial intermediaries drives down their expected pro�ts to 0, which implies that
the price of all assets is equal to 1 in equilibrium.

Exercise 17.30, Part (b). To show that the aggregate investment in all open projects is
the same, we �rst claim that each households invests equally in active projects. Let NA � N
denote the set of open projects and n =

��NA
�� denote the level of diversi�cation in this

economy. We consider a household and denote her investment in a risky project j 2 NA

by I (j) and her investment in the safe technology by X. We denote by R (j) 2 f0; Qg the
random variable corresponding to the return from the risky project j. Given the level of set
of active projects NA, the household chooses an investment portfolio that solves

U
�
NA
�
= max

c;X;fI(j)gnj=1�0
u (c) + E

24v
0@qX +

X
j2NA

R (j) I (j)

1A35 (I17.55)

s.t. c+X +
X
j2NA

I (j) = w.

Since u (:) and v (:) are strictly concave, the objective value of Problem (I17:55) is strictly
concave and the solution is unique. Moreover, since each project has an identical and inde-
pendent distribution, the only payo¤ relevant state variable is n, thus we denote the optimal
portfolio choice with functions c (n) ; X (n) and fI (j j n)gj2NA and the optimal value of Prob-
lem (I17:55) with U (n). We next claim that I (j j n) = I (j0 j n) for all j; j0 2 NA, that is,
the household invests equally on all active projects. Suppose, to reach a contradiction, that

I (j j n) 6= I (j0 j n) for some j; j0. Consider the alternative allocation
h
�c; �X;

�
�I (j)

	
j2NA

i
which is identical to

h
c (n) ; X (n) ; fI (j j n)gj2NA

i
except for �I (j) ; �I (j0) which are given by

�I (j) = �I
�
j0
�
=
I (j j n) + I (j0 j n)

2
.

Since the projects have identical Bernoulli distributions, this allocation yields the same
expected return as the original allocation. Moreover, since the project returns are in-
dependently distributed, the random variable qX +

P
j2NA R (j) I (j j n) is a nondegen-

erate mean preserving lottery over the random variable q �X +
P

j2NA R (j) �I (j). Since

v is strictly concave, the household strictly prefers the allocation
h
�c; �X;

�
�I (j)

	
j2NA

i
toh

c (n) ; X (n) ; fI (j j n)gj2NA

i
, which yields a contradiction and shows that I (j j n) =

I (j0 j n) for all j; j0. We denote this common level of investment on active projects with
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I (n). Since all households have the same initial wealth, each household invests I (n) on each
active project, which implies

K (j) = K
�
j0
�
= I (n) for all j; j0 2 NA,

where we have also used the fact that the measure of the households is normalized to 1.
Hence the aggregate investment on each risky project is the same.

Exercise 17.30, Part (c). The equilibrium in this economy is a collection of the set
of active projects, the investment level and the share price for each active project, and

the household�s portfolio choice
h
NA; fK (j) ; p (j)gj2NA ;

�
c;X; fI (j)gj2NA

�i
such that the

portfolio choice
�
c;X; fI (j)gj2NA

�
solves the household�s optimization Problem (I17:55), the

markets for investment in risky projects clear and the levels of investment satisfy the minimum
size requirements, that is K (j) = I (j) �M (j) for each j 2 NA, and the share price for each
active project is 1, i.e. p (j) = 1 for each j 2 NA. In addition, the set of active projects NA

is determined by free entry in the sense that another project j0 2 N nNA cannot be opened
without violating the minimum size requirement, that is I

�
j0 j NA [ fj0g

�
< M (�j), where

I
�
j0 j NA [ f�jg

�
denotes the level the household would invest in project j0 if the set of open

projects were NA [ fj0g.
We next characterize the equilibrium allocation. Our analysis in Part (b) shows that

the level of investment I (n) is the same across all sectors and depends only on the level of
diversi�cation n =

��NA
��. Since the minimum size requirement M (j) is increasing, it follows

that a project j is open i¤ all projects j0 � j are open, that is NA = f1; ::; ng. Then the free
entry condition which determines the equilibrium level of diversi�cation n can be written as

I (n�) �M (n�) and I (n� + 1) < M (n� + 1)).

Thus, the equilibrium level of diversi�cation n� can be determined by plotting the function
I (n) and �nding an intersection (from above) with the increasing function M (n). Given the
level of diversi�cation n�, the rest of the portfolio allocations are uniquely determined as in
Part (b) with (c (n�) ; I (n�) ; X (n�)), completing the characterization of the equilibrium.

Exercise 17.30, Part (d). The social planner chooses the level of diversi�cation n, the
investment level in riskless asset X and the investment levels in risky projects fI (j)gnj=1 to
maximize the utility of the representative household, that is, she solves

UP = max
n2f1;::;Ng

max
c;X;fI(j)gnj=1�0

u (c) + E

24v
0@qX +

nX
j=1

R (j) I (j)

1A35 (I17.56)

s.t. c+X +
X
j2NA

I (j) = w.

and I (j) �M (j) for all j 2 f1; 2; ::; ng . (I17.57)

There is no loss of generality in assuming that the set of open projects take the interval form
f1; ::; ng since whenever a project j is closed and j0 > j is open, the project j (which has a
lower minimum size requirement) could be opened instead of j0 and would yield the same level
of utility for the household. Problem (I17:56) is written with two max operators to emphasize
that the �rst optimization problem over f1; ::; ng is a discrete optimization problem, and con-
ditional on n, the second optimization problem (portfolio choice) over

�
c;X; fI (j)gnj=1

�
is a

concave maximization problem. In particular, whenever the feasible set is not empty the inner
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problem (given n) has a unique solution which we denote by cP (n) ; XP (n) ;
�
IP (j j n)

	n
j=1
.

Given the characterization for portfolio choice, we denote the level of diversi�cation chosen
by the planner (the solution to the outer problem) with nP .

Problem (I17:56) is the analogue of the household�s portfolio choice problem (I17:56)
but with the important di¤erence that the social planner endogenizes the choice of the level
of diversi�cation n subject to minimum size requirements in (I17:56). Note that the plan-
ner always attains a weakly higher welfare, UP � U (n�), since the equilibrium allocation�
n�;
�
c (n�) ; X (n�) ; fI (j) = I (n�)gn

�

j=1

��
is also feasible for the social planner. The fol-

lowing lemma further characterizes the planner�s allocation and shows that UP = U (n�)
whenever n� = nP , that is, the equilibrium is e¢ cient when the planner chooses to open
exactly the same number projects as the equilibrium allocation.

Lemma I17.1. (i) The solution to the social planner�s problem (I17:56) takes the following
form: there exists a jP 2

�
1; ::; nP

	
and IP < M (jp + 1) such that

IP
�
j j nP

�
� ÎP > M (j) for all j � jP ,

IP
�
j j nP

�
= M (j) for all j 2

�
jP + 1; ::; nP

	
.

(ii) The social planner opens weakly more projects, that is nP � n�.
(iii) If nP = n�, then the social planner�s portfolio choice coincides with the equilibrium

portfolio choice and UP = U� (n�), that is, the equilibrium is e¢ cient.

Proof. To prove the �rst part, we �rst show that for j; j0 2 f1; :; ng such that the
constraint in (I17:57) does not bind, we have I (j) = I (j0). Suppose that this does not hold,
that is, there exists j; j0 2 f1; ::; ng such that IP

�
j j nP

�
> IP

�
j0 j nP

�
, IP

�
j j nP

�
> M (j)

and IP
�
j0 j nP

�
> M (j0). Consider the alternative allocation with

�I (j) = IP
�
j j nP

�
� �,

�I
�
j0
�
= IP

�
j0 j nP

�
+ �,

where � 2 min
�
IP (j j nP )�IP (j0 j nP )

2 ; IP
�
j j nP

�
�M (j)

�
. The new allocation also satis�es

the size requirements. Moreover, it yields the household the same expected return with
lower risk hence it increases the household�s welfare. This proves that I (j) = I (j0) for all
j; j0 2 f1; :; ng such that the constraint in (I17:57) does not bind. Let us call this common
level of investment by ÎP .

Next, we claim that the set of projects for which the constraint (I17:57) does not bind
is given by some

�
1; ::; jP

	
. Suppose the contrary, i.e. that there exists j < j0 such

that Constraint (I17:57) binds for j but does not bind not for j0. Then, it follows that
IP
�
j0 j nP

�
> M (j0) > M (j) = IP

�
j j nP

�
, but a similar argument as above shows that a

reallocation �I (j0) = IP
�
j0 j nP

�
� �, �I (j0) = IP

�
j0 j nP

�
+ � improves welfare, proving our

claim. This also implies that ÎP = M (jp) < M (jp + 1) and concludes the proof of the �rst
part of the lemma.

To prove the second and the third parts, we claim that the consumer could replicate the
social planner�s portfolio choice whenever the equilibrium level of diversi�cation is weakly
greater, i.e. when nP � n�. To see this, note that the consumer could choose �X = XP

�
nP
�
,

�I (j) = IP
�
j j nP

�
for each j 2 f1; ::; npg and �I (j) = 0 for each j 2

�
nP + 1; ::; n

	
, which

would be feasible for Problem (I17:55). This shows that UP � U (n�) whenever nP � n�.
If nP < n�, the social planner�s allocation and the equilibrium allocation are di¤erent which



Solutions Manual for Introduction to Modern Economic Growth 371

implies UP < U (n�) in view of the strict concavity of Problem (I17:55). This proves the
second part and shows nP � n�. If nP = n�, then it must be the case that UP = U (n�) and,
moreover, the social planner�s and the equilibrium allocation must be the same again in view
of strict concavity. This completes the proof of the lemma. �

This lemma suggests that, starting from n = n� the planner could lower the investment
in some risky sectors and perhaps could also reduce the investment in the riskless asset to
accumulate enough funds to open a new project. The bene�t of this deviation is the reduction
of the risk of the portfolio from the additional diversi�cation. At the same time, the cost of
this deviation is also related to risk since this deviation necessarily creates level di¤erences
in the amounts invested in di¤erent projects and increases the risk of the overall portfolio
through this channel. In the baseline model, there is a continuum of sectors and some of this
deviation is always pro�table, which implies that the social planner always chooses to open
more projects at the margin. However, in the present model, the social planner�s choice of n
is a discrete problem and it is possible that opening a new sector will increase overall portfolio
risk, that is, we may have nP = n� as the optimum level of diversi�cation for the planner.
Moreover, Part (iii) of Lemma I17.1) shows that, conditional on the level of diversi�cation,
the equilibrium portfolio choice is e¢ cient, thus the decentralized equilibrium may be e¢ cient
even when some projects are inactive. Intuitively, the only advantage of the social planner
over the equilibrium allocation is her ability to internalize the minimum size constraints and
increase the level of diversi�cation. If this advantage is absent due to the discrete nature of
the project selection, then the equilibrium allocation will be e¢ cient.

Increasing the level of diversi�cation is more likely to reduce welfare (and hence to be
undesirable) when the discrete di¤erence in minimum size requirements is relatively large (in
particular, if M (n� + 1) �M (n�) is large), since in that case opening a new sector tends
to increase portfolio risk relatively more. The following lemma essentially rules out this
possibility and provides a condition under which the equilibrium allocation can be strictly
improved.

Lemma I17.2. Let (n�; (c (n�) ; X (n�) ; I (n�))) denote an equilibrium allocation and sup-
pose that

M (n� + 1) < min

�
(I (n�)�M (n�))n�;

2n

n+ 1
I (n�)

�
. (I17.58)

Then, the social planner can strictly improve welfare by choosing the level of diversi�cation
�nP = n� + 1 and the corresponding portfolio allocation �c = c (n�), �X = X�, �I (j) = I (n�)�
M (n� + 1) =n� for all j 2 f1; 2; ::; n�g and �I (n� + 1) = M (n� + 1). In particular, UP >
U (n�).

Proof. First note that the condition M (n� + 1) < (I (n�)�M (n�))n� ensures
that �I (j) > M (n�) for all j 2 f1; 2; ::; n�g so the proposed allocation is feasible for
the social planner. Second note that the allocations (n�; (c (n�) ; X (n�) ; I (n�))) and�
�nP ;

�
�c; �X;

�
�I (j)

	�nP
j=1

��
give the same �rst period consumption and yield the same expected

return in the second period. Hence, between these two allocations, the consumer will choose
the one with lower variance for the second period returns. The variance of the equilibrium
portfolio is

var

0@qX� +
nX
j=1

R (j) I (n�)

1A =

n�X
j=1

(I (n�))2Q2� (1� �) = n� (I (n�))2Q2� (1� �) ,
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where we have used the fact that the variance of a sum of independent random variables is the
sum of the variances and we have noted that the variance corresponding to a Bernoulli dis-
tribution with success probability �is � (1� �). The variance corresponding to the proposed
allocation can be similarly calculated as

var

0@q �X +
nPX
j=1

R (j) �I (j)

1A =
n�X
j=1

(I (n�)�M (n� + 1) =n�)2Q2� (1� �) +

M (n� + 1)2Q2� (1� �) .

Comparing the two displayed equations, we have that var
�
q �X +

PnP

j=1R (j)
�I (j)

�
<

var
�
qX� +

Pn
j=1R (j) I (n

�)
�
if and only if M (n� + 1) < 2n

n+1I (n
�), which is implied by

the Condition in (I17:58). Hence, under the condition stated in the lemma, the proposed
allocation improves welfare and we have UP > U (n�), completing the proof. �

Exercise 17.30, Part (e). We have de�ned and characterized the e¢ cient allocation
in Part (d) (see Problem (I17:56) and Lemma I17.1). In particular, the social planner could
reduce investment in some low minimum size requirement projects to cross-subsidize the
projects with high minimum size requirements, e¤ectively opening more projects and im-
proving the level of diversi�cation. The equilibrium cannot achieve the same allocation, since
each household does not take into account the fact that her investment in a risky project
relaxes the minimum size constraint for the project. Consequently, each individual under-
invests in the marginal sectors with high minimum size requirements, without internalizing
her e¤ect on the diversi�cation possibilities of other household.

Exercise 17.30, Part (f). First consider the case in which the intermediaries must
charge linear prices for shares of the projects. In equilibrium, the �xed costs will increase
the price of the shares above 1. Moreover, it is no longer the case that each open project has
the same price. Note that, the more aggregate investment there is in a sector, the less will
be the di¤erence between the price and the marginal cost. Moreover, the less the price of a
sector, the more individuals will invest in that sector. These two e¤ects jointly imply that
the equilibrium prices satisfy

1 < p (j) < p
�
j0
�
whenever M (j) < M

�
j0
�
, for j; j0 2 NA. (I17.59)

Since the marginal price of investment p (j) is above its marginal cost 1, there will be ad-
ditional distortions that make the individuals�portfolio choice sub-optimal. In particular,
as Eq. (I17:59) suggests, there will be too little overall investment in the risky sector. As
for the allocation of resources within the risky sectors, there will be too little investment in
higher �xed cost sectors and too much investment in lower �xed cost sectors. In addition to
the distortion that we have noted in the previous parts, a social planner does not face linear
prices and thus can improve the portfolio allocation by increasing investment in risky assets
and shifting investment towards (already open) high �xed cost assets.

Consider next the case in which the intermediaries are allowed to discriminate prices.
Since the average costs are falling in the size of investment, the intermediaries will o¤er
larger bundles at a reduced price-per-share (i.e., using a two-part tari¤), which will e¤ectively
remove the distortion described in the previous paragraph. With price discrimination, the
market will be able to internalize the welfare loss due to �xed costs, but the social planner
can still increase savings and open more projects so as to change the market structure and
increase welfare.



Chapter 18: Di¤usion of Technology

Exercise 18.8

Exercise 18.8, Part (a). The parametric condition � � nj > (1 � �)g is necessary for
the transversality condition to be satis�ed. In this economy, the transversality condition in
country j takes the form

lim
t!1

�
Kj(t) exp

�
�
Z t

0
rj(s)ds

��
= lim

t!1

�
kj(t) exp

�
�
Z t

0

�
f 0(kj(s))� � � g � nj

�
ds

��
= 0;

(I18.1)
where the second equality used kj(t) =

KJ (t)
Lj(t)Aj(t)

, the fact that interest rates are given by

rj(s) = f 0(kj(s)) � � and that Lj(t) and Aj(t) grow exponentially at rates nj and g respec-
tively. Along the BGP (or in the steady state of the transformed variables k and ~c), kj(t)
is constant and equal to k�j . Additionally consumption grows at rate g so that the Euler
equation requires that

�g + � = r� = f 0(k�j )� �: (I18.2)

Substituting (I18.2) into (I18.1) yields

lim
t!1

�
exp

�
�
Z t

0
[�g + �� g � nj ] ds

��
= lim

t!1
[exp (� [(� � 1)g + �� nj ] t)] = 0;

which requires that
(� � 1)g + �� nj > 0.

Rearranging terms yields the required condition

�� nj > (1� �)g:

Exercise 18.8, Part (b). To complete the proof of Proposition 18.3 we have to show
that the BGP is unique and that the system is globally saddle path stable. The equilibrium
in each country is characterized by a system of four di¤erential equations, namely

d
dt~cj(t)

~cj(t)
=

1

�

�
f 0(kj(t))� � � �

�
� gj(t) (I18.3)

_kj(t) = f(kj(t))� ~cj(t)� (nj + gj(t) + �)kj(t) (I18.4)

_aj(t) = �j � (�j + g � �j)aj(t) (I18.5)

gj(t) =
_aj(t)

aj(t)
+ g: (I18.6)

The �rst two di¤erential equations are just the Euler equation (in this case for consumption
in e¢ ciency units ~cj(t) =

cj(t)
Aj(t)

) and the law of motion for capital. (I18.5) and (I18.6) describe
the behavior of country j�s distance to frontier and country j�s growth rate of technological
progress. Note that we can substitute (I18.6) into (I18.3) and (I18.4). Doing so, (I18.3)-
(I18.5) are three di¤erential equations in the three unknowns [~cj(t); kj(t); aj(t)]

1
t=0. As we

373
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have two initial condition k(0) and aj(0) =
Aj(0)
A(0) and the transversality condition (I18.1) as

another terminal condition, we can solve the system for [~cj(t); kj(t); aj(t)]
1
t=0. Having done

so we can simply back out [gj(t)]1t=0 using [aj(t)]
1
t=0 and (I18.6). To show that this system

has a unique steady state, we have to show that there is a unique solution to (I18.3)-(I18.6)
where all variables are constant. Using (I18.5) we �rst �nd that there is a unique level a�j
given by

a�j =
�j

�j + g � �j
; (I18.7)

which satis�es _aj(t) = 0. (I18.6) immediately shows that

gj(t) = g; (I18.8)

whenever aj(t) = a�j . (I18.4) then shows that if kj(t) = k�j it will have to be true that

~cj(t) = ~c
�
j = f(k�j )� (nj + g + �)k�j ; (I18.9)

i.e. if the capital stock per e¢ ciency unit is constant, normalized consumption also has to
be constant. In particular, (I18.9) determines ~c�j uniquely as a function of k

�
j . As ~cj(t) has

to be constant and in the steady state, (I18.3) �nally determines k�j via

f 0(k�j ) = � + �+ �g: (I18.10)

As f is strictly concave, (I18.10) has a unique solution. This shows that the steady is unique
and is given by (I18.7), (I18.8), (I18.9) and (I18.10). To prove that the system is globally
saddle path stable we will show that the dynamics of the equilibrium are very similar to the
ones of the neoclassical growth model with exogenous technological progress. To show global
stability of this system, note �rst that (I18.5) and (I18.6) can be solved independently of
kj(t) and cj(t). In particular, given an initial condition aj(0), (I18.5) has the solution

aj(t) =
�j

�j + g � �j
+

�
aj(0)�

�j
�j + g � �j

�
exp(�(�j + g � �j)t):

Recall that we assumed that �j < g so that �j + g � �j > 0. This shows that independently
of aj(0), aj(t) will converge to its steady state level as

lim
t!1

�
aj(0)�

�j
�j + g � �j

�
exp(�(�j + g � �j)t) = 0:

Hence, the di¤erential equation for aj(t); (I18.5), is globally stable. Additionally, convergence
is monotone as

_aj(t) = �(�j + g � �j)
�
aj(0)�

�j
�j + g � �j

�
exp(�(�j + g � �j)t);

which shows that
_aj(t) > 0, aj(0) <

�j
�j + g � �j

:

Hence, whenever aj(t) starts below its steady state level, it increases over time and vice versa.
Using these results, (I18.6) shows that

gj(t) > g , aj(0) <
�j

�j + g � �j
;

i.e. those countries that start below their steady state value grow faster then the world
technology frontier and the countries starting above their steady state value grow slower.
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Now rewrite (I18.4) as

_kj(t) = f(kj(t))� ĉj(t)
1

aj(t)
� (� + nj +

_aj(t)

aj(t)
+ g)kj(t); (I18.11)

where we de�ned ĉj(t) =
cj(t)
A(t) . As A(t) grows exponentially at rate g, the behavior of

consumption per e¢ ciency unit ĉ(t) is given by

dĉ(t)

dt

1

ĉ(t)
=
_c(t)

c(t)
�
_A(t)

A(t)
=
1

�
(rj(t)� �j)� g =

1

�
(f 0(kj(t))� � � �j)� g: (I18.12)

(I18.11) and (I18.12) are almost the same equations as the ones characterizing the neoclassical
growth model with technological progress. And as the di¤erential equation for aj(t) is globally

stable, the extra terms _aj(t)
aj(t)

and 1
aj(t)

are immaterial as they tend to zero and a constant
respectively. Hence, given that the neoclassical growth model with technological progress is
a system which is saddle path stable, the steady state equilibrium is saddle path stable in
each country. This establishes also saddle path stability for the world equilibrium.

Exercise 18.8, Part (c). Let us now characterize the world equilibrium as the solution
to a social planners�problem in each country. As the Second Welfare Theorem holds in each
country we know that the solution of this problem can be decentralized as an equilibrium.
The problem the social planner in country j solves is given by

max
[cj(t);kj(t)]1t=0

Z 1

0
exp(�� nj)

cj(t)
1�� � 1
1� � dt (I18.13)

s.t. kj(t) = f(kj(t))�
cj(t)

A(t)aj(t)
� (nj + gj(t) + �)kj(t)

gj(t) =
d
dt [A(t)aj(t)]

A(t)aj(t)
(I18.14)

_aj(t) = �j � (�j + g � �j)aj(t) (I18.15)
_A(t) = gA(t); (I18.16)

where A(0); k(0) and aj(0) =
Aj(0)
A(0) are given. Hence, using this formulation a world

equilibrium consists of allocations
�
[cj(t); kj(t)]

1
t=0

	J
j=1

and paths of relative technologies�
[aj(t)]

1
t=0

	J
j=1

such that
�
[cj(t); kj(t)]

1
t=0

	J
j=1

solve the problem contained in (I18.13) for

j = 1; 2; :::; J and
�
[aj(t)]

1
t=0

	J
j=1

evolves according to (I18.15) with the initial conditions

faj(0)gJj=1.
So consider the social planner in country j. The current value Hamiltonian is given by

Ĥj(cj ; kj ; �j) =
cj(t)

1�� � 1
1� � +�j(t)

�
f(kj(t))�

cj(t)

A(t)aj(t)
� (nj + gj(t) + �)kj(t)

�
(I18.17)
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where aj(t) and A(t) evolve exogenously according to (I18.15) and (I18.16). The necessary
and su¢ cient conditions stemming from (I18.17) are given by

Ĥj
c (cj ; kj ; �j) = cj(t)

�� �
�j(t)

A(t)aj(t)
(I18.18)

Ĥj
k(cj ; kj ; �j) = �j(t)

�
f 0(kj(t))� (nj + gj(t) + �)

�
= (�� nj)�j(t)�

_�j(t)

�j(t)
(I18.19)

0 = lim
t!1

�
exp(�(�� nj)t)�j(t)kj(t)

�
; (I18.20)

where (I18.20) are the J transversality conditions. From (I18.19) we get that

�
_�j(t)

�j(t)
= f 0(kj(t))� gj(t)� � � �: (I18.21)

Di¤erentiating (I18.18) with respect to time and using (I18.14) we get that

�� _cj(t)
cj(t)

=
_�j(t)

�j(t)
_

@
@tA(t)aj(t)

A(t)aj(t)
=
_�j(t)

�j(t)
� gj(t): (I18.22)

Combining (I18.21) and (I18.22) and de�ning ~cj(t) =
cj(t)
Aj(t)

=
cj(t)

aj(t)A(t)
we get that the optimal

allocation will satisfy
d
dt~cj(t)

~cj(t)
=

_cj(t)

cj(t)
� gj(t) =

1

�

�
gj(t)�

_�j(t)

�j(t)

�
� gj(t)

=
1

�

�
f 0(kj(t))� � � �

�
� gj(t)

=
1

�

�
f 0(kj(t))� � � �

�
� _aj(t)

aj(t)
� g;

where the last line uses that

gj(t) =
_Aj(t)

Aj(t)
=

d
dtA(t)aj(t)

A(t)aj(t)
=

_A(t)

A(t)
+
_aj(t)

aj(t)
= g +

_aj(t)

aj(t)
: (I18.23)

Additionally, we can use (I18.21) and (I18.22) to solve for the multiplier �j(t). Doing so
shows that

�j(t) = �j(0) exp

�
�
Z t

0
(f 0(kj(s))�

_aj(t)

aj(t)
� g � � � �)ds

�
= cj(0)

��A(0)aj(0) exp

�
�
Z t

0
(f 0(kj(s))�

_aj(t)

aj(t)
� g � � � �)ds

�
: (I18.24)

Hence the social planners�allocation satis�es the equations
d
dt~cj(t)

~cj(t)
=

1

�

�
f 0(kj(t))� � � �

�
� _aj(t)

aj(t)
� g (I18.25)

kj(t) = f(kj(t))� ~cj(t)� (nj +
_aj(t)

aj(t)
+ g + �)kj(t)

0 = ~cj(0)
�� lim

t!1

�
exp

�
�
Z t

0
(f 0(kj(s))�

_aj(s)

aj(s)
� g � nj)ds

�
kj(t)

�
(I18.26)

_aj(t) = �j � (�j + g � �j)aj(t); (I18.27)
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with kj(0) and aj(0) given and (I18.26) follows from (I18.24) and (I18.20). This is a system
of three di¤erential equations in the three unknowns [~cj(t); kj(t); aj(t)]1t=0 with two initial
conditions aj(0) and kj(0) and one terminal condition given by the transversality condition
in (I18.26). Any solution to the social planner�s problem will have to satisfy the equations
(I18.25)-(I18.27). Furthermore, the maximized Hamiltonian is strictly concave so that the
results presented in Chapter 7 establish that the solution will actually be unique. This being
said, we can conclude with the Second Welfare Theorem that (I18.25)-(I18.27) together with
the initial conditions aj(0) and kj(0) characterize the equilibrium in this economy.

Exercise 18.8, Part (d). Let us now consider the characterization of the equilibrium
allocation. The technological evolution of [A1(t); A2(t); :::; AJ(t); A(t)]1t=0 is given by

_A(t) = gA(t) (I18.28)

_aj(t) = �j � (�j + g � �j)aj(t); j = 1; :::; J

Aj(t) = aj(t)A(t) (I18.29)

where [A1(t); A2(t); :::; AJ(t); A(t)]
1
t=0 satis�es the initial condition

[A1(0); A2(0); :::; AJ(0); A(0)]
1
t=0. Hence a world equilibrium are allocations

f[cj(t); kj(t)]1t=0g
J
j=1 and prices f[rj(t); wj(t)]1t=0g

J
j=1 such that f[cj(t)]1t=0g

J
j=1 maxi-

mizes the utility of the representative household in country j taking prices as given,
f[kj(t)]1t=0g

J
j=1 is consistent with pro�t maximization of the representative �rm in country

j, prices are such that markets clear and technology evolves according to (I18.28)-(I18.29).
Pro�t maximization of �rms in country j implies that

rj(t) = f 0(kj(t))� �: (I18.30)

Letting zj(t) denote the per capita assets of the representative household in country j, the
household�s maximization problem is given by

max
[cj(t);zj(t)]1t=0

Z 1

0
exp(�� nj)

cj(t)
1�� � 1
1� � dt

s.t. _zj(t) = (rj(t)� nj) zj(t)� cj(t) + wj(t) (I18.31)

0 � lim
t!1

�
zj(t) exp

�
�
Z t

0
(r(s)� nj) ds

��
:

Standard arguments (see e.g. the analysis in Chapter 8) establish that this problem has a
unique solution which is characterized by

_cj(t)

cj(t)
=

1

�
(rj(t)� �)

lim
t!1

�
zj(t) exp

�
�
Z t

0
(rj(s)� n) ds

��
= 0: (I18.32)

In equilibrium markets have to clear. This implies that

kj(t) =
zj(t)

Aj(t)
=

zj(t)

aj(t)A(t)
: (I18.33)
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Additionally we have from f being constant returns to scale that

wj(t) = Aj(t)FL(Kj(t); Aj(t)Lj(t))

=
1

Lj(t)
[F (Kj(t); Aj(t)Lj(t)�Kj(t)FK (Kj(t); Aj(t)Lj(t))]

= Aj(t)
�
f(kj(t)� kj(t)f 0(kj(t))

�
:

From (I18.33) we get that

_zj(t) = _kj(t)Aj(t) + _Aj(t)kj(t)

so that (I18.31), (I18.30) and (I18.33) imply that

_zj(t) =
�
f 0(kj(t))� � � nj

�
kj(t)Aj(t)� ~cj(t)Aj(t) +Aj(t)

�
f(kj(t)� kj(t)f 0(kj(t))

�
:

This can be solved for

_kj(t) = f(kj(t)�
�
� + nj �

_aj(t)

aj(t)
� g
�
kj(t)� ~cj(t);

where we again used (I18.23).
This shows that the equilibrium allocation in country j is characterized by the equations

d
dt~cj(t)

~cj(t)
=

_cj(t)

cj(t)
� gj(t) =

1

�
(rj(t)� �) =

1

�
(f 0(kj(t))� � � �)

_kj(t) = f(kj(t)�
�
� + nj �

_aj(t)

aj(t)
� g
�
kj(t)� ~cj(t)

_aj(t) = �j � (�j + g � �j)aj(t)

0 = lim
t!1

�
kj(t)Aj(0) exp

�
�
Z t

0

�
r(s)� nj �

_aj(s)

aj(s)
� g
�
ds

��
;

where the last equation stems from (I18.32) after substituting the expression for rj(t) con-
tained in (I18.30) and using that (I18.33) implies that

zj(t) = kj(t)Aj(t) = kj(t)Aj(0) exp

 Z t

0

_Aj(t)

Aj(t)
dt

!
= kj(t)Aj(0) exp

�Z t

0

�
_aj(s)

aj(s)
+ g

�
ds

�
:

These however are exactly the same equations as (I18.25)-(I18.27) characterizing the social
planner�s solution (note that Aj(0) > 0 and cj(0)�� > 0 so the constants in the transversality
conditions are immaterial). Hence, the mathematical problem characterizing the equilibrium
and the social planner�s problem is exactly the same - both problems boil down to solve the
system of di¤erential equations given above. See also Lucas (1993) for some thoughts on a
similar model with human capital accumulation.

Exercise 18.9

Exercise 18.9, Part (a). As the structure of the economy is exactly the same as the one
laid out in Section 18.2, we will abstain from the details of the derivation and simply gather
the conditions which have to hold in any equilibrium (with or without balanced growth).
First of all, consumers have to maximize utility, where again the Euler equations

_cj(t)

cj(t)
=
1

�
(rj(t)� �j); (I18.34)
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and the transversality conditions are necessary and su¢ cient to characterize the optimum.
From the pro�t maximization of �rms we get the optimality condition that interest rates are
related to the marginal product of capital via

rj(t) = f 0(kj(t))� �j : (I18.35)

Note that there is no capital mobility across countries, so that interest rates are country
speci�c. Capital per e¢ ciency unit kj(t) =

Kj(t)
Lj(t)Aj(t)

accumulates according to

_kj(t) = f(kj(t))�
cj(t)

Aj(t)
� (� + nj + gj(t))kj(t) (I18.36)

and country j�s technology gap aj(t) =
Aj(t)
A(t) evolves according to

_aj(t) = �j � (�j + g � �j)aj(t); (I18.37)

where �j and �j are de�ned in Section 18.2 and g is the (exogenous) growth rate of the world
technology frontier. Using that Aj(t) = aj(t)A(t), the technology growth rate of country j is
given by

gj(t) =
_Aj(t)

Aj(t)
=
_aj(t)

aj(t)
+
_A(t)

A(t)
=
_aj(t)

aj(t)
+ g: (I18.38)

Again, those conditions have to hold in any equilibrium.
In particular we are looking for a steady state world equilibrium, i.e. an equilibrium

allocation where for all countries j we have _aj(t) = _kj(t) = 0. Imposing this condition we
�nd from (I18.37) that the steady state technology gap of country j is given by

a�j =
�j

�j + g � �j
: (I18.39)

Similarly, (I18.38) directly implies, that all countries will still grow at the same rate

gj(t) = g

in a steady state equilibrium. In the steady state, capital per e¢ ciency unit is constant, i.e.
kj(t) = k�j . From (I18.36) we therefore get that a steady state equilibrium allocation requires
that

cj(t)

Aj(t)
= f(k�j )� (�j + nj + g)k�j ;

where we used that capital per e¢ ciency unit kj(t) is constant and equal to k�j and each

country grows at rate g. Hence, cj(t)
Aj(t)

is constant, i.e. per capita consumption grows at the
same rate as the country-speci�c technology level Aj , which in turn grows at the common
rate g. Finally we can see from (I18.34) and (I18.35) that country j�s steady state capital
per e¢ ciency unit level is implicitly de�ned by

f 0(k�j ) = �j + �j + �g: (I18.40)

This proves the existence of a steady state world equilibrium as long as the transversality
condition is satis�ed for all countries j. In this equilibrium, the transversality condition in
country j takes the form

(1� �)gj = (1� �)g < �j � nj :
That this steady state equilibrium in indeed unique follows from the fact that (I18.39) and
(I18.40) have unique solutions for the technology level and the e¤ective capital-labor ratio.
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Exercise 18.9, Part (b). The result that each country grows at the same rate in spite
of di¤erent discount rates �j (which of course appear in the Euler equation (I18.34)) is due to
the same mechanism as illustrated in section 18.2. The possibility of technology absorption
(governed by the parameter �j) creates a strong force keeping countries�growth rates together
along the steady state equilibrium path. That the growth rate is entirely determined by the
technological side (i.e. independent of the consumer�s problem) is most easily seen from the
conditions determining the country-speci�c growth rates. Using (I18.37) and (I18.38) we see
that

gj(t) =
_aj(t)

aj(t)
+ g =

�j � (�j + g � �j)aj(t)
aj(t)

+ g;

so that gj(t) does not depend on �j . Nevertheless, the Euler equation still has to hold. But
as the BGP consumption growth rate is already determined (as it is equal to g), it is the
endogenous steady state capital stock which is a¤ected by the preference for saving (governed
by the discount rate). Indeed we see from (I18.40) that a higher discount rate will lower the
e¤ective capital stock. Hence, country-speci�c characteristics like the discount rates matter
for the equilibrium allocation in levels but not in growth rates. These are entirely determined
via the international linkages of technology adoption.

Exercise 18.9, Part (c). To show that the equilibrium characterized above is globally
saddle-path stable, we will show that the dynamics of the equilibrium are very similar to the
ones of the neoclassical growth model with exogenous technological progress. To see this,
note that the behavior of each countries�system is governed by three di¤erential equations

d~c(t)

dt

1

~c(t)
=

_c(t)

c(t)
�
_A(t)

A(t)
=
1

�
(f 0(kj(t))� � � �j)� g (I18.41)

_aj(t) = �j � (�j + g � �j)aj(t) (I18.42)

_kj(t) = f(kj(t))� ~c(t)
1

aj(t)
� (� + nj +

_aj(t)

aj(t)
+ g)kj(t); (I18.43)

where ~c(t) = c(t)
A(t) . Together with the initial conditions k(0) and a(0) and the transversality

condition, this system of di¤erential equations determines [k(t); c(t); a(t)]1t=0. To prove global
stability of this system, note �rst that (I18.42) can be solved independently of kj(t) and cj(t).
In particular, given the initial condition aj(0), (I18.42) has the solution

aj(t) =
�j

�j + g � �j
+

�
aj(0)�

�j
�j + g � �j

�
exp(�(�j + g � �j)t):

Recall that we assumed that �j < g so that �j + g � �j > 0. This shows that independently
of aj(0), aj(t) will converge to its steady state level a�j . Hence, the di¤erential equation for
aj(t); (I18.42), is globally stable.

But (I18.41) and (I18.43) are almost the same equations as the ones characterizing the
neoclassical growth model with technological progress. And as the di¤erential equation for
aj(t) is globally stable, the extra terms

_aj(t)
aj(t)

and 1
aj(t)

are immaterial as they tend to zero and
a constant respectively. Hence, given that the neoclassical growth model with technological
progress is a system which is saddle path stable, the steady state equilibrium in this economy
is also saddle-path stable. As this is the case for each country, this also establishes saddle-path
stability for the world equilibrium.
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Exercise 18.12

Exercise 18.12, Part (a). As shown in subsection 18.3.1, the steady state of the world
equilibrium will be characterized by a distribution of technologies fN1(t); :::; NJ(t); N(t)g
such that each country�s technology level Nj(t) grows at the same rate and hence the ratio

Nj(t)

N(t)
= �j(t)

converges to a constant ��j . In particular it was shown that

��j =

�
�j�Lj

�jr
�

�1=�
=

�
�j�Lj

�j(�+ �g)

�1=�
:

As per capita income in country j is proportional to the respective technology Nj(t), per
capita income di¤erences between two countries k and m are given by

Nk(t)

Nm(t)
=
��k
��m

=

�
�m
�k

�k�Lk
�m�Lm

�1=�
=

�
�k
�m

��1=�
; (I18.44)

as Lk = Lm = 1 and �k = �m. This shows that it is only the di¤erence in the costs of R&D
that generate cross-country di¤erences in technology levels. In Chapter 8 we conducted a
quantitative exploration of the e¤ects of price di¤erences of investment goods. There we used
that data from the Penn World Tables suggests that the maximum price di¤erence is a factor
of eight (see Heston et. al. (2006)). If we think that this might also be true for the price of
resources spent on research, (I18.44) suggests that

Nk(t)

Nm(t)
= (8)�1=� : (I18.45)

What about the parameter �? � captures the degree of spillovers, relative backwardness
generates, i.e. the higher �, the higher those spillovers. (I18.45) shows that those spillovers
are a powerful force to dampen cross-country technology and income di¤erences. Whereas a
value of � = 1 would (obviously) generate an output di¤erence of 18 , a value of � = 3 would
only generate a di¤erence of a factor of one half.

Exercise 18.12, Part (b). To get a thirty-fold di¤erence in technology levels caused
by a fourfold di¤erences in research costs �j we need to solve the equation

Nk(t)

Nm(t)
=
1

30
=

�
�k
�m

��1=�
= (4)�1=� :

Solving this for �, we get

� =
� log(4)
log(1=30)

=
log(4)

log(30)
= 0:4076:

Hence, at a value of � = 0:4, the model predicts that a fourfold di¤erence in research costs
translate into a thirty-fold di¤erence in GDP per capita.

Exercise 18.12, Part (c). As in the exercise in the framework of the neoclassical growth
model, the results are very sensitive to �. Hence, � has a similar role as the � in Chapter 8.
The crucial question in all calibration models is of course, where the discipline comes from.
In Chapter 8 we saw that taking � = 2=3 instead of � = 1=3 allowed us to predict much
higher income di¤erences, in fact the predicted income di¤erences were rather too big. In the
neoclassical growth model however, we had many ways to discipline ourselves in our choice
of �. We know that in the most basic speci�cation, 1�� refers to the share of labor income,
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which in the data is roughly 2/3. Furthermore, � is related to the marginal product of capital
and hence to the interest rate so that we could also use such data sources to get at least a
rough estimate of �. In the current model, it is very unclear how we could judge if a value
of � = 0:4 is high or low. The innovation possibilities frontier seems to be too abstract an
object to try to map it to the data. Hence in terms of its applicability to quantitatively assess
cross-country income di¤erence, the current model does not seem to be a big improvement
over the neoclassical growth model.

Exercise 18.13*

We are looking for an equilibrium where all countries grow at the same rate. Since there
is positive R&D in all countries, the free entry condition in country j holds with equality

�j

�
N (t)

Nj (t)

��
Vj = �j .

Since all countries grow at the same rate, the relative level of technology ��j � Nj (t) =N (t)
remains constant over time and the previous equation implies

Vj (t) =
�
��j
�� �j
�j
,

that is, the value function is constant in every country. Note also that the analysis in Chapter
13 implies that pro�ts are constant and given by �j(t) = �j = �Lj . Then, the HJB equation

rj(t)Vj(t)� _Vj(t) = �j(t), (I18.46)

implies that the interest rate in every country is also constant and given as the solution to

�j
�
��j
��� �Lj

r�j
= �j : (I18.47)

Note that (I18.47) has two endogenous variables, the interest rate and ��j . In equilibrium,
the interest rate and the growth rate also have to be consistent with the intertemporal
optimization of consumers, i.e. with the Euler equation. In particular, interest rates r�j will
be given by

r�j = g� + �j ,

where g denotes the growth rate of Nj (t), which is common to all countries. Substituting
this in (I18.47) de�nes the equilibrium relative level of technologies ��j as

��j =

�
�j�Lj

(g� + �j)�j

�1=�
:

Using the fact that
PJ

j=1 �
�
j = 1, the previous equation implies

f (g) �
JX
j=1

�
�j�Lj

(g� + �j)�j

�1=�
= 1. (I18.48)

Note that f (g (t)) is a continuous and strictly decreasing function of g (t) and satis�es
limg(t)!1 f (g (t)) = 0. Therefore, if we assume

f (0) =
JX
j=1

�
�j�Lj

�j�j

�1=�
> 1,
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then Eq. (I18:48) has a unique solution g. Hence, under this condition there is an allocation
in which the level of technology Nj (t) and consumption Cj (t) in every country grows at the
constant rate g. If the following condition holds

(1� �) g < �j for each j 2 f1; ::; Jg ,

then the transversality condition is satis�ed for every country and the described allocation
is a world equilibrium. This analysis establishes that (under the above conditions) there is a
unique BGP equilibrium in which all countries grow at the same rate.

Note that countries with a higher discount rate, �j , have a lower relative level of technol-
ogy, ��j (cf. Eq. (I18:47)). The reason is that a higher degree of impatience requires higher
equilibrium interest rates to induce people to save. This is turn reduces the present value of
a patent so that research incentives are reduced. In equilibrium Nj(t) has to be su¢ ciently
low so that the degree of backwardness N(t)

Nj(t)
is su¢ ciently high to generate higher innovation

rates in country j to compensate for the higher interest rates. Hence, again all countries grow
at the same rate but higher saving rates (or a lower value of �j) will cause a higher level of
GDP per capita.

Let us now consider the transitional dynamics. As fN1(0); N2(0); :::; NJ(0); N(0)g are
initial conditions, there is of course no reason to believe, that all of them satisfy

��j =
Nj(0)

N(0)
: (I18.49)

Hence, suppose there was some j for which (I18.49) was not satis�ed. First we will show
that there is no equilibrium where Zj(t) = 0 for all t. If this was the case, then we had
Nj(t) = Nj(0). From the resource constraint we then get that

Yj(t)�Xj(t) =

�
1

1� � � (1� �)
�
LjNj(t) =

�
1

1� � � (1� �)
�
LjNj(0) = Cj(t);

(I18.50)
i.e. consumption will also be constant. To derive (I18.50) we used that fact that X(t)
and Y (t) will be proportional to N(t) as shown in Chapter 13. But for consumption not
to change, interest rates will be given by rj(t) = rj = �j . With interest rates and per
period pro�ts being constant, the HJB equation for the value function in (I18.46) implies
that Vj(t) = Vj =

�Lj
�j

> 0. For this allocation to be consistent with free entry into research
we need that it is not pro�table to engage in research activities, i.e. that for all t

�j

�
N(t)

Nj(t)

��
Vj = �j

�
N(t)

Nj(0)

�� �Lj
�j

< �j : (I18.51)

Note that in (I18.51) we already used that Nj(t) = Nj(0) as by hypothesis there will be no
research in country j. But (I18.51) cannot hold for all t as N(t) is growing at rate g. Hence,
there will be some period �t, where research will start to be pro�table, contradicting that there
is an equilibrium where Z(t) = 0 for all t. Intuitively, the bene�ts from being backward will
at some point be strong enough to make research worthwhile. Once this period is reached,
the free entry condition will hold in all periods in the future, i.e.

�j

�
N(t)

Nj(t)

��
Vj(t) = �j :
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This shows that the growth rate of the value function will be equal to

_Vj(t)

Vj(t)
= �

 
_Nj(t)

Nj(t)
�

_N(t)

N(t)

!
= �

 
_Nj(t)

Nj(t)
� g
!
: (I18.52)

Note �rst that if there is some ~t where
_Nj(~t)

Nj(~t)
= g, the economy reached the balanced growth

path, as from then on the equilibrium will be characterized by exactly the conditions we
derived on the BGP. Hence, to show that the economy always converges to the BGP equilib-

rium, it is su¢ cient to show that we can neither have
_Nj(t)
Nj(t)

> g for all t > �t nor
_Nj(t)
Nj(t)

< g for

all t > �t. Suppose �rst that
_Nj(t)
Nj(t)

> g for all t. From the innovation possibilities frontier we
have

_Nj(t)

Nj(t)
= �j

Zj(t)

Nj(t)

�
N(t)

Nj(t)

��
: (I18.53)

From the resource constraint (I18.50) we get that�
1

1� � � (1� �)
�
LjNj(t) = Cj(t) + �jZj(t):

Using (I18.53) we can write this as�
1

1� � � (1� �)
�
Lj =

Cj(t)

Nj(t)
+
�j
�j

_Nj(t)

Nj(t)

�
Nj(t)

N(t)

��
: (I18.54)

But now note that Cj(t)
Nj(t)

� 0 and (by hypothesis)
_Nj(t)
Nj(t)

> g. Hence we get�
1

1� � � (1� �)
�
Lj �

�j
�j
g

�
Nj(t)

N(t)

��
:

This however is a contradiction as
_Nj(t)
Nj(t)

> g so that Nj(t)N(t) !1. Hence, there is no equilibrium

with
_Nj(t)
Nj(t)

> g. The intuition is as follows: the innovation possibilities frontier features the
advantages from backwardness as stressed in the text. These could however also be seen as
disadvantages from being ahead, as having a higher technology level than the world level
reduces the innovation �ow rate. So if one country would try to persistently grow faster
than the exogenous frontier, it would have to devote more and more resources to the research
sector. This however would violate the resource constraint in �nite time, so it cannot occur
in equilibrium.

Now consider the other case of
_Nj(t)
Nj(t)

< g for all t. Using (I18.52), we know that the
growth rate of the value function is negative, i.e. the value of owning a patent will be going
to zero. But the value function still solves the HJB equation, which (using (I18.52)) we can
now solve as

rj(t)Vj(t)� _Vj(t) = rj(t)Vj(t)� �
 
_Nj(t)

Nj(t)
� g
!
Vj(t) = �j

Vj(t) =
�j

rj(t)� �
�
_Nj(t)
Nj(t)

� g
� :

We argued above that in such an equilibrium the value function has to go to zero. As

��
�
_Nj(t)
Nj(t)

� g
�
2 (0; g), this can only happen when r(t) ! 1. From the Euler equation
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however we then know that consumption growth will be arbitrarily large. In particular we
know that there exits some t such that consumption will grow faster than Nj(t), which is
bounded from above by g. Now go back to (I18.54). As consumption growth will exceed

the growth of Nj(t) we have that
Cj(t)
Nj(t)

!1. But the last term in (I18.54)
�j
�j

_Nj(t)
Nj(t)

�
Nj(t)
N(t)

��
is weakly positive as _Nj(t) � 0, i.e. Nj(t) never shrinks. Hence the RHS of (I18.54) will
be arbitrarily large at some t, i.e. the resource constraint will be violated in �nite time.

This show that there is no equilibrium with
_Nj(t)
Nj(t)

< g for all t. The intuition is follows.
The spillovers in the innovation possibilities frontier make innovation increasingly easy the

farther you are from the frontier. If
_Nj(t)
Nj(t)

< g, the economy will at some point be arbitrarily
far from the frontier so that the �ow rate of innovation will tend to in�nity. This can only
be consistent with free entry, if future patents have lower values. But as �ow-pro�ts �j are
constant, this can only be achieved if the future is discounted heavily. In equilibrium however,
an increasing interest pro�le will also trigger an increasing consumption pro�le which at some
point violates feasibility (as the growth of Nj(t) is bounded from above).

Hence, we have shown that in the unique equilibrium all countries will reach the BGP
speci�cation at some point. Once this is the case, the equilibrium is the one characterized
above. All countries grow at a common rate and the income distribution in the world is
stable. As we made no reference to the initial conditions fN1(0); N2(0); :::; NJ(0); N(0)g, this
shows that the equilibrium is globally saddle path stable.

Note that this proof of stability referred to the case of exogenous world technology growth.
Although the details would be slightly di¤erent, a similar argument would also apply to the
case with endogenous growth. In particular this world economy would also be globally stable,
i.e. for all initial conditions fN1(0); N2(0); :::; NJ(0)g the world economy would converge the
unique BGP characterized in the text.

Exercise 18.16*

Consider the steady state world equilibrium. The crucial two variables whose dynamic we
have to analyze are consumption and the evolution of the country�s technology level Nj(t).
As consumption and Nj(t) are growing over time, let us normalize both these variables by

the technology level of the frontier N(t), i.e. let us de�ne �j(t) =
cj(t)
N(t) and �j(t) =

Nj(t)
N(t) . To

prove global stability we will linearize the system around its steady state (��j ; �
�
j ). This will

give us an equation of the form

d

dt

�
�j � ��j
�j � ��j

�
� A

�
�j � ��j
�j � ��j

�
;

for some matrix A. Then we will show that A has one negative and one positive eigenvalue
which in turn proves local stability. For the argument why this implies local stability we refer
to Exercise 8.15, which considers a very similar problem in the framework of the neoclassical
growth model.
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First of all we have to get an expression for the dynamic system of �j(t) and �j(t). The
laws of motion of these variables are given by

_�j(t) = �j(t)

 
_cj(t)

cj(t)
�

_N(t)

N(t)

!
= �j(t)

�
1

�
(rj(t)� �)� g

�
(I18.55)

_�j(t) = �j(t)

 
_Nj(t)

Nj(t)
�

_N(t)

N(t)

!
= �j(t)

 
�j
Zj(t)

Nj(t)

�
N(t)

Nj(t)

��
� g
!
; (I18.56)

where rj(t) and Zj(t) are determined in equilibrium. Consider �rst the determination of
interest rates. The HJB equation was given by

rj(t)Vj(t)� _Vj(t) = �Lj : (I18.57)

In an equilibrium where there is positive research, the free entry condition has to hold, i.e.
the value function has to satisfy

�j

�
N(t)

Nj(t)

��
Vj(t) = �j : (I18.58)

Note that we showed above that this world economy will have transitional dynamics (see
exercise 18.13). Around the BGP however, all countries�research expenditures Zj(t) will be
positive so that the free entry condition will hold with equality around the BGP. Combining
(I18.57) and (I18.58) yields

rj(t) =
�Lj
Vj(t)

+
_Vj(t)

Vj(t)

=
�j�Lj

�j

�
N(t)

Nj(t)

��
+ �

d
dt

�
Nj(t)
N(t)

�
Nj(t)=N(t)

=
�j�Lj

�j
�j(t)

�� + �
_�j(t)

�j(t)
: (I18.59)

Additionally we can use resource constraint to get

Zj(t)

Nj(t)
=

�
1

1� � � (1� �)
�
Lj �

cj(t)

Nj(t)

=

�
�(2� �)
1� �

�
Lj �

�j(t)

�j(t)
: (I18.60)

Substituting (I18.59) and (I18.60) into (I18.55) and (I18.56) yields

_�j(t)

�j(t)
= �j

�
�(2� �)
1� � Lj �

�j(t)

�j(t)

�
�j(t)

�� � g;

_�j(t)

�j(t)
� g =

1

�

�
�j�Lj

�j
�j(t)

�� + �
_�j(t)

�j(t)
� �
�

=
1

�

�
�j�Lj

�j
�j(t)

�� � �
�
+
�

�

�
�j

�
�(2� �)
1� � Lj �

�j(t)

�j(t)

�
�j(t)

�� � g
�
:

Let us now de�ne the function

F (�j(t); �j(t)) =

24 �j

�
�(2��)
1�� Lj �

�j(t)

�j(t)

�
�j(t)

�� � g
1
�

�
�j�Lj
�j

�j(t)
�� � �

�
+ �

�

h
�j

�
�(2��)
1�� Lj �

�j(t)

�j(t)

�
�j(t)

�� � g
i 35 :
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Around the steady state, a �rst-order approximation around the steady state values ��j and
��j yields

d

dt

�
�j � ��j
�j � ��j

�
� rF (��j ; ��j )

�
�j � ��j
�j � ��j

�
:

The crucial condition concerning local stability concerns the matrix of derivatives rF (��j ; ��j )
evaluated at the steady state. In this model we get that

rF (��j ; ��j ) =

24 ��j
��j
� �

�
�(2��)
1�� Lj �

��j
��j

�
�1

��
�
�Lj
�j
+ �

�

�
��j
��j
� �

�
�(2��)
1�� Lj �

��j
��j

��
��
�

35 �j ���j��1�� :
To simplify the notation, let us de�ne

��j
��j
� �

 
�(2� �)
1� � Lj �

��j
��j

!
�  :

To prove local stability we have to look at the eigenvalues of rF (��j ; ��j ). These are given by
the numbers �, which solve the equation

0 = det

 "
 � � �1

��
�
�Lj
�j
+ �

� ��
� � �

#
�j
�
��j
��1��!

;

i.e. � has to solve the polynomial

0 = ( � �)
�
��
�
� �
�
� �

�

�Lj
�j

+
�

�
 

= �2 � �( � �

�
)� �

�
�Lj : (I18.61)

As this is a quadratic in �, there will be two roots �1 and �2. The system is locally stable if
those roots satisfy

�1 > 0 > �2. (I18.62)

From (I18.61) we can solve for the two roots as

�1;2 =
( � �

� )

2
�

s
( � �

� )
2

4
+
�

�
�Lj : (I18.63)

As s
( � �

� )
2

4
+
�

�
�Lj >

s
( � �

� )
2

4
=

�����( � �
� )

2

����� ;
we get from (I18.63) that the two solutions �1 and �2 will indeed satisfy (I18.62) so that the
system is locally stable.

Exercise 18.18

Exercise 18.18, Part (a). We �rst collect together the equations which we will use to
characterize the BGP equilibrium. Consumer optimization in country j implies the Euler
equation

_Cj (t)

Cj (t)
=
1

�

�
rj (t)� �j

�
(I18.64)
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and the transversality condition

lim
t!1

exp

�
�
Z t

0
rj (s) ds

�
Nj (t)Vj (t) = 0.

In view of the transversality condition, the value function for a machine in country j is
characterized as the stable solution to the HJB equation

rj (t)Vj (t) = �Lj + _Vj (t) , (I18.65)

where we have used the fact that maximization by monopolists in this model results in per-
period pro�ts equal to �j (t) = �Lj . The free entry condition in country j implies

�j

�
N (t)

Nj (t)

��
Vj (t) = 1, with equality if Zj (t) > 0 (I18.66)

The level of technology Nj (t) evolves according to

_Nj (t) = �j

�
N (t)

Nj (t)

��
Zj (t) :

Finally, the resource constraint in country j implies

1

(1� �)Nj (t)Lj = (1� �)Nj (t)Lj + Zj (t) + Cj (t) ,

where the left hand side term is the aggregate production and the �rst term on the right
hand side is the spending on machines.

We now consider a BGP equilibrium in which there is positive R&D in each country and
varieties Nj (t) and consumption Cj (t) in each country grow at the same rate g�. Note that,
when each Nj (t) grows at rate g� so does N (t) = G (N1 (t) ; :::; NJ (t)) since G is linearly
homogenous. Since consumption in every country grows at rate g�, the Euler equation (I18:64)
implies that rj (t) is constant and is given by

rj (t) = r�j = �g� + �j .

Since rj(t) = r�j , the stable solution to Eq. (I18.65) is constant and is given by

Vj (t) =
�Lj

�g� + �j
:

Plugging this in the free entry condition (I18.66), we have

�j

�
N (t)

Nj (t)

�� �Lj
�g� + �j

= 1.

Hence, along the BGP, the relative technology level ��j =
Nj(t)
N(t) is constant, that is

��j =
Nj (t)

G (N1 (t) ; :::; NJ (t))
=

�
�j�Lj

�g� + �j

�1=�
. (I18.67)

Note also that, since G is linearly homogenous, we have

1 =
G (N1 (t) ; :::; NJ (t))

N(t)
= G (��1; ::; �

�
J) .
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Substituting Eq. (I18.67), which has to hold for all countries j = 1; ::; J , in the preceding
equation yields

f (g�) � G

 �
�1�L1
�g� + �1

�1=�
; :::;

�
�J�LJ
�g� + �J

�1=�!
= 1, (I18.68)

which characterizes the growth rate g�. To show that there exists a unique solution, note
that f (g) is strictly decreasing in g as

f 0(g) = �
JX
j=1

Gj

 �
�1�L1
�g + �1

� 1
�

; :::;

�
�J�LJ
�g + �J

� 1
�

!�
�j�Lj

�g + �j

� 1��
�

�
��j�Lj�
�g + �j

�2 < 0;
where Gj(:) > 0 denotes the derivative with respect to the jth argument (recall that G (:) is
increasing in all of its arguments). Moreover, we have

lim
g!1

f (g) = G (0; ::; 0) = 0.

Additionally let us assume that

f (0) = G

 �
�L1�1
�1

�1=�
; :::;

�
�LJ�J
�J

�1=�!
> 1. (I18.69)

Then, by the intermediate value theorem that there exists a unique solution to f (g�) = 1,
which is also the solution to (I18.68). This growth rate g� will correspond to a BGP equilib-
rium if it also satis�es the transversality condition �j > (1� �) g� for each j = 1; ::; J . If the
parameters satisfy this condition and Eq. (I18:69), there exists a unique BGP equilibrium in
which every country grows at the constant and positive growth rate g�; which is the solution
to Eq. (I18:68). The relative technologies on the BGP, ��j , are given by Eq. (I18:67). If

the initial conditions fNj (0)gJj=1 satisfy the preceding equation for each j 2 f1; ::; Jg, then
the world equilibrium starts on the BGP. Otherwise, the equilibrium will be globally stable:
fCj (0)gJj=1 will be such that the system will start on the stable J dimensional surface and
converge to the BGP equilibrium. In this case, each country will asymptotically grow at rate
g�.

Exercise 18.18, Part (b). If N(t) = G(N1(t); :::; NJ(t)) = maxj Nj(t), Eq. (I18.68)
simpli�es to

1 = max
j2f1;::;Jg

�
�Lj�j
�g� + �j

�1=�
�
�
�LM�M
�g� + �M

�1=�
:

Here M is the index of the country with the largest
�Lj�j
�g�+�j

. We can then solve for the growth
rate as

g� =
1

�
(�LM�M � �M ):

Hence, the growth rate is equal to the closed economy growth rate of the country that would
have the highest growth rate if there was no technology di¤usion. Intuitively, the world
growth rate is driven by the country with the most productive R&D sector and the most
patient consumers. The leader country does not bene�t from any externalities. However,
every other country bene�ts from technology di¤usion from the leader country. Hence the
growth rate of every other country is higher than what it would have been if the economy
was closed to technology di¤usion.
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Exercise 18.19

Exercise 18.19, Part (a). Suppose, to reach a contradiction, that there exists a BGP
equilibrium in which Nj (t) grows at the same rate g� for each country j. From the Euler
equation, rj (t) = �g�+�j � r�j is also constant for each country, which implies that the HJB
equation can be written as

r�jVj (t) = �Lj (t) + _Vj (t) : (I18.70)

Since the frontier technology N (t) also grows at the common rate g�, the relative technology
of each country Nj (t) =N (t) � ��j is constant. Using this in the free entry condition, we have

�j

�
N

Nj

��
Vj (t) = �j

 
1

��j

!�
Vj (t) = 1,

which implies that Vj (t) is constant and equal to

Vj (t) =
1

�j

�
��j
��
:

Plugging this into the HJB equation (I18.70), we can solve for the value function as

Vj(t) = Vj =
1

�j

�
��j
��
=
�Lj (t)

r�j
;

which yields a contradiction since the right hand side is increasing over time (as Lj (t) is
growing). This proves that there is no equilibrium in which all countries grow at the same
constant rate g�. Intuitively, there is a scale e¤ect which leads to explosive growth: population
growth expands the market for innovated products, which increases incentives to innovate
over time and leads to an increasing growth rate.

Exercise 18.19, Part (b). Suppose that the R&D technology in each country is given
by

_Nj (t) = �jN (t)
�Nj (t)

�~� Zj (t) , (I18.71)

where ~� > �. The R&D sector enjoys positive externalities due to the di¤usion of technol-
ogy from the world frontier (the N (t)� term), but the R&D process also features negative
externalities in the sense that further research is di¢ cult when the technology is already at
a high level (the Nj (t)

�~�). Intuitively, ideas are drawn from a pool of potential ideas, and
when many ideas are already developed it is harder to come up with new ideas. Moreover,
the assumption ~� > � roughly captures that the negative externalities due to this �shing
out of a common pool e¤ect are stronger than the positive externalities due to technology
di¤usion from the world frontier. Hence, the speci�cation in Eq. (I18:71) creates net negative
externalities in R&D that tend to reduce the growth rate over time. As we will see in the
next part, this will counter the scale e¤ect and will lead to a world equilibrium with balanced
growth in each country.

Exercise 18.19, Part (c). We claim that the speci�cation in (I18:71) leads to a BGP
equilibrium in which each country j grows at the same rate g�. Suppose Nj (t) grows at rate
g� for each j, which implies that the relative technology level of country j, Nj (t) =N (t) � ��j ,
is constant. Using this in Eq. (I18:71) and rearranging terms, we have

_Nj (t) = �j
�
��j
���

Nj (t)
�(~���) Zj (t) .
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Hence on the BGP equilibrium, each unit invested in research in country j generates

�j

�
��j

���
Nj (t)

�(~���) machines, which leads to the free entry condition

�j
�
��j
���

Nj (t)
�(~���) Vj (t) = 1. (I18.72)

From the Euler equation for country j, rj (t) is also constant and is given by r�j = �g� + �j .
Using this in the HJB equation, we have

r�jVj (t) = �Lj (t) + _Vj (t) .

The value function Vj (t) corresponds to the stable solution of this equation. Since Lj (t)
grows at rate n, the stable solution also grows at rate n and thus can be solved as

Vj (t) =
�Lj (t)

r�j � n
.

Plugging this expression in Eq. (I18:72) and using r�j = �g� + �j , we can rewrite the free
entry condition as

�j
�
��j
���

Nj (t)
�(~���) �Lj (t)

�g� + �j � n
= 1. (I18.73)

This equality can only hold if the term Nj (t)
�(~���) grows at rate �n so that the left hand

side remains constant. This implies that g� (which is the growth rate of Nj (t)) can be solved
as

g� =
n

~�� �
> 0,

which determines the BGP growth rate. This allocations corresponding to this growth rate
will satisfy the transversality condition in every country if

n
~�� �

(1� �) < �j for each j 2 f1; ::; Jg . (I18.74)

Using this expression for g� in Eq. (I18:73) and plugging in ��j = Nj (0) =N (0) implies that
a BGP equilibrium requires the initial conditions for fNj (0)gj and fLj (0)gj to satisfy�

� + �� ~�
� n
~�� �

+ �j =
�Lj (0) �jNj (0)

�(~���)

(Nj (0) =N (0))
�

for each j 2 f1; ::; Jg : If the initial values fNj (0)gJj=1 satisfy these conditions and the para-
metric condition in (I18:74) holds, then there is a world equilibrium in which the technology
in every country grows at rate g� = n

~��� , proving our claim. If the initial conditions do not
satisfy these conditions, there will be transitional dynamics. The equilibrium will be saddle
path stable due to the stabilizing e¤ect of backwardness in this model. If Nj (0) =N (0) is
lower than its steady state value, then the relatively greater positive externalities due to
backwardness will cause relatively more innovation in country j and will pull Nj (0) =N (0)
towards its steady state value.

Exercise 18.21

In order to characterize the labor market equilibrium, i.e. the allocation of low and
high skilled workers across sectors i 2 [0; 1], let us �rst derive the labor demand for �rm i.
Let us focus on the demand for low-skilled labor. The demand for high skilled labor can
then be derived analogously. Using the production function for intermediate goods as given
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in equation (18.17) and the fact that labor markets are competitive, labor demand for low
skilled labor is characterized by

wL(t) � p(i; t)
@yj(i; t)

@lj(i; t)
= p(i; t)

�

1� � (1� i)
�lj(i; t)

��1
Z NL(t)

0
xL(i; �; t)

1��d�; (I18.75)

were (I18.75) holds with equality whenever lj(i; t) > 0. In order to characterize the labor
demand function from (I18.75) we have to realize that both sector speci�c prices p(i; t) and
the quantities of machines [xL(i; �; t)]

NL(t)
�=0 are endogenous. Producer i�s demand for machines

of type � is given by

xL(i; �; t) =

�
p(i; t)

pxL(�; t)
[(1� i)lj(i; t)]�

� 1
�

: (I18.76)

As machine producers are monopolists for their variety �, equilibrium prices pxL(�; t) are again
given by

pxL(�; t) =
 

1� � = 1: (I18.77)

Plugging (I18.76) and (I18.77) into (I18.75), we get that whenever lj(i; t) > 0, low skilled
wages are given by

wL(t) =
�

1� � p(i; t)
1
� (1� i)NL(t): (I18.78)

Using the same steps, equilibrium labor demand for high-skilled labor is given by

wH(t) =
�

1� � p(i; t)
1
� i!NH(t); (I18.79)

for all sectors where hj(i; t) > 0. From (I18.78) and (I18.79) we can now see that the labor
market equilibrium indeed has a cuto¤ form in the sense that there exists a threshold Ij(t)
such that sectors i > Ij(t) will only employ high skilled labor, whereas sectors i < Ij(t)
will only employ low-skilled labor. To see this we �rst show that there cannot be two sectors
m 6= k which employ both skill groups. Suppose this was the case. From (I18.78) and (I18.79)
we would need that

wL(t)

wH(t)
=

NL(t)

NH(t)!

1�m
m

=
NL(t)

NH(t)!

1� k
k

:

For m 6= k this is obviously a contradiction. Hence at any point in time there can only be
one sector Ij(t) which employs both high and low skilled labor.

Secondly we show that whenever a sector m employs low skilled labor, all sectors k < m
employ low skilled labor too. From sector m�s labor demand decision we �nd that

wL(t)

wH(t)
� NL(t)

NH(t)!

1�m
m

:

And as k < m implies that 1�kk > 1�m
m we get that

wL(t)

wH(t)
<

NL(t)

NH(t)!

1� k
k

;

so that sector k will also specialize in employing low skilled labor. This is intuitive as sector
k is relatively more productive employing low skilled labor instead of high skilled labor as
sector m. A similar reasoning shows that if some sector m employs only high skilled labor, all
sectors k > m will also employ high skilled labor. Finally it is clear that sector i = 0 will only
employ low skilled labor and sector i = 1 will only employ high skilled labor so that market
clearing is assured. This shows that the labor market equilibrium will be characterized by
the cuto¤ Ij(t) 2 (0; 1).



Solutions Manual for Introduction to Modern Economic Growth 393

Let us now explicitly solve for the quantities lj(i; t) and hj(i; t). Consider again the case
of low skilled labor, i.e. sectors i 2 [0; Ij(t)]. Using equilibrium machine demand (I18.76),
the production function and the fact that hj(i; t) = 0 for i 2 [0; Ij(t)], we get that

yj(i; t) =
1

1� � pj(i; t)
1��
� (1� i)lj(i; t)NL(t): (I18.80)

As the market for intermediate goods is competitive, intermediary prices pj(i; t) will be given
by the marginal product, i.e.

pj(i; t) =
@Yj(t)

@yj(i; t)
= Yj(t)

1

yj(i; t)
; (I18.81)

where we used the form of the production function of the �nal good

Yj(t) = exp

�Z 1

0
ln yj(i; t)di

�
and the fact that the �nal good is the numeraire. Substituting (I18.80) and (I18.78) we get
from (I18.81) that

Yj(t) = pj(i; t)yj(i; t) =
1

1� � pj(i; t)
1
� (1� i)lj(i; t)NL(t) =

1

�
wL(t)lj(i; t): (I18.82)

As lj(i; t) = �wL(t)
�1Yj(t) does not depend on i, all sectors i 2 [0; Ij(t)] employ the same

amount of labor. As labor markets have to clear in equilibrium, this implies that

lj(i; t) = lj(t) =
Lj
Ij(t)

; i 2 [0; Ij(t)]: (I18.83)

Similarly we get that

hj(i; t) = hj(t) =
Hj

1� Ij(t)
; i 2 [Ij(t); 1]:

Using those expressions, we can de�ne the low-skill price index PL;j(t). From (I18.82) and
(I18.83) we �nd that

pj(i; t) =

�
(1� �)Yj(t)Ij(t)

LjNL(t)

��
(1� i)�� � PL;j(t)(1� i)�� ; (I18.84)

where PL;j(t) is constant across sectors. As the de�nition of PH;j(t) is analogous we get�
PH;j(t)

PL;j(t)

� 1
�

=
1� Ij(t)
Ij(t)

LjNL(t)

HjNH(t)!
:

Finally we can now solve for the skill premium wH;j(t)
wL;j(t)

and the threshold Ij(t). The threshold
is characterized by the sector which is indi¤erent between hiring skilled and unskilled labor,
i.e.

wH;j(t)

wL;j(t)
=

Ij(t)

1� Ij(t)
!NH(t)

NL(t)
:

Additionally we know the expression for low and high skill wages by using (I18.78) and
(I18.79) for the sectors i = 1 and i = 0 respectively. Together with (I18.84) this yields

wH;j(t)

wL;j(t)
=

�
p(1; t)

p(0; t)

� 1
� !NH(t)

NL(t)
=

�
PH;j(t)

PL;j(t)

� 1
� !NH(t)

NL(t)
=
1� Ij(t)
Ij(t)

Lj
Nj

:
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Using these two expressions we get that the threshold is characterized by

Ij(t)

1� Ij(t)
=

�
!NH(t)

NL(t)

�� 1
2
�
Hj

Lj

�� 1
2

and the skill premium is given by

wH;j(t)

wL;j(t)
=

�
!NH(t)

NL(t)

� 1
2
�
Hj

Lj

�� 1
2

:

Again we see that for given technology levels, the skill-premium is decreasing in the relative
supply of skilled labor - this is the usual substitution e¤ect - and that it is increasing in the
relative productivity of skilled labor !NH(t)

NL(t)
.

Exercise 18.26*

Exercise 18.26, Part (a). Suppose now that there is an aggregate production function

Y (t) = [YL(t)
"�1
" + (1� )YH(t)

"�1
" ]

"
"�1 ; (I18.85)

where the intermediates using low skilled labor are produced according to

YL(t) =
1

1� �

 Z NL(t)

0
xj(�; t)

1��d�

!
L�:

Let us again denote the price of L-machines by pxL(�; t). As in Chapter 15, the demand
functions are given by

xL(�; t) =

�
pL(t)

pxL(�; t)

� 1
�

L;

so that the monopolist owning the patent for L-machines chooses an optimal price of

pxL(�; t) = argmaxp
(p�  )

�
pL(t)

p

� 1
�

L =
 

1� � = 1:

Consequently this producer makes �ow pro�ts of

�L(�; t) = �xL(�; t) = �LpL(t)
1
� :

Note that in contrast to the exposition in Chapter 18, here all machines are sector-speci�c,
whereas in the model presented in the book, the machines where skill-speci�c.

Along the BGP, equilibrium interest rates will be constant so that the value of an L-patent
is given by

VL(t) =
�p

1=�
L (t)L

r
:

The analysis for high skilled intermediaries is of course identical. We still assume that both the
H and the L sector have the same innovation possibilities frontier. Research �rms therefore
have to be indi¤erent between directing their research e¤orts to the H or the L sector. Hence
we need that VL(t) = VH(t). This requirement relates equilibrium prices to skill supplies via�

pH(t)

pL(t)

� 1
�

=
L

H
: (I18.86)
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But intermediary prices are endogenous. As they are determined by perfect competition, we
have that

pH(t)

pL(t)
=

@Y (t)
@YH
@Y (t)
@YL

=
1� 


�
YH(t)

YL(t)

�� 1
"

:

The expressions for equilibrium intermediate productions are given by

YL(t) =
1

1� �

 Z NL(t)

0
L1��pL(t)

1��
� d�

!
L� =

1

1� �LpL(t)
1��
� NL(t); (I18.87)

so that we arrive at

pH(t)

pL(t)
=

1� 


"
L

H

�
pL(t)

pH(t)

� 1��
� NL(t)

NH(t)

# 1
"

=

�
1� 


� "�
�
�
H

L

NH(t)

NL(t)

���
�

;

where � � 1 + ("� 1)�. Using (I18.86) we get that along the BGP, relative technologies are
given by

NH(t)

NL(t)
=

�
NH

NL

�BGP
=

�
1� 


�"�H
L

���1
: (I18.88)

This is exactly the same equation as in (15.27) (where �L = �H so that � = 1), i.e. the
equilibrium technologies are exactly the same as in the baseline model of technological change.
As the equilibrium intermediary productions in (I18.87) are also the same as in Chapter 15
(see (15.16)) the economy has exactly the same aggregate behavior.

Exercise 18.26, Part (b). Let us now show that for � � " � ("� 1) (1� �) = 2 the
results coincide with those derived in subsection 18.4.3. To do so, let us de�ne

� = 2 and (
1� 


)" = !: (I18.89)

From (I18.88) it is then immediate that we get that

NH(t)

NL(t)
=

�
NH

NL

�BGP
=

�
1� 


�"�H
L

���1
= !

H

L
; (I18.90)

which is the same result as in subsection 18.4.3. To see why both model deliver the same
results, consider again the CES production function assumed in this exercise, i.e. (I18.85), and
substitute the equilibrium intermediate productions. Before doing so, note that intermediate
prices are given by the two equations

"pL(t)
1�" + (1� )"pH(t)1�" = 1�

1� 


� "�
�
�
HNH(t)

LNL(t)

���
�

pL(t) = pH(t):

Hence,

1 = "pL(t)
1�" + (1� )"pL(t)1�"

�
1� 


��"��1
�
�
H

L

���1
�
�
NH(t)

NL(t)

���1
�

= pL(t)
1�""

��1
� L�

��1
� N

���1
�

L

h

"
�L

��1
� NL(t)

��1
� + (1� )

"
�H

��1
� NH(t)

��1
�

i
;
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which can be solved for

pL(t)
1��
� = 

"(1��)
� (LNL(t))

� 1��
�

h

"
� (LNL(t))

��1
� + (1� )

"
� (HNH(t))

��1
�

i 1��
��1

:

But given that perfect competition implies that pL(t) =
@Y (t)
@YL(t)

, some algebra shows that

YL(t) =
1

1� �
"(1��)

� (LNL(t))
"�
�

h

"
� (LNL(t))

��1
� + (1� )

"
� (HNH(t))

��1
�

i 1��
��1

so that

Y
"�1
"

L =

�
1

1� �

� "�1
"


"
� (LNL(t))

��1
�

h

"
� (LNL(t))

��1
� + (1� )

"
� (HNH(t))

��1
�

i 1��
�"

:

The expression for YH is of course analogous. Substituting into (I18.85) yields

Y (t) =
1

1� �

h

"
� (LNL(t))

��1
� + (1� )

"
� (HNH(t))

��1
�

i �
��1

=
1

1� �
"

��1

24(LNL(t))
��1
� +

 �
1� 


� "
��1

HNH(t)

!��1
�

35
�

��1

: (I18.91)

From here it is now apparent that the derived production function from the baseline model
of technological change is very similar to the derived production function in the analysis of
appropriate technologies. Using our parametric assumptions contained in (I18.89), (I18.91)
reduces to

Y (t) =
1

1� �
"
h
(LNL(t))

1
2 + (!HNH(t))

1
2

i2
:

Hence, up to the normalizing scalar, the derived production function is exactly of the same
form as the one given in (18.22).

Exercise 18.26, Part (c). Let us now turn to Proposition 18.8. To show that the
equivalents of Proposition 18.8 still hold true, we have to show two things. First of all we have
to show that the equilibrium technology ratio (NH=NL)

BGP given in (I18.90) maximizes the
net output in the North Y N

n as a function ofNH=NL for a given level of "technology resources"
NL + NH . Secondly we have to show that the equilibrium technologies are appropriate for
the North in the sense that both income per capita and income per e¤ective unit of labor are
higher in the North.

Let us start with the �rst claim. To calculate net output, we have to derive the societies�
expenditures on machines. These are given by

X(t) =

Z NL(t)

0
 xL(�; t)d� +

Z NH(t)

0
 xH(�; t)d�

= (1� �)[
"
� (LNL(t))

��1
� + (1� )

"
� (HNH(t))

��1
� ]

�
��1 :

Net output is therefore given as

Y N (t) = Y (t)�X(t) = �(2� �)
1� � [

"
� (LNL(t))

��1
� + (1� )

"
� (HNH(t))

��1
� ]

�
��1 : (I18.92)

We want to show that the equilibrium technology ratio maximizes net-output given a �xed
amount NL + NH = �N . Maximizing (I18.92) subject to the constraint yields the necessary
and su¢ cient condition


"
�L

��1
� NL(t)

� 1
� = (1� )

"
�H

��1
� NH(t)

� 1
� :
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Hence, the maximizing output ratio is given by

NH(t)

NL(t)
=

�
H

L

���1�1� 


�"
: (I18.93)

This is exactly the same condition as the equilibrium condition (I18.90). This is an intuitive
result. Although the equilibrium is not e¢ cient (due to the monopolistic distortions new
varieties are underutilized so that there will be too little innovation in equilibrium), any
given amount of "technology-resources" will be e¢ ciently allocated. It is in this sense that
the relative amount of innovation is appropriate for the innovating economy.

Let us now turn to the second part of the proposition. We are going to show that the
North will have a higher income per capita and a higher income per e¤ective labor unit at
the equilibrium technology ratio (I18.90). To prove these results we are going to consider
the maximizing ratios H

H+L and
L

H+L for those two welfare measures. First of all we will see
that neither the skill endowments of the North nor the South coincide with the optimal skill
supplies when we consider income per capita. Nevertheless we can show that the North will
do unambiguously better. Once we consider income per e¤ective labor unit however, we will
show that the skill endowments of the North are in fact optimal.

Consider �rst the case of income per capita. From (I18.91) it can be seen that per capita
income is given by

y =
Y

H + L
=


"
��1

1� �

24� L

H + L
NL

���1
�

+

 �
1� 


� "
��1 H

H + L
NH

!��1
�

35
�

��1

=


"
��1

1� �

24((1� h)NL)
��1
� +

 �
1� 


� "
��1

hNH

!��1
�

35
�

��1

; (I18.94)

where h is the fraction of high skilled labor, i.e. h = H
H+L . The optimal ratio of high skilled

labor h� for given technologies NL and NH is given by

h�(NL; NH) = argmax
h

Y

H + L
:

The necessary and su¢ cient �rst-order condition characterizing h�(NL; NH) is given by

0 = �N
��1
�

L (1� h�(NL; NH))
�1
� +

�
1� 


� "
�

N
��1
�

H h�(NL; NH)
�1
� ;

so that
h�(NL; NH)

1� h�(NL; NH)
=

�
H(NL; NH)

L(NL; NH)

��
=

�
1� 


�"�NH

NL

���1
:

But now recall that equilibrium (and optimal) technologies are given by (I18.93). Substituting

this and using that � = 2 and ! =
�
1�


�"
> 1, we get that�

H(NBGP
L ; NBGP

H )

L(NBGP
L ; NBGP

H )

��
=

�
1� 


�"�NH

NL

�BGP
= !2

Hn

Ln

>
Hn

Ln
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i.e. the optimal ratio
�
H
L

��
does not coincide with the ratio found in the North Hn

Ln . Now

note however that given
�
NH
NL

�BGP
, the northern skill ratio Hn

Ln will be unambiguously better

than the southern one. To see this, simply observe that the maximand given in (I18.94) is
strictly concave in h, as the second derivative is given by

@ Y
H+L

@h
=

�1
2

��
!NH
h3

�1=2
+
�

NL
(1�h)3

�1=2� h
((1� h)NL)

1=2 + (!hNH)
1=2
i

h
((1� h)NL)

1=2 + (!hNH)
1=2
i2

�

��
!NH
h

�1=2
�
�

NL
(1�h)

�1=2�2
h
((1� h)NL)

1=2 + (!hNH)
1=2
i2

< 0:

First of all this shows that the optimal skill ratio
�
H
L

��
is unique. Secondly it shows that

the skill ratio of the north Hn

Ln is strictly better (in the sense of yielding a higher per capita
income) than the skill ratio of the south as�

H

L

��
= !2

Hn

Ln
>
Hn

Ln
>
Hs

Ls
. (I18.95)

This shows that the equilibrium technology ratio is more appropriate for the North if we use
per capita income as a measure.

Let us now turn to the second measure, i.e. income per e¤ective labor unit. From (I18.91)

and our de�nition ! =
�
1�


�"
we get that

yeff =
Y

!H + L
=


"
��1

1� �

"�
L

!H + L
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���1
�

+

�
!

1
��1

H

!H + L
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���1
�

# �
��1

=


"
��1

1� �

���
1� ~h

�
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���1
�
+
�
!
2��
��1 ~hNH

���1
�

� �
��1

;

where now ~h = !H
!H+L . The maximizing e¤ective skill ratio as a function of technologies is

again given by

~h�(NL; NH) = argmax
~h

Y

!H + L

and characterized by the �rst-order condition

0 = �N
��1
�

L

�
1� ~h�(NL; NH)

��1
�
+ !

2��
� N

��1
�

H
~h�(NL; NH)

�1
� ;

so that
~h�(NL; NH)

1� ~h�(NL; NH)
=

�
!H(NL; NH)

L(NL; NH)

��
= !2��

�
NH

NL

���1
=
NH

NL
;

where the last equality uses � = 2. Using the equilibrium technology ratio given in (I18.93)
we therefore �nd that�

!H(NBGP
L ; NBGP

H )

L(NBGP
L ; NBGP

H )

��
=

�
NH

NL

�BGP
=
Hn

Ln
!;
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i.e. the optimal relative skill supply
�
H
L

��
actually coincides with the relative skill supply

found in the North. As the maximand is still strictly concave in ~h, the skill ratio in the North
is the unique maximum. This shows that the the North will have a strictly higher income
per e¤ective labor unit than the South.

Note that the slight asymmetry between the �rst and second part of this proposition.
Whereas the second part showed that the relative skill supply of the innovating country
maximizes the income per e¤ective labor unit, this is not true for the case of per capita
income. We have seen in (I18.95) that the optimal skill ratio exceeds the one of the innovating
country. So there is the possibility that some other country with an even higher skill supply
than the North will have an even higher per capita income when adopting the technologies
generated in the North. We might think that this is not the relevant case as it is arguably less
educated countries that adopt the technologies developed in more educated countries, but it
is a theoretical possibility of the model. Once we adopt the measure of income per e¤ective
labor unit however, this possibility disappears as the skill supplies of the innovating country
do in fact maximize the income per e¤ective labor unit. Hence according to this measure,
the equilibrium technology is (strictly) appropriate for the country that does the innovation.

Exercise 18.26, Part (d). The implications of appropriate technologies depend non-
monotonically on �. To see this let us go back to the determination of the equilibrium
technology ratio given in (I18.93) which shows that�

NH

NL

�BGP
=

�
1� 


�"�H
L

���1
:

Hence, the e¤ect of the relative skill supply on equilibrium technologies depends on � � 1.
In particular this shows that if � = 1, i.e. when the production function is Cobb-Douglas,
the equilibrium (and optimal) technology ratio does not depend on the skill supply. Hence,
the problem of appropriate technologies disappears when � = 1. For both � < 1 and � > 1
however, the equilibrium technology ratio will be inappropriate for the adopting country. This
shows that the e¤ect of � on the implications of appropriate technologies is non-monotone.





Chapter 19: Trade and Growth

Exercise 19.2*

Exercise 19.2, Part (a). The representative household in country j faces the rate of
return r (t) from investing in international assets and f 0 (kj (t))�� from investing in domestic
assets. These two returns must be equal in equilibrium, hence we still have

kj (t) = k (t) = f 0�1 (r (t) + �) for all j 2 f1; ::; Jg ,

as desired.

Exercise 19.2, Part (b). Suppose that there is a steady state world equilibrium with as-
ymptotic interest rate r�. Note that the asymptotic e¤ective capital-labor ratios are uniquely
determined as k�j = k� = f 0�1 (r� + �). Note also that, aggregating the country-speci�c
budget constraints

_kj (t) = f (kj (t))� (n+ g + �) kj (t)� ~cj (t) + bj (t) (I19.1)

over all countries and using the international capital market clearing conditionPJ
j=1Aj (t)Lj (t) bj (t) =

PJ
j=1Bj (t) = 0 (cf. (19:6)) we obtain the following world resource

constraint

JX
j=1

Aj (t)Lj (t) _kj (t) =
JX
j=1

Aj (t)Lj (t) [f (kj (t))� (n+ g + �) kj (t)� ~cj (t)] .

Using the fact that Lj (t) = L (t) and Aj (t) = Aj exp (gt) for each country j, and noting that
_kj (t) ! 0 on the asymptotic steady state, the world resource constraint is asymptotically
given by

JX
j=1

Aj~cj (t) =

JX
j=1

Aj
�
f
�
k�j
�
� (n+ g + �) k�j

�
, (I19.2)

that is, the weighted sum of normalized consumption over all countries asymptotes to a
constant. Next note that the Euler equation for country j implies

d~cj (t) =dt

~cj (t)
=
r� � �j � �g

�
. (I19.3)

Let j0 = argminj �j denote the country with the most patient consumers and suppose, for
simplicity, that this country is unique. The previous displayed equation shows that for any
j 6= j0, the growth rate of ~cj (t) is lower than the growth rate of ~cj0 (t) thus ~cj (t) =~cj0 (t) limits
to 0. Combining this observation with Eq. (I19:2), we have that

lim
t!1

~cj (t) = 0 for each j 6= j0

401
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and ~cj0 (t) converges to a constant positive level ~c�j0 given by

~c�j0 =
1

Aj0

JX
j=1

Aj
�
f
�
k�j
�
� (n+ g + �) k�j

�
, (I19.4)

that is, asymptotically the normalized consumption per capita is bounded away from zero
only in the most patient country.

Next consider some j 6= j0 and note that using limt!1 ~cj (t) = 0 in the budget constraint
(I19:1), we have

lim
t!1

bj (t) = � (f (k�)� (n+ � + g) k�) < 0. (I19.5)

Taking the limit of the �ow international budget constraint
�
aj (t) = (r (t)� g � n) aj (t)� bj (t)

for the same country j and plugging the value of limt!1 bj (t) from Eq. (I19:5), we have that
aj (t) is also asymptotically constant and is given by

lim
t!1

aj (t) = a
�
j �

� (f (k�)� (n+ � + g) k�)
r� � n� g < 0. (I19.6)

Note that we have Aj (t) = aj (t)Aj (t)L (t), hence

lim
t!1

_Aj (t) = lim
t!1

_aj (t)Aj (t)L (t) + _aj (t)
d (Aj (t)L (t))

dt
= lim

t!1
a�j
d (Aj (t)L (t))

dt
= �1.

In words, each country j 6= j0 maintains a negative normalized asset position in the limit
and runs a perpetual current account de�cit (i.e. limt!1 _Aj (t) < 0). This proves that there
are no steady state equilibria with _Aj (t) = 0 for all j. Intuitively, a relatively impatient
country j 6= j0 shifts consumption to earlier dates, accumulates a large debt early on and
runs a persistent current account de�cit in later dates. This is not a Ponzi scheme since the
lending country (in this case, the most patient country) is willing to lend early on and receive
the interest payments in the long run. Moreover, even in the long run, the lending country j0

(since it is relatively patient) runs a current account surplus by investing some of the interest
income that it receives from country j, �rj (t)Aj (t), back in country j so that asymptotic
balance of payments �Bj (t) = �bj (t)Aj (t)L (t) is positive but less than �rj (t)Aj (t).

Exercise 19.2, Part (c). We next characterize the asymptotic equilibrium. Recall that
we have established ~cj (t) ! 0 for all j 6= j0 and ~cj0 (t) ! ~c�j0 where j

0 = argminj �j denotes
the most patient country. Since limt!1 d~cj0 (t) =dt = 0 and limt!1 ~cj0 (t) = ~c�j0 > 0, Eq.
(I19:3) for country j0 implies that the asymptotic interest rate is given by

r� = �j0 + �g.

Given the asymptotic interest rate, the asymptotic e¤ective capital-labor ratio in any country
j can be solved from k�j = k� = f 0�1 (r� + �). Plugging this in Eq. (I19:4), asymptotic
normalized consumption in country j0, c�j0 , can be solved in terms of the parameters. For
each j 6= m, the asymptotic levels of bj (t) and aj (t) are given respectively in Eqs. (I19:5) and
(I19:6). To calculate limt!1 bj0 (t), we take the limit of the capital market clearing condition
(19:6) and use the value of limt!1 bj (t) from Eq. (I19:5) for each j 6= j0, which yields

lim
t!1

bj0 (t) � b�j0 =

P
j 6=j0 Aj (t)

Aj0 (t)
(f (k�)� (n+ � + g) k�) > 0;
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that is, in contrast with all other countries, country j0 receives net transfers in the long run.
Using this in the �ow international budget constraint (19:4) for country j0, we have that
aj0 (t) also asymptotes to a constant given by

lim
t!1

aj0 (t) � a�j0 =
P

j 6=j0 Aj (t)

Aj0 (t)

f (k�)� (n+ � + g) k�
r� � n� g > 0.

This completes the characterization of the asymptotic equilibrium. Asymptotically, per capita
consumption in country j0, cj0 (t), grows at the constant rate g, while per capita consumption
in any other country grows at a strictly smaller rate (since normalized consumption in any
other country limits to 0). Country j0 asymptotically maintains a positive normalized asset
position (i.e. a�j0 > 0) while every other country has a negative normalized asset position (i.e.
a�j < 0), and resources asymptotically �ow into country j

0 (i.e. b�j0 > 0) out of every country
j 6= j0 (i.e. b�j < 0).

We next note that the share of net world output (that is, net of investment) consumed
in country j0 tends to 1. To see this, note that Cj (t) = Aj exp (gt)L (t) ~cj (t) and recall that
~cj (t) =~cj0 (t)! 0 for any j 6= j0, which implies

lim
t!1

Cj0 (t)PJ
j=1Cj (t)

= lim
t!1

1

1 +
P

j 6=j0
Aj
Aj0

~cj(t)
~cj0 (t)

= 1,

proving that the share of world consumption in the patient country j0 tends to 1. Relatedly,
the asymptotic relative GNP of country j0 is greater than its relative GDP. To see this, note
that the GNP is the sum of domestic output and net international factor payments, that is

GNPj (t) = Yj (t) + r (t)Aj (t)
= Aj (t)L (t) (f (kj (t)) + r (t) aj (t)) .

Then, for any j 6= j0, the asymptotic ratio of the GNPs is given by

lim
t!1

GNPj (t)

GNPj0 (t)
= lim

t!1

Aj
Aj0

f (k�) + r�a�j
f (k�) + r�a�j0

= lim
t!1

Aj
Aj0

f (k�) + r�a�j
f (k�) + r�a�j0

<
Aj
Aj0

,

where the inequality follows since a�j < 0 < a
�
j0 , showing that the relative GNP of country j

0

is greater than its relative technology level due to the interest income on international assets.
In contrast, the asymptotic ratio of the GDPs is exactly equal to the ratio of the technology
levels, that is

lim
t!1

GDPj (t)

GDPj0 (t)
= lim

t!1

Aj (t)L (t) f (k (t))

Aj0 (t)L (t) f (k (t))
=
Aj
Aj0

.

Hence, in this model, the GDP and the GNP of countries will diverge since country j0 will
accumulate international assets and receive asset returns which will asymptotically increase
its GNP beyond its GDP, while every other country�s GNP will asymptotically be below the
GDP.

Exercise 19.2, Part (d). The equilibrium in Part (c) is unrealistic since it requires all
countries j 6= j0 to run a sustained current account de�cit so large that they asymptotically
export all of their surplus output to country j0 as payments on accumulated debt. A country
j 6= j0 may plausibly default on its debt and consume its surplus output, which would be
better for the country even if it is subsequently cut o¤ from world �nancial markets. Thus
country j has a strong incentive to default and, anticipating this, country j0 may choose not
to lend to country j in the �rst place. Hence, due to the sovereign default risk we would
expect there to be a bound on the normalized debt of a country.
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We could reconcile the present model with these observations by making a reduced form
assumption that aj (t) � �aj where aj is a bound on the debt to e¤ective labor ratio the
country can have without being tempted to default. We assume

aj 2 [0;
(f (k�)� (n+ � + g) k�)

r� � n� g ) (I19.7)

so that the borrowing constraint binds in equilibrium. The equilibrium then features, for all
j 6= j0,

lim
t!1

aj (t) = �aj and lim
t!1

bj (t) = � (r� � n� g) aj > � (f (k�)� (n+ � + g) k�)

and lim
t!1

~cj (t) = (f (k�)� (n+ � + g) k�)� (r� � n� g) aj > 0,

hence e¤ective consumption per capita is no longer zero in the less patient countries j 6= j0.
Moreover, e¤ective consumption per capita in country j0 is given by

lim
t!1

~cj0 (t) = f (k�)� (n+ � + g) k� +
X
j 6=j0

Aj
Aj0

(r� � n� g) aj ,

and the share of world output that is asymptotically consumed in country j0 is

limt!1Aj0~cj0 (t)

limt!1
PJ

j=1Aj~cj (t)
=
Aj0 [f (k

�)� (n+ � + g) k�] +
P

j 6=j0 Aj (r
� � n� g) ajPJ

j=1Aj [f (k
�)� (n+ � + g) k�]

< 1,

since aj satis�es (I19:7). Hence, when the countries face binding borrowing constraints, the
share of world surplus consumed in country j0 no longer tends to 1, which is arguably more
realistic.

Exercise 19.3

Exercise 19.3, Part (a). The Euler equation in country j is given by _cj (t) =cj (t) =
(r (t)� �) =�, which implies that the growth rate of normalized consumption ~cj (t) =
cj (t) =Aj (t) is given by

d~cj (t) =dt

~cj (t)
=
1

�
(r (t)� �)� g. (I19.8)

Integrating this equation, we have

~cj (t) = ~cj (0) exp

�Z t

0

1

�
(r (s)� �� �g) ds

�
.

The same equation also holds for j0, which implies ~cj(t)
~cj0 (t)

=
~cj(0)
~cj0 (0)

, that is, the ratio of the

normalized consumption between any two country remains constant over time.

Exercise 19.3, Part (b). First note that the world normalized consumption and the
world e¤ective capital-labor ratio are respectively given by

~c (t) =

PJ
j=1Aj (t)Lj (t) ~cj (t)PJ

j=1Aj (t)Lj (t)
=

PJ
j=1Aj~cj (t)PJ

j=1Aj
and (I19.9)

k (t) =

PJ
j=1Aj (t)Lj (t) kj (t)PJ

j=1Aj (t)Lj (t)
=

PJ
j=1Ajkj (t)PJ

j=1Aj
,

where we have used Lj (t) = L (t) and Aj (t) = Aj exp (gt) for all j. Aggregating the resource
constraint (19:2) over all countries, using the asset market clearing condition

PJ
j=1Ajbj (t) =
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0, and substituting the expressions for ~c (t) and k (t) from Eq. (I19:9) we obtain the world
resource constraint in e¤ective labor units

_k (t) = f (k (t))� ~c (t)� (n+ g + �) k (t) . (I19.10)

Next note that, by Proposition 19:1, kj (t) = k (t) = f 0�1 (r (t) + �) for all t.1 Then, aggre-
gating Eq. (I19:8) over all countries and substituting r (t) = f 0 (k (t)) � �, we obtain the
growth of the normalized world consumption as

d~c (t) =dt

~c (t)
=
1

�

�
f 0 (k (t))� � � �

�
� g. (I19.11)

Hence, the world averaged variables, ~c (t) and k (t) satisfy the same equations (I19:10) and
(I19:11) as the standard neoclassical model and the world equilibrium can essentially be
represented by a single aggregate production function, as desired.

Exercise 19.3, Part (c). With free capital �ows, the world economy is integrated in
the sense that each household in each country faces the same prices for e¤ective capital and
labor. With CES preferences, each household has an indirect utility function that has a
Gorman representation. Hence, there is a representative world consumer as predicted by
Theorem 5.2. Also, even though each country has a di¤erent technology in production, by
Theorem 5.4, these production possibility sets can also be aggregated. Hence, as we have
seen in Part (b), the world equilibrium can be studied as a neoclassical closed economy with
normalized consumption and capital levels ~c (t) and k (t). The aggregation results would
not hold without free capital �ows, since in that case, the consumers in each country would
potentially face di¤erent prices for e¤ective capital and labor. With di¤erent factor prices,
the world economy is not integrated, and aggregation results, which are derived for a closed
economy, cannot be applied to the world economy.

Exercise 19.3, Part (d). The easiest way to prove uniqueness and global stability
is by noting that the integrated world equilibrium is isomorphic to a closed economy in
which households have heterogenous initial asset levels and face the same prices r (t) ; w (t)
for e¤ective capital and labor. The uniqueness and the global stability of the international
equilibrium then follows from the analysis in Exercise 8.30.

Since the text takes a more direct approach to analyze the international economy, we also
provide a direct proof for uniqueness of equilibrium using the notation and the approach in
the text. Note that the world average variables, ~c (t) and k (t) satisfy the same equations
(I19:10) and (I19:11) as the standard neoclassical model. Hence there is a unique saddle path
[~c (t) ; k (t)]t that satis�es Eqs. (I19:10) and (I19:11) such that limt!1 (~c (t) ; k (t)) = (~c�; k�).
If ~c (0) starts above the saddle path, the resource constraints are violated in �nite time. If it
starts below, the total asset holdings per e¤ective labor, aj (t) + kj (t) (international assets
and domestic capital), in at least one country would violate the transversality condition
and this path cannot be optimal. Hence the saddle path is the unique equilibrium for the
world average variables [~c (t) ; k (t)]1t=1. Given the unique path for world variables, and in
particular the world interest rate r (t) = f 0�1 (k (t) + �), the normalized consumption and
asset positions, ~cj (t) and aj (t), of each country can be obtained as follows. Recall that ~cj (t)

1If countries start with di¤erent initial levels of capital per e¤ective labor, fkj (0)gJj=1, capital immediately

�ows between countries so that each country has k (0) =
PJ
j=1 Ajkj(0)PJ

j=1 Aj
with the �ows re�ected in the asset

positions faj (0)gJj=1. Therefore, without loss of generality, we assume that kj (0) = k (0) for all countries,

and international di¤erences are captured by the initial asset positions faj (0)gJj=1.
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satis�es Eq. (I19:8). Note also that after substituting for bj (t) and kj (t) = k (t), the resource
constraint of country j can be written as

_k (t) + _aj (t) = f (k (t))� (g + n+ �) k (t)� (g + n� r (t)) aj (t)� ~cj (t) . (I19.12)

Since the paths of k (t) and r (t) are determined, Eqs. (I19:8) and (I19:12) constitute two
di¤erential equations in two paths of variables, [~cj (t) ; aj (t)]t. Given the initial level of assets
aj (0), there exists a unique saddle path stable solution [~cj (t) ; aj (t)]t to these di¤erential
equations which also satisfy the transversality condition

lim
t!1

(k (t) + aj (t)) exp

�
�
Z t

0
(r (s)� n� g) ds

�
= 0; (I19.13)

which corresponds to the unique equilibrium path for country j. This completes the proof
that there exists a unique, globally stable world equilibrium path.

Exercise 19.4*

Exercise 19.4, Part (a). Recall that we have characterized the world equilibrium in
Part (d) of Exercise 19.3. To solve for the asymptotic behavior of the equilibrium (which also
corresponds to a steady state equilibrium), note that limt!1 d~c (t) = 0 thus Eq. (I19:11) im-
plies limt!1 r (t) = �+ �g. Using this in (I19:8) shows limt!1 ~cj (t) = ~c�j , that is normalized
consumption asymptotes to a constant in every country. Taking the limit of Eq. (I19:12) and
using limt!1 k (t) = k�, we also have

lim
t!1

_aj (t) = f (k�)� (g + n+ �) k� �
�
g + n+ � � f 0 (k�)

�
lim
t!1

aj (t)� ~c�j ,

which holds only if

_aj (t)! a�j =
f (k�)� (g + n+ �) k� � ~c�j
(g + n+ � � f 0 (k�)) and _aj (t)! 0.

This proves that the borrowing constraint _aj (t) � ��kj (t) does not bind on the asymptotic
steady state equilibrium.2

The intuition for this result is as follows. Capital �ows in this economy separate the
investment and saving decisions in the sense that countries with similar production technolo-
gies invest similar levels of capital (i.e. kj (t) = k (t) for all j) while consuming and saving
di¤erently depending on their relative wealth (i.e. ~cj (t) is not necessarily the same). Asymp-
totically, there are still capital �ows but countries settle on constant normalized debt levels,
i.e. aj (t) limits to a constant for all j. Since the borrowing constraint of this exercise puts a
limit on the current account de�cit in e¤ective labor units, this constraint does not bind on
the asymptotic steady state equilibrium.

Exercise 19.4, Part (b). To build the intuition, consider the extreme case as � ! 0,
so there is no international borrowing. In this case, the world economy will be a collection
of closed neoclassical economies. By our analysis in Chapter 8, the countries that start at
di¤erent capital levels will converge at di¤erent rates to the steady state and they will have
di¤erent prices, in particular di¤erent domestic interest rates rj (t) along the transition path.
This intuition carries over to the case in which � > 0 and the countries do not necessarily
have the same e¤ective capital-labor ratios and the same domestic interest rates along the
transition path.

2Note that there is a typo in the exercise statement. The borrowing constraint should take the form
_aj (t) � ��kj (t), since _aj (t) represents the asset position and thus _aj (t) is negative for a borrowing country.
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In this case, the world equilibrium path consists of a sequence of local in-
terest rates and allocations, and the world interest rate for international assetsh
(rj (t) ; kj (t) ; ~cj (t) ; aj (t))

J
j=1 ; r (t)

i
t
which are characterized as follows. The local inter-

est rate rj (t) is equal to f 0 (kj (t))� �, hence is characterized given the sequence for e¤ective
capital-labor ratio. Given the international interest rate sequence [r (t)]t, each country�s allo-

cations
h
(kj (t) ; ~cj (t) ; aj (t))

J
j=1

i
t
are found by solving three di¤erential equations. The �rst

two di¤erential equations are given by the Euler equation (I19:8) and the following analogue
of Eq. (I19:12) in this case

_kj (t) + _aj (t) = f (kj (t))� (g + n+ �) kj (t)� (g + n� r (t)) aj (t)� ~cj (t) . (I19.14)

The last di¤erential equation takes a complementary slackness form. In particular, if
rj (t) > r (t), or equivalently kj (t) < f 0�1 (r (t) + �), then the country is borrowing con-
strained so it must be the case that _aj (t) = ��kj (t). If rj (t) = r (t), then the country is
not borrowing constrained and we have kj (t) = f 0�1 (r (t) + �). We summarize this comple-
mentary slackness condition as follows

kj (t) � f 0�1 (r (t) + �) with inequality only if _aj (t) = ��kj (t) . (I19.15)

Hence, the equations (I19:8), (I19:14), and (I19:15) constitute three di¤erential equations in
three paths of variables [kj (t) ; ~cj (t) ; aj (t)]t. These equations have a unique solution given
the initial conditions kj (0) ; aj (0) and the transversality condition (I19:13), which charac-
terizes the countries�allocations for a given international interest rate sequence, [r (t)]t=0.
Finally, the international interest rate sequence [r (t)]1t=0 is characterized such that the in-
duced path for international assets [aj (t)]

1
t=0 clears the world capital market at all times,

that is
JX
j=1

Ajbj (t) =
JX
j=1

Aj ((r (t)� g � n) aj (t)� _aj (t)) = 0 for all t.

This completes the characterization of the equilibrium.
As we have seen in part one, the steady state equilibrium for the economy with

no borrowing constraints also satis�es all of the above requirements and continue to be
the equilibrium of the economy with borrowing constraints. Moreover, any equilibriumh
(kj (t) ; ~cj (t) ; aj (t))

J
j=1 ; r (t)

i
t
in the economy with borrowing constraints will converge to

this steady state. However, the equilibria in the economy with no borrowing constraints and
borrowing constraints could di¤er along the transition path to steady state. To see this,

consider some equilibrium path
��
k0j (t) ; ~c

0
j (t) ; a

0
j (t)

�J
j=1

; r0 (t)

�
t

for the economy with no

borrowing constraints. It is possible that this path satis�es a0j (t) =dt < ��k0j (t) along the
transition to the steady state, in which case the corresponding economy with borrowing con-

straints would have a di¤erent equilibrium path
h
(kj (t) ; ~cj (t) ; aj (t))

J
j=1 ; r (t)

i
t
such that in

some countries and for some periods the condition in Eq. (I19:15) holds as an inequality and
the borrowing constraint binds.

For a concrete example, we consider the thought experiment in Corollary 19.1, that a
fraction � of the capital stock of country j is destroyed. We claim that the corollary does not
hold in the economy with borrowing constraints, in particular, capital does not immediately
�ow to country j. Suppose the capital levels are immediately equalized, which implies bj (0) =
1 and consequently _aj (0) = �1, that is, country j temporarily runs a very large current
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account de�cit. This violates the borrowing constraint _aj (t) � ��kj (t) hence cannot be an
equilibrium. Instead, Eq. (I19:15) shows that country j will have kj (t) < f 0�1 (r (t) + �)
and _aj (t) = ��kj (t) for a positive length of time, in particular, until the capital level
kj (t) reaches the world level k (t) = f 0�1 (r (t) + �). Hence, in an economy with borrowing
constraints, capital �ows will be smoother and the equalization of capital stocks will take
some time, which are relatively more realistic implications.

Exercise 19.7

Proposition 19.3 establishes that there is a unique steady state equilibrium. By Proposi-
tion 19.1, the steady state capital-labor ratio in each country satis�es

Kj (t)

L (t)
= Aj exp (gt) k

�,

that is, the capital-labor ratio in every country is increasing (i.e. there is capital deepening)
and this ratio is not necessarily equated across countries. E¤ective capital-labor ratios are
equated across countries, but there can be level technology di¤erences between countries,
represented by Aj , which allow for di¤erent capital-labor ratios in equilibrium.

Exercise 19.11*

Equilibrium without Free Capital Flows.We �rst consider the world equilibrium
with no capital �ows. The equilibrium in this case can be represented by a path of world prices,
country speci�c interest rates, country speci�c per capita allocations and capital intermediate

intensity decisions
h
pK (t) ; pL (t) ; frj (t) ; cj (t) ; kj (t) ; xj (t)gJj=1

i
t
such that the intermediate

and the �nal good production in each country is competitive, the trade balance equation
(19:11) holds for all countries and in all periods, the representative consumer in each country
behaves optimally, and the factor markets within countries and the international intermediate
goods markets clear. We next characterize this equilibrium allocation.

First, normalizing the price of the �nal good to 1, the maximization by the intermediate
good sector in country j implies that world prices satisfy

pK (t) = f 0 (xj (t)) and pL (t) = f (xj (t))� xj (t) f 0 (xj (t)) for each j. (I19.16)

This further implies that xj is equated across countries, i.e.

f 0 (xj (t))

f (xj (t))� xj (t) f 0 (xj (t))
=
pK (t)

pL (t)
.

Since xj (t) is equal across countries, it is also equal to the ratio of capital-intensive interme-
diates to labor-intensive intermediates produced in the world, that is

xj (t) � x (t) =

PJ
j=1 Y

K
j (t)PJ

j=1 Y
L
j (t)

=

PJ
j=1Bjkj (t)PJ

j=1Aj
, for all t, (I19.17)

where we have used the fact that Lj (t) = L (t) for all j (cf. Eq. (19:15)). Hence, similar to the
analysis in Section 19.3, due to free trade in intermediate goods, the ratio of capital-intensive
to labor-intensive intermediates in each country is determined by a sum of the world capital-
labor ratios. However, in this case due to productivity di¤erences in the capital-intensive
intermediate sector, country j�s capital-labor ratio in the world average is weighted by the
productivity parameter Bj .
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Next, note that the di¤erences in Bj cause a di¤erence in countries�interest rates and the
rates of accumulation of consumption and capital. In particular, the interest rate in country
j is given by

rj (t) = Bjp
K (t)� � = Bjf

0 (x (t))� �
and, from the Euler equation, per capita consumption in country j grows according to

_cj (t)

cj (t)
=
1

�
(rj (t)� �) =

1

�

�
Bjf

0 (x (t))� � � �
�
, for all j and t. (I19.18)

Note also that the capital accumulation equation and trade balance for country j imply
_kj (t) = Bjkj (t) p

K (t) +Ajp
L (t)� cj (t)� (� + n) kj (t)

=
�
Bjf

0 (x (t))� � � n
�
kj (t) +Aj

�
f (x (t))� x (t) f 0 (x (t))

�
� cj (t) ,(I19.19)

where the second line substitutes the prices from Eq. (I19:16). Hence, the equilibrium is
characterized by the 2J di¤erential equations in (I19:18) and (I19:19) in 2J paths of variablesh
(cj (t) ; kj (t))

J
j=1

i
t
, J initial conditions for kj (0), and J transversality conditions

lim
t!1

kj (t) exp

�
�
Z t

0

�
Bjf

0 (x (s))� � � n
�
ds

�
= 0.

These equations completely characterize the equilibrium. The equilibrium path asymptoti-
cally tends to a steady state, which we characterize next.

Consider an equilibrium in which the capital-labor ratio in each country asymptotes to a
constant, that is kj (t)! k�j for each j 2 J , which further implies x (t)! x� by Eq. (I19:17).
The resource constraint (I19:19) for country j can only be satis�ed if cj (t) asymptotes to
a constant c�j (which can also be zero). Let m = argmaxj Bj denote the country with the
highest productivity in capital intensive intermediates and suppose, for simplicity, that this
country is unique. Eq. (I19:18) implies that cm (t) grows faster than any other cj (t) so that
cm (t) =cj (t) grows unbounded, which further implies

lim
t!1

cm (t) = c�m > 0 and lim
t!1

cj (t) = 0 for j 6= m.

Since _cm (t)! 0 and c�m 6= 0, Eq. (I19:18) implies
Bmf

0 (x�)� � � � = 0, (I19.20)

which uniquely pins down x�. Since cj (t) ! 0 for j 6= m, considering the limit of Eq.
(I19:19), we have

k�j =
Aj (f (x

�)� x�f 0 (x�))
� + n�Bjf 0 (x�)

;

which pins down k�j for all j 6= m. Using Eq. (I19:17), k�m can also be uniquely solved for.
Finally, considering the limit of Eq. (I19:19) for j = m and Eq. (I19:20), we uniquely solve
for c�m as

c�m = Am
�
f (x�)� x�f 0 (x�)

�
.

We have thus solved for the asymptotic values
�
k�j ; c

�
j

�J
j=1

and completed the characterization

of the asymptotic steady state of the world equilibrium.
The equilibrium in this model has a number of predictions di¤erent than the model

presented in Section 19.3. Unlike the model in Section 19.3, asymptotically consumption in
the country with the greatest Bm grows relatively faster than other countries and the relative
world consumption in this country tends to 1. Intuitively, the productivity di¤erences in the
intermediate good that uses the accumulating factor (capital) result in a greater divergence
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in income di¤erences than productivity di¤erences in the labor intensive intermediate sector.
Also, unlike the model in Section 19.3, the present model features non-trivial transitional
dynamics, since capital levels converge to their respective steady states at di¤erent speeds
in countries with di¤erent productivity in the capital intensive intermediate sector (cf. Eq.
(I19:19)).

Equilibrium with Free Capital Flows. Next, we consider the equilibrium with free
capital �ows, which can be represented by a sequence of world price of capital, world inter-

est rates and country allocations
h
pK (t) ; pL (t) ; r (t) ; fcj (t) ; kj (t) ; xj (t) ; aj (t)gJj=1

i
t
such

that the production of the intermediate and the �nal goods in each country is competitive,
each country�s international asset position satis�es the no-Ponzi scheme condition (19:5),
international capital markets clear [cf. Eq. (19:6)], the representative consumer in each
country optimizes, and the factor markets within countries and the international interme-
diate good markets clear. In this exercise, we follow the convention in Section 19.3 and
let kj (t) = Kj (t) =Lj (t) and aj (t) = Aj (t) =Lj (t) represent capital and assets in per-
capita units instead of e¤ective labor units as in Exercises 19.3 and 19.4. Recall also that
Lj (t) = L (t) for all j.

As in the �rst part, let m = argmaxj Bj denote the country with highest productivity
in the capital intensive intermediate sector. Since the production technology in the capital
intensive intermediate sector is linear, all physical capital would be located in country m so
that3

kj (t) = 0 for all t and j 6= m,

and all capital intensive intermediate production would take place in country m. This further
implies

xj (t) � x (t) =

PJ
j=1 Y

K
j (t)PJ

j=1 Y
L
j (t)

=
Bmkm (t)PJ

j=1Aj
, for all t. (I19.21)

Moreover, the world price of the capital-intensive intermediate good and the world interest
rate is given by

pK (t) = f 0 (x (t)) and r (t) = Bmp
K (t)� � = Bmf

0 (x (t))� �.

The resource constraint for country m has features of both resource constraints (I19:14) and
(I19:19), and is given by

_km (t) + _am (t) = pK (t)Bmkm (t) + p
L (t)Am � cm (t)� (� + n) km (t) + (r (t)� n) am (t) .

=
�
Bmf

0 (x (t))� � � n
�
km (t) (I19.22)

+Am
�
f (x (t))� x (t) f 0 (x (t))

�
� cm (t) + (r (t)� n) am (t) .

The resource constraint for country j 6= m is simpler because kj (t) = 0, and is given by

_aj (t) = Aj
�
f (x (t))� x (t) f 0 (x (t))

�
� cj (t) + (r (t)� n) aj (t) . (I19.23)

Using the international capital market clearing condition

JX
j=1

Bj (t)

L (t)
=

JX
j=1

_aj (t)� (r (t)� n) aj (t) = 0;

3Since all capital will �ow to country m immediately, we can assume that kj (0) = 0 for all j 6= m and
that all capital di¤erences are captured by di¤erences in initial assets, aj (0).
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Eqs. (I19:22) and (I19:23) can be aggregated to obtain the world resource constraint

_km (t) =
�
Bmf

0 (x (t))� � � n
�
km (t)

+

0@ JX
j=1

Aj

1A�f (x (t))� x (t) f 0 (x (t))�� Jc (t) , (I19.24)

where the second line de�nes the world per-capita consumption c (t) =
PJ

j=1 cj (t) =J . The
intuition for Eq. (I19:24) is that all of the net surplus in the world �ows into country m and
contributes to the accumulation of km.

Next note that the representative household in each country faces the same interest rate
r (t) = Bmf

0 (x (t))� � thus the Euler equations can be aggregated, which yields
_c (t)

c (t)
=
1

�

�
Bmf

0 (x (t))� � � �
�
. (I19.25)

Finally, aggregating the transversality conditions, we also have

lim
t!1

km (t) exp

�
�
Z t

0

�
Bmf

0 (x (s))� � � n
�
ds

�
= 0. (I19.26)

Eqs. (I19:24) and (I19:25) constitute two di¤erential equations in two paths of variables
[km (t) ; c (t)]t (recall that x (t) is a linear function of km (t) in view of Eq. (I19:21)), and has
a unique solution given km (0) and the transversality condition Eq. (I19:26). For any given
initial condition, km (0), the unique solution starts on the saddle path and limits to a steady
state (k�m; c

�). The steady state capital level is the solution to

Bmf
0 (x�)� � � � = Bmf

0

 
Bmk

�
mPJ

j=1Aj

!
� � � � = 0,

and the steady state world consumption is solved from Eq. (I19:24). Moreover, given the path
for k (t) ; x (t) and r (t), each country j 6= m�s per-capita consumption and asset holdings,
[cj (t) ; aj (t)]t are found by solving Eq. (I19:23) and the Euler equation along with the
transversality condition and the initial asset holdings aj (0). Country m�s consumption can
be solved as the residual of world consumption, cm (t) = Jc (t)�

P
j 6=m cj (t).

The equilibrium in this case is more similar to the analysis in Section 19.3 than the
equilibrium in the �rst part. Unlike the �rst part and similar to Section 19.3, e¤ective
consumption per capita in all countries asymptote to a positive constant level. Intuitively,
with free capital �ows, the productivity di¤erences in the capital intensive intermediate sector
do not generate income di¤erences since all world capital is used in production in country
with the highest productivity. Hence, for a world economy in which free �ow of intermediate
goods may fail to generate convergence in income di¤erences, free �ow of factors create an
additional force towards convergence, as demonstrated by this exercise.

Exercise 19.13*

Exercise 19.13, Part (a). The analysis in the �rst part of Exercise 19.11 (with capital
�ows) also applies in this case with the simplifying assumption that Bj = 1 for all j. In
this case, the ratio of capital-intensive to labor-intensive intermediates used in �nal good
production is the same in every country and is given by

x (t) =

PJ
j=1 kj (t)PJ
j=1Aj

=
k (t)

A
, (I19.27)
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where recall that kj (t) = Kj (t) =Lj (t) = Kj (t) =L (t) denotes the capital-labor ratio in
country j and we de�ne

k (t) =

JX
j=1

kj (t)

J
and A �

JX
j=1

Aj
J

as respectively the world capital-labor ratio and the world average labor productivity. Hence
Proposition 19.5 also generalizes to this case. Substituting the expression for x (t) in Eq.
(I19:27), Eq. (I19:19) from Exercise 19.11 implies that the accumulation of capital-labor
ratio in country j is given by

_kj (t) =

�
kj (t)�Aj

k (t)

A

�
f 0
�
k (t)

A

�
+Ajf

�
k (t)

A

�
� cj (t)� (� + n) kj (t) . (I19.28)

In this case, the interest rate is the same in each country and is given by r (t) = pK (t)� � =
f 0 (x (t)) � �. Using this expression for the interest rate and substituting for x (t) from Eq.
(I19:27), the Euler equation in each country j can be written as

_cj (t)

cj (t)
= � u0 (cj (t))

u00 (cj (t)) cj (t)

�
f 0
�
k (t)

A

�
� � � �

�
. (I19.29)

Note that unless we assume CRRA preferences, the Euler equations cannot be aggregated o¤
the steady state, hence we cannot reduce the dimension of the di¤erential equation system
further. Thus Proposition 19.6 does not generalize to this case. In this case, the equi-

librium path
h
(kj (t) ; cj (t))

J
j=1

i
t
is characterized by the 2J di¤erential equations (I19:28)

and (I19:29), the J initial conditions for (kj (0))
J
j=1, and the J transversality conditions

limt!1 kj (t) exp
�
�
R t
0 (f

0 (kj (s) =A)� � � n) ds
�
= 0. There exists a J dimensional sad-

dle plane so that
h
(kj (t) ; cj (t))

J
j=1

i
t
starts on the saddle plane for any initial conditions

(kj (0))
J
j=1 and converges to the steady state

�
k�j ; c

�
j

�J
j=1
.

We next show that the steady state results remain identical, in particular, that Proposi-
tion 19.7 generalizes to this case. First note that Eq. (I19:29) implies that

f 0
�
k (t)

A

�
= � + �

in a steady state on which consumption per capita in each country is constant. Hence, the
world price of the capital-intensive intermediate is constant at pK = � + � and the steady
state world capital-labor ratio can be solved as

k� = Af 0�1 (� + �) .

From Eq. (I19:27), we also have

x�j = x� =
k�

A
, for each j,

that is, the ratio of the capital-intensive to labor-intensive intermediates used in every country
is uniquely pinned down. This shows that Proposition 19.7 generalizes to this case. To
characterize the steady state allocation further, note that Eq. (I19:28) can be aggregated
over countries and give

_k (t) = Af (k (t) =A)� c (t)� (� + n) k (t) ,
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where c (t) =
PJ

j=1 cj (t) =J denotes the world consumption per capita. Plugging k (t) = k�

into the previous equation, the steady state world consumption per capita can be solved as

c� = Af (k�=A)� (� + n) k�.
Note also that the country�s steady state capital-labor ratios are not uniquely determined.
In particular, due to linear technology in the capital-intermediate sector, any collection of

capital-labor ratios
n
k�j

oJ
j=1

such that k�j > 0 and
PJ

j=1 k
�
j =J = k� is consistent with a steady

state equilibrium. Intuitively, the capital-labor ratio k�j (along with the technology level Aj)
determines the relative income of the country. Given the capital-labor ratio k�j , the steady
state consumption per-capita in country j is uniquely determined from Eq. (I19:28) as

c�j =

�
k�j �

Aj
A
k�
�
(� + �) +Ajf

�
k�

A

�
� (� + n) k�j ,

where we have also used f 0 (k�=A) = �+�. This completes the characterization of the steady
state equilibrium.

We have thus shown that the steady state results of Section 19.3 also apply when the
utility function takes the more general case, but convergence to the steady state will be
di¤erent. To analyze the transitional dynamics in this case, we would �rst linearize the

2J equations (I19:28) and (I19:29) for
h
(cj (t) ; kj (t))

J
j=1

i
t
around the steady state values�

c�j ; k
�
j

�J
j=1
. We would then calculate the eigenvectors and eigenvalues of the resulting linear

system, which would characterize the transitional dynamics in the neighborhood of the steady
state.

Exercise 19.13, Part (b). In this case, let xj (t) = XK
j (t) =X

L
j (t) still denote the

ratio of capital-intensive to labor intensive intermediates employed in country j. Let kj (t) �
Kj (t) = (Aj exp (gt)Lj (t)) in this case denote the e¤ective capital-labor ratio in country j.
The same argument in the proof of Proposition 19.5 applies here and shows that

xj (t) =

PJ
j=1Ajkj (t)PJ

j=1Aj
� k (t) for all j, (I19.30)

where the last line de�nes k (t) as the world e¤ective capital-labor ratio. Let ~cj (t) =
Cj (t) = (Aj exp (gt)Lj (t)) denote consumption normalized by e¤ective labor. The capital
accumulation equation for country j can then be written in e¤ective labor units as

_kj (t) = pK (t) kj (t) + p
L (t)� ~cj (t)� (� + g + n) kj (t) . (I19.31)

From the pro�t maximization of the �nal good sector, we have pK (t) = f 0 (xj (t)) and
pL (t) = f (xj (t)) � xj (t) f

0 (xj (t)) for all t. Plugging these expressions along with Eq.
(I19:30) into Eq. (I19:31), we have the capital accumulation equation

_kj (t) = (kj (t)� k (t)) f 0 (k (t)) + f (k (t))� ~cj (t)� (� + g + n) kj (t) .
Note that, in contrast with the analysis Part (a), the capital accumulation equations can be
aggregated over all countries and yield the world capital accumulation equation

_k (t) = f (k (t))� ~c (t)� (� + g + n) k (t) , (I19.32)

where we de�ne ~c (t) �
�PJ

j=1Aj~cj (t)
�
=
�PJ

j=1Aj

�
as the world consumption normalized

by e¤ective labor. Next note that, in view of pK (t) = f 0 (xj (t)) and Eq. (I19:30), the interest
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rate in each country is the same and is given by

r (t) = pK (t)� � = f 0 (k (t))� �.

The Euler equation for country j then implies

d~cj (t) =dt

~cj (t)
=
f 0 (k (t))� � � �� �g

�
. (I19.33)

As the growth rate of normalized consumption is the same in all countries, the growth rate
of normalized world consumption ~c (t) is also given by

d~c (t) =dt

~c (t)
=
f 0 (k (t))� � � �� �g

�
. (I19.34)

The transversality condition for each country is

lim
t!1

kj (t) exp

�
�
Z t

0
(r (s)� n� g) ds

�
; (I19.35)

which can also be aggregated and give the aggregate transversality condition

lim
t!1

k (t) exp

�
�
Z t

0

�
f 0 (k (s))� � � n� g

�
ds

�
= 0: (I19.36)

It follows that the world equilibrium path [k (t) ; ~c (t)]t is characterized by the
di¤erential equations (I19:32) and (I19:34) along with the initial condition k (0) =�PJ

j=1Aj (0) kj (0)
�
=
�PJ

j=1Aj (0)
�
and the transversality condition (I19:36). We have thus

established the analogue of Proposition 19.6, that is, Eqs. (I19:32) and (I19:34) show that the
world average normalized capital and consumption levels satisfy aggregated equations identi-
cal to the baseline neoclassical model analyzed in Chapter 8. Hence even with technological
progress, trade in intermediate inputs is su¢ cient to generate an essentially integrated world
equilibrium. By standard arguments in Chapter 8, the world equilibrium is globally saddle
path stable and converges to the steady state (k�; ~c�) with

f 0 (k�) = �+ � + �g and ~c� = f (k�)� (� + g + n) k�.

Note also that limt!1 pK (t) = pK� = n+�+�g, and limt!1 pL (t) = pL� = f (k�)�f 0 (k�) k�.
This establishes the analogue of Proposition 19.7.

Finally, given the uniquely determined world allocations and prices�
k (t) ; ~c (t) ; pK (t) ; pL (t)

�
t
, the path of normalized consumption and capital level in

country j, [~cj (t) ; kj (t)]t, is determined by the two di¤erential equations Eq. (I19:31)
and Eq. (I19:33) along with the initial condition for kj (0) and country j�s transversality
condition (I19:35). By standard arguments in Chapter 8, there is a unique value ~cj (0) such
that the induced path for kj (t) from Eq. (I19:31) satis�es the transversality condition. The
rest of the consumption path, ~cj (t) is then determined by Eq. (I19:33). This characterizes
the allocations [~cj (t) ; kj (t)]t for each country and establishes that there is a globally stable
steady state equilibrium, proving the analogue of Proposition 19.8. We conclude that the
analysis in Section 19.3 essentially continues to apply, but this time the steady state (or
balanced growth) consumption-labor ratio and capital-labor ratio in every country grow at
the rate of technological progress g.
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Exercise 19.13, Part (c). Let us go back to the case with no technological progress (i.e.
g = 0) but suppose Assumption 2 is violated. This has no e¤ect on the aggregation results,
in particular, Proposition 19.6 continues to apply and the world economy is still essentially
integrated. However, the steady state characterization of the world equilibrium, Proposition
19.7 and 19.8, is slightly di¤erent in this case. To characterize the equilibrium in this case, let
kj (t) = Kj (t) =L (t) denote the capital-labor ratio in country j (recall that, in Part (b), we
have used this notation to represent the e¤ective capital-labor ratio) and let k (t) denote the
world capital-labor ratio. As in the baseline neoclassical model, without the Inada conditions
there is no guarantee that k (t) converges to a positive level. There are three possibilities:
(i) If f 0 (0) < � + �, then there is a globally stable steady state in normalized allocations
with kj (t) = 0 and cj (t) = 0 for all j. (ii) If f 0 (0) > � + � and limx!1 f 0 (x) < � + �,
then there is a globally stable steady state with a positive and �nite world capital-labor ratio

k� > 0 solved from f 0
�
k�

A

�
= � + � and the rest of the steady state variables

�
k�j ; c

�
j

�J
j=1

are determined as in Part (a). (iii) If limx!1 f 0 (x) > � + �, then there is asymptotically
balanced growth, that is, the capital-labor ratio kj (t) and consumption per-capita cj (t) in
each country j asymptotically grow at rate

1

�

�
lim
x!1

f 0 (x)� � � �
�
:

The interesting case here is (iii), which shows that balanced growth by only capital accumu-
lation (in particular, without technological progress) is possible also in the world equilibrium
with free trade in intermediate goods.

Exercise 19.24

We consider the AK version of the model, so capital is the only factor of production and
income of each country j is given by Yj (t) = rj (t)Kj (t). Most of the analysis in Section
19.4.2 applies also in this case. In particular, the trade balance equation for country j still
implies Eq. (19:34). This in turn leads to Eq. (19:36), which determines the rate of return
to capital in all countries given the distribution of capital stocks. Eq. (19:35), however, is
di¤erent since capital accumulation is not determined by consumer maximization but by a
constant savings rule. In particular, we have

_Kj (t) = sjYj (t) = sjrj (t)Kj (t) , for each j (I19.37)

as the analogue of Eq. (19:35) in this case. The equilibrium path of
h
fKj (t) ; rj (t)gJj=1

i
t
is

then completely characterized by Eqs. (19:36) and (I19:37) and the initial levels of capital
stock fKj (0)gJj=1. At any t, given fKj (t)gJj=1, Eq. (19:36) determines the rates of return
to capital at t, frj (t)gJj=1. Given frj (t)g

J
j=1, Eq. (I19:37) determines the accumulation of

capital, characterizing the dynamic equilibrium path.
We next prove the analogue of Proposition 19.10, that is, we show that the world equilib-

rium allocations and prices converge to a steady state in which rj (t) = r�j is constant for each
j. First we characterize the growth rate and the relative capital-levels on the steady state.
Plugging rj (t) = r�j into Eq. (I19:37) implies that Kj (t) grows at a constant rate given by
gj � sjr

�
j . Moreover, for Eq. (19:36) to hold at each t, this constant growth rate must be

the same for all j, that is every country grows at a common rate g� � sjr
�
j . Aggregating

(19:36) over j, we recover the ideal price index equation
PJ

j=1 �j

�
r�j

�1�"
= 1. Plugging in
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r�j = g�=sj , we solve for the steady state growth rate as

g� =

0@ JX
j=1

�j (sj)
"�1

1A1=("�1) .
We next calculate the relative capital levels at the steady state. Dividing Eq. (19:34) for
countries j and 1 and using Yj (t) = rj (t)Kj (t), we have

Kj (t)

K1 (t)
=
�j
�1

�
rj (t)

r1 (t)

��"
; (I19.38)

Plugging in r�j = g�=sj in the previous equation implies�
Kj (t)

K1 (t)

��
=
�j
�1

�
sj
s1

�"
, for all j 2 J . (I19.39)

That is, countries with better technology (in the sense that they have the knowledge to
produce relatively more goods) and higher saving rate have higher relative capital levels in
steady state. This completes the characterization of the steady state allocation. In particular,
when the relative levels of capital satisfy Eq. (I19:39), the path [Kj (t) ; rj (t)]

J
j=1 on which

each Kj (t) grows at the constant rate g� and the interest rate in each country is constant
and equal to r�j = g�=sj constitutes a steady state equilibrium.

We next argue that the steady state equilibrium that we have described is globally stable,
that is, starting with any capital distribution that does not necessarily satisfy Eq. (I19:39),
the equilibrium path described by Eqs. (19:36) and (I19:37) converges to the steady state.
To see this, note that if Kj (t) =K1 (t) > (Kj (t) =K1 (t))

�, then Eq. (I19:38) implies that
rj (t) =r1 (t) < r�j=r

�
1, that is, the relative price of capital is lower in the country in which there

is relatively more capital. Then, Eq. (I19:37) implies that Kj (t) grows slower than K1 (t)
hence Kj (t) =K1 (t) converges to (Kj (t) =K1 (t))

�. This analysis applies for any country
j 6= 1, proving that the equilibrium path converges to the steady state equilibrium. Intuitively,
similar to the baseline case analyzed in Section 19.4, terms of trade e¤ects lead to a stable
world income distribution.

Exercise 19.25*

We again consider the AK version of the model. The analysis applies without change and
Proposition 19.10 holds also in this case, hence the equilibrium characterization is identical.
Plugging Eq. (19:39) into Eq. (19:34), we have that the steady state output of country j
relative to steady state world output satis�es

(Yj (t) =Y (t))
� = �j

�
�j
�
�j + g

���(1�")=� .
Hence, conditional on the other parameters, countries with lower discount rates, �j , will be
relatively poor since 1� " > 0.

The intuition for this result is two-fold. First, countries with lower discount rates have
higher capital levels, lower interest rates and relatively cheaper export goods in equilibrium as
explained in Section 19.4.4Second, when " < 1 countries with relatively cheaper export goods

4Recall that this is because of terms of trade e¤ects. A country with lower discount rates tend to
accumulate capital faster. This increases the supply of its exports relative to the supplies of other countries
and reduces the relative price of its export goods. Since export goods use capital, this in turn lowers the
interest rate. In equilibrium, the interest rate decreases just enough that capital in this country accumulates
at the same rate as in the rest of the world.
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receive a smaller share of the world expenditure on exports and earn less export revenues
(controlling for

�
�j
	
j
). This e¤ect can be seen most clearly in the trade balance equation

(19:36): a lower pj (t) (and thus a lower rj (t)) implies a lower rj (t)
1�" and decreases the

country�s share of the world income. Intuitively, when " < 1, the demand for each traded
intermediate is su¢ ciently inelastic that raising the price does not decrease the demand much
and leads to higher pro�ts. Hence, countries with low discount factors and low export prices
end up with lower export revenues and lower income.

Note the immiserising growth pattern here: countries with low discount rates grow faster,
and as a result, the price of their goods decreases so much that fast growth ends up making
them relatively poorer. This counter-intuitive feature stems from two assumptions. First,
we assume that production of all (capital and consumption) goods require an intermediate
component that must be imported from other countries. Hence, capital accumulation in a
country does not necessarily lead to comparable output growth since the country�s production
technology depends on imports, which the country must �nance through exports. Second,
with " < 1, the demand for the country�s goods is so inelastic that too much production
causes strong price e¤ects and reduces export revenues. With lower export revenues, the
country can import less and thus produces less, hence the two assumptions together result in
immiserising growth.

Viewed in this way, the second assumption, " < 1, is particularly unpalatable and im-
plausible. When " < 1, producing more hurts export revenues, hence the government of every
country has a strong incentive to decrease production of export goods. The same issues are
also present when " > 1, since the competitive pricing of export goods is not optimal for the
country. In equilibrium, countries would want to tax export goods to some extent to increase
the international price of their goods to monopoly pricing levels (see Exercise 19.26). The
issue is ampli�ed when " < 1, since every country always has an incentive to reduce output
(regardless of the world levels of output) and in fact every country would like to reduce output
to levels close to 0. Hence, the price taking assumption in the model becomes much more
di¢ cult to maintain when we assume " < 1. Therefore, it is sensible to assume " > 1 in the
present model, which also rules out immiserising growth.

Exercise 19.26*

Exercise 19.26, Part (a). We claim that the path described by Eqs. (19:35) and (19:36)
is no longer an equilibrium, since the social planner in country j can in�uence the supply
and the price of the goods country j exports to the world. Let � 2 N (t) be an intermediate
that can only be produced in country j. Using the CES aggregator for traded intermediates,
the relative demand of good � by the sector k 2 fI; Cg in country i 2 f1; ::; Ng is given by

xki (t; �) = p (t; �)�"
�Z N

0
xki (t; �)

"�1
" d�

� "
"�1

,

where we have also used the fact that the ideal price index of the basket of intermediates is
chosen as the numeraire (cf. Eq. (19:32)). Summing the previous equation over all countries
i and sectors k, we obtain the total demand for country j�s goods as

JX
i=1

X
k2fI;Cg

xki (t; �) = p (t; �)�"
JX
i=1

X
k2fI;Cg

�Z N

0
xki (t; �)

"�1
" d�

� "
"�1

: (I19.40)

Note also that the marginal cost of a unit capital in country j is the domestic rate of return
to capital rj (t), thus the social planner in country j sets the price for the export good � by
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solving

max
p(t;�)

(p (�; t)� rj (t))
JX
i=1

X
k2fI;Cg

xki (t; �)

subject to the demand equation (I19:40). Assuming that each country is small the exports of
country j do not a¤ect the aggregated term on the right hand side of Eq. (I19:40), thus the
social planner in country j faces an iso-elastic demand curve and the optimal price is given
by

pj (t) � p (t; �) =
"

"� 1rj (t) (I19.41)

for each export good � of country j. In particular, note that pj (t) is greater than the
competitive equilibrium price rj (t), thus a fully competitive equilibrium can no longer be
an equilibrium if the social planner is making the domestic production decisions. Since each
country has monopoly power for the goods it supplies to the world, a social planner can
strategically undersupply its goods to raise the world price and increase the income of the
export sector.

Exercise 19.26, Part (b). There is some room for interpretation in this problem re-
garding how strong the social planner�s policy instruments are. As an extreme case, we could
imagine a social planner who controls all of the allocations and production decisions within
the country. As a simpler alternative, we could assume that the planner has a more restricted
set of instruments, in particular, that she can in�uence the price of the export goods (so the
competitive pricing pj (t) = rj (t) is no longer required) but otherwise cannot interfere with
the domestic competitive markets. It can be shown that these two policy alternatives result
in the same allocations. Intuitively, once the social planner sets the international prices to
maximize domestic income, the rest of the domestic economy is like a neoclassical economy
and the welfare theorems apply at the domestic market, thus the planner cannot further
improve over the equilibrium allocation. Therefore, without loss of generality we suppose
that the planner can only in�uence production (and prices) in the export sector.

Under this assumption, the characterization of the equilibrium is similar to the fully
competitive case with a few di¤erences. We have noted in Part (a) that the optimal pricing
decision for the planner is given by (I19:41). Using this, the analogue of the trade balance
equation (19:34) in this case is

Yj (t) = �jpj (t)
1�"

JX
i=1

Yi (t) =

�
"

"� 1

�1�"
�jrj (t)

1�"
JX
i=1

Yi (t) . (I19.42)

In this case, since the export sector is not competitive, the representative consumer will also
receive pro�t income from the exports sector, which we denote by �j (t) = �j (t)�j where
�j (t) denotes the pro�ts made by each traded intermediate monopolist. The output of a
country is then given by

Yj (t) = rj (t)Kj (t) + �j (t) . (I19.43)

To make progress, we need to calculate the pro�t income. Note that both the consumption
and the investment sectors have a Cobb-Douglas production function with the same share
� on traded intermediates. Thus every country (regardless of how it allocates resources
between consumption and investment) spends the fraction � of its income on intermediates,
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which implies

JX
i=1

X
k2fI;Cg

�Z N

0
xki (t; �)

"�1
" d�

� "
"�1

= �
JX
i=1

Yi (t) = �
JX
i=1

(ri (t)Ki (t) + �i (t)) .

Using this expression in Eq. (I19:40) and plugging in the optimal price from Eq. (I19:41),
the pro�t income satis�es

�j (t) = �j�j (t) = �j (pj (t)� rj (t)) pj (t)�" �
JX
i=1

(ri (t)Ki (t) + �i (t))

= ��j
1

"� 1

�
"

"� 1

��"
rj (t)

1�"
JX
i=1

(ri (t)Ki (t) + �i (t)) . (I19.44)

Using the trade balance equation (I19:42) and Eq. (I19:43), the sum on the right hand side of
Eq. (I19:44) can be written in terms of rj (t)Kj (t) +�j (t) and the pro�t income in country
j can be solved as

�j (t) =
�rj (t)Kj (t)

"� � , (I19.45)

which shows, in particular, that pro�ts are linear in the capital income of the country. Plug-
ging this in the expression for output (I19:43) and using the resulting expression in the trade
balance equation (I19:42), we obtain

rj (t)Kj (t) =

�
"

"� 1

�1�"
�jrj (t)

1�"
JX
i=1

ri (t)Ki (t) . (I19.46)

Eq. (I19:46) is the analogue of Eq. (19:36) in this environment and characterizes interest
rates for a given distribution of capital levels. The Euler equation in this case is unchanged,
and implies

_Kj (t)

Kj (t)
=
rj (t)

�

�j
� �j , (I19.47)

which, given the interest rates, determines the evolution of capital levels. The world equilib-
rium is then determined by Eqs. (I19:46) and (I19:47), which is the analogue of Proposition
19.11 in this setup. The equilibrium is also saddle path stable and, starting from any dis-
tribution of capital, it tends to a steady state at which all capital levels grow at the same
rate gS . To calculate the steady state growth rate, we use _Kj (t) =Kt (t) = gS in Eq. (I19:47)
which gives

r�j =
�
�j
�
�j + g

S
��1=�

.

Plugging this in Eq. (I19:46), we have

r�jKj (t) = �j

�
"

"� 1

�1�" �
r�j
�1�" JX

i=1

r�iKi (t) .

Aggregating the previous equation over j and substituting for r�j yields

h
�
gS
�
�
X
j2J

�j

�
"

"� 1

�1�" �
�j
�
�j + g

S
��(1�")=�

= 1. (I19.48)
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Note that h
�
gS
�
is strictly increasing with limgS!1 h

�
gS
�
= 0. Thus if we assume

h (0) =
X
j2J

�j

�
"

"� 1

�1�" �
�j�j

�(1�")=�
> 1, (I19.49)

then there exists a unique gS that solves Eq. (I19:48). We then obtain the analogue of
Propositions 19.10 and 19.12 in this setup: under Assumption (I19:49), there exists a unique
steady state equilibrium in which the capital stock and output in every country grows at the
constant rate gS that solves Eq. (I19:48).

Next, we compare Eq. (I19:48) with Eq. (19:38) that determines the growth rate g� in

the fully competitive economy. Since
�

"
"�1

�1�"
< 1 (recall that " > 1) and h

�
gS
�
is strictly

decreasing, we have gS < g�, that is, the world growth rate is lower when each social planners
acts in the best interest of the country. We provide the intuition for this result in Part (c)
below.

Exercise 19.26, Part (c). We consider the following thought experiment for the change
in welfare. We consider a country j with a �xed capital level Kj (t), and compare the welfare
in this country when the world is on a fully competitive BGP equilibrium with the case in
which the world is on a social planner BGP equilibrium. We have already noted that the
growth rate is lower in the socially planned economy, however we also need to calculate initial
consumption to make welfare comparisons between the two equilibria. In fact, our analysis
below shows that the initial consumption level is greater in the socially planned economy,
providing a counteracting e¤ect for welfare.

First consider the welfare in the fully competitive BGP equilibrium. Substituting
pIj (t) =p

C
j (t) = �j in Eq. (19:31), we solve for initial consumption as

Cj (0) = �j�jKj (0) : (I19.50)

Consumption grows at the constant rate g�, thus welfare can be calculated as

Uj (0) =

Z 1

0
exp

�
��jt

�
log (Cj (0) exp (g

�t)) dt

=
log (Cj (0))

�j
+ g�

Z 1

0
exp

�
��jt

�
tdt

=
log
�
��jKj (0)

�
�j

+
g�

�2j
. (I19.51)

Next we consider the socially planned BGP equilibrium. In this case, the representative
consumer receives pro�t income on top of rental income, hence her �ow budget constraint is

pIj (t) _Kj (t) + p
C
j (t)Cj (t) = rj (t)Kj (t) + �j (t) .
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Integrating this constraint and using the transversality condition gives the lifetime budget
constraint5Z 1

0
exp

�
�
Z t

0
rej (s) ds

�
pCj (t)Cj (t) dt � pIj (0)Kj (0) +

Z 1

0
exp

�
�
Z t

0
rej (s) ds

�
�j (t) dt,

(I19.52)

where rej (t) =
�
rj (t) + _pIj (t)

�
=pIj (t) denotes the interest rate in terms of the numeraire,

or equivalently, the e¤ective discount rate (see the discussion in Part (b) of Exercise 19.27).
As usual, the Euler equation and log utility imply that consumption is a constant share of
lifetime wealth, i.e.

pCj (0)Cj (0) = �j

�
pIj (0)Kj (0) +

Z 1

0
exp

�
�
Z t

0
rej (s) ds

�
�j (t) dt

�
,

which is the analogue of Eq. (19:31) for the economy with social planners. Next note that
rj (t) � rj , pIj (t) � pIj and p

C
j (t) � pCj are constant on a BGP and �j (t) = �rj= ("� �)Kj (t)

from Eq. (I19:45) grows at rate gS , which implies

Cj (0) = �j�j

0@Kj (0) +
�

"� �
Kj (0)

1� pIj
rj
gS

1A .
Using rej =

rj
pIj
= �j+g

S (which follows from the Euler equation), we solve for the initial level

of consumption as

Cj (0) = �j�jKj (0)

 
1 +

�

"� �
�j + g

S

�j

!
.

For a given capital stock, the initial level of consumption is greater than the initial con-
sumption in the fully competitive equilibrium in Eq. (I19:50), since the household in the
socially planned economy also receives pro�t income from the export sector which increases
the consumption.

We next calculate the welfare in the socially planned economy as

USj (0) =

Z 1

0
exp

�
��jt

�
log
�
Cj (0) exp

�
gSt
��
dt

=
log
�
��jKj (0)

�
�j

+
gS

�2j
+
1

�j
log

 
1 +

�

"� �
�j + g

S

�j

!
.

5To derive this expression, �rst note that the �ow budget constraint can be written in units of the time
0 numeraire as

exp

�
�
Z t

0

rej (s) ds

� 
d
�
pIj (t)Kj (t)

�
dt

� rej (t)
�
pIj (t)Kj (t)

�!

= exp

�
�
Z t

0

rej (s) ds

��
�j (t)� pCj (t)Cj (t)

�
.

Next note that the expression in the �rst line is equal to d
�
exp

�
�
R t
0
rej (s) ds

�
pIj (t)Kj (t)

�
=dt, thus integrat-

ing the �ow budget constraint and using the transversality condition limt!1 exp
�
�
R t
0
rej (s) ds

�
pIj (t)Kj (t) =

0 gives the lifetime budget constraint (I19:52).
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Comparing this expression with Eq. (I19:51), we obtain the di¤erence in welfare as

USj (0)� Uj (0) =
1

�2j

�
gS � g�

�
+
1

�j
log

 
1 +

�

"� �
�j + g

S

�j

!
.

For typical calibrations of the model, the �rst (negative) term dominates and this expression
is negative, that is, welfare is lower in the socially planned economy. Intuitively, welfare in
the social planner�s BGP equilibrium tends to be lower because of the beggar-thy-neighbor
policies adopted by the social planners. Each planner is tempted to lower the supply of
export goods and boost their price, which is good for the household taking import prices
given. However, in equilibrium every social planner does the same, import prices increase
and the relative price of each country�s export goods remain (more or less) unchanged while
the level of exports and imports are lowered. The end result is less-than-optimal trade, slower
capital accumulation and slower growth which lowers welfare.

Exercise 19.26, Part (d). For analyzing trade in goods for which the supplier country
has monopoly power (either because the country is the only producer as we assume following
Armington (1969), or because there are trade costs and the country has a geographical
advantage to supply the good cheaper than other producers), we expect the equilibrium in
this exercise to be more plausible than the one analyzed in the text. Anti-trade sentiments
are already high and export taxes are a source of revenue for governments. Therefore it
is plausible to assume that governments would implement the beggar-thy-neighbor policies
studied in this exercise. For an example, note that the oil cartel OPEC controls the supply
of oil to increase the revenues for member countries. OPEC represents cooperation among
multiple countries which is arguably even more di¢ cult to sustain than cooperation within a
single country, suggesting that the analysis in this exercise may be realistic. Note also that
avoiding such beggar-thy-neighbor policies requires a world-wide cooperation of governments,
which is very di¢ cult as the ongoing Doha Round of trade negotiations suggests.

Exercise 19.27*

Exercise 19.27, Part (a). Given the collection of varieties at time t
�
�j (t)

	
j
, we de�ne

N (t) �
PJ

j=1 �j (t). As in Eq. (19:32), we set the ideal price index of the basket of traded

intermediates as the numeraire, that is we assume
R N(t)
0 pj (t; �)

1�" d� = 1. We let

Xk
j (t) =

 Z N(t)

0
xkj (t; �)

("�1)=" d�

!"=("�1)
denote the aggregated basket of intermediates used by sector k 2 fI; Cg in country j 2
f1; ::; Jg. Recall that the consumption and investment goods are produced with technologies

Cj (t) = �KC
j (t)

(1��)(1�) �LEj (t)�(1��) XC
j (t)

� ,

Ij (t) = ��1j �KI
j (t)

(1��)XI
j (t)

� .

Using this notation, a monopolist in country j for variety � faces the isoelastic demand

x (t; �) = p (t; �)�"
JX
i=1

X
k2fC;Ig

Xk
i (t) ,
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and has marginal cost equal to the rental cost of capital in country j, rj (t). Thus, the country
j monopolists set prices given by

pj (t) � pj (t; �) =
"

"� 1rj (t) , (I19.53)

and their per-period pro�ts are given by

�j (t; �) =
rj (t)

"� 1

�
"

"� 1rj (t)
�1�" JX

i=1

X
k2fC;Ig

Xk
i (t)

=
1

"
pj (t)

1�"
JX
i=1

X
k2fC;Ig

Xk
i (t) . (I19.54)

Exercise 19.27, Part (b). Note that the labor market clearing condition is given by
LRj (t) + LEj (t) = 1, hence we need to characterize the demand for labor in the R&D and
the production sectors. First consider the R&D sector. The value function for a monopolist
satis�es the Bellman equation

rej (t)Vj (t; �) = �j (t; �) + _Vj (t; �)� �Vj (t; �) , (I19.55)

where

rej (t) �
rj (t) + _pIj (t)

pIj (t)
(I19.56)

is the e¤ective discount rate, that is, the interest rate for bonds denominated in the numeraire.
To understand this expression, note that the ratio of the rental rate of capital to the price
of capital rj (t) =pIj (t) is the interest rate for bonds denominated in capital. By no-arbitrage,
the interest rate on numeraire bonds also takes into account the change in the price of capital
goods _pIj (t) =p

I
j (t), leading to the expression for the e¤ective discount rate. Given the value

function Vj (t; �) that solves Eq. (I19:55), the free entry condition in country j implies

Vj (t; �) � � wj (t) , with equality if LRj (t) > 0. (I19.57)

In equilibrium, the free entry condition characterizes the demand for labor in the R&D sector:
labor is allocated to R&D until the number of varieties increases and Vj (t; �) decreases just
enough that Eq. (I19:57) holds. Next consider the labor demand in the production sector. As
labor is used only in the production of consumption goods, LEj (t) can be found by considering
the share of consumption in national income. In particular we have

(1� ) (1� �) pCj (t)Cj (t) = LEj (t)wj (t) , (I19.58)

which characterizes the demand for labor in the production sector.

Exercise 19.27, Part (c). We consider a BGP equilibrium in which, for each country
j, rj (t) � rj ; �j (t) � �j and L

R
j (t) � LRj > 0 are constant while capital and consumption

grow at the common constant rate g. We characterize the BGP equilibrium in two steps.

First, we take the labor allocations
n
LRj

o
j
as given and we characterize the resulting BGP

equilibrium variables, in particular the growth rate g. Second, we solve for the allocationsn
LRj

o
j
in terms of g so that the resulting BGP equilibrium variables satisfy the free entry

conditions (I19:57). The growth rate g is then solved as a �xed point and the rest of the
variables are characterized.
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For the �rst step, consider a BGP allocation in which the R&D labor employment levels

are constant and given by
n
LRj

o
j
. Note that the R&D technology equation is _�j (t) =

�LRj � ��j (t), thus the technology levels along the BGP are also constant and are given by

�j =
�

�
LRj for each j. (I19.59)

Given a constant distribution of
n
LRj

o
and

�
�j
	
j
, the economy is very similar to the baseline

case and the rest of the equilibrium variables are characterized similarly. We �rst show that
the analogue of the trade balance equation Eq. (19:46) applies in this case. Note that the
investment and the consumption technologies are both Cobb-Douglas with the same share �
of imports, hence no matter how the consumer splits her income between consumption and
investment, she will spend � of her wealth on imports. Thus the following trade balance
similar to Eq. (19:46) holds in this case6

rj (t)Kj (t) + wj (t) = �j

�
"

"� 1rj (t)
�1�" JX

i=1

[ri (t)Ki (t) + wi (t)] , for each j 2 f1; ::; Jg ,

(I19.60)
where we have substituted for pj (t) from Eq. (I19:53).

Second, we show that Eq. (19:35) also applies in this case and the analogue of Eq. (19:47)
holds. To see these, note that log preferences imply that the consumer spends a constant
fraction of her lifetime income on consumption today, i.e.7

pCj (t)Cj (t) = �j

�
pIj (t)Kj (t) +

Z 1

t
exp

�
�
Z z

t
rej (s) ds

�
w (z) dz

�
, (I19.61)

where recall that rej (t) is the e¤ective discount rate given in (I19:56). Since L
E
j (t) = 1�LRj is

constant in a BGP equilibrium, Eq. (I19:58) shows that wages are a constant multiple of the
expenditure on consumption. Using this, the previous displayed equation can be simpli�ed
to8 �

1� LRj
�
wj (t)

(1� ) (1� �) = pCj (t)Cj (t) =
�j

1� (1�)(1��)
1�LRj

pIj (t)Kj (t) . (I19.62)

6This expression is not entirely correct since the income of the representative household also includes
pro�ts from monopolistic �rms, and some of this income is spent on R&D investment (i.e. as wage payments
to R&D labor) which does not use traded intermediates. Incorporating these two e¤ects into the trade balance
equation changes nothing essential while considerably complicating the algebra, thus we ignore these e¤ects in
our analysis, which amounts to assuming that the gap between the period monopolistic pro�ts and the period
R&D investment is small relative to aggregate income. See Acemoglu and Ventura (2002) for an alternative
version of the model that does not require this simpli�cation.

7Consistent with our earlier simplifying assumption for the trade balance equation, we also ignore the
shares of monopolistic �rms in the lifetime income of the representative consumer.

8To show this step, note that log utility implies pCj (t)Cj (t) grows at rate r
e
j (t) � �j . By Eq. (I19:58),

wages are a constant multiple of pCj (t)Cj (t) so wj (t) also grows at rate r
e
j (t) � �j , which implies w (z) =

w (t) exp
�R z
t

�
rej (s)� �j

�
ds
�
. Plugging this into the lifetime budget of the household (in the RHS of Eq.

(I19:61)) and using wj (t) =
(1�)(1��)

1�LRj
pCj (t)Cj (t) from Eq. (I19:58) gives

pCj (t)Cj (t) = �j

"
pIj (t)Kj (t) + pCj (t)Cj (t)

(1� ) (1� �)

1� LRj

Z 1

t

exp
�
��j (z � t)

�
dz

#
.

Rearranging this expression leads to Eq. (I19:62).
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This shows that consumers spend a constant fraction of the value of the capital stock as in
the baseline economy analyzed in Sections (19:4). Eq. (19:35) then similarly follows from
the Euler equation. Moreover, substituting for pIj (t) from Eq. (19:33) into Eq. (I19:62), we
obtain the analogue of Eq. (19:47) as

wj (t)

rj (t)Kj (t) + wj (t)
=

(1� ) (1� �) �j
��1j rj (t)

�
h
1� LRj � (1� ) (1� �)

i
+ (1� ) (1� �) �j

. (I19.63)

Given a distribution
n
LRj

o
j
and a resulting distribution

�
�j
	
j
, the equilibrium is then

uniquely characterized by Eqs. (19:35), (I19:60) and (I19:63). As in the baseline case, given
a distribution of capital stock fKjgj , Eqs. (I19:60) and (I19:63) uniquely determine the
prices fwj (t) ; rj (t)gj ; and given the rental rates frj (t)gj , Eq. (19:35) uniquely determines
the evolution of the capital stock. Next we characterize the growth rate g on this BGP

equilibrium (conditional on
n
LRj

o
j
). On a BGP, we have _pCj (t) = 0 and _p

I
j (t) = 0 thus the

Euler equation (19:29) implies that the e¤ective discount rate is constant and given by

g + �j = rej = rj=p
I
j = ��1j r�j ; (I19.64)

where the last equality uses Eq. (19:33). From the previous displayed equation, we solve for

the rental rate in terms of the growth rate, that is rj =
�
�j=
�
g + �j

��1=� . Substituting this
in Eq. (I19:60), plugging in the expression for �j from Eq. (I19:59) and summing over all j,

we obtain an equation that characterizes the growth rate g given the labor allocation
n
LRj

o
j

JX
j=1

 
�LRj
�

!�
�j
�
g + �j

��(1�")=�
=

�
"� 1
"

�1�"
, (I19.65)

which completes the �rst step.

For the second step, we solve for the unique
n
LRj

o
j
which leads to equilibrium variables

that satisfy the free entry conditions (I19:57). On a BGP equilibrium, pro�ts are also growing
at rate g, machines depreciate at rate � and the e¤ective discount rate is equal to g+�j (cf. Eq.
(I19:64)). Combining these observations and the expressions for pro�ts from Eq. (I19:54),
the value function on a BGP is given by

Vj (t) =
�j (t)

g + �j � g + �
=

1

"
pj (t)

1�"
PJ

i=1

P
k2fI;CgX

k
i (t)

�j + �

=

1
"

�
"
"�1rj

�1�"
�j + �

�
JX
i=1

[riKi (t) + wi (t)]

=
�

"

rjKj (t) + wj (t)

�j
�
�j + �

� , (I19.66)

where the second line uses the fact that world exports have a share � of total world income
and Eq. (I19:53), and the third line uses Eq. (I19:60). On a BGP with positive research in
every country, the free entry condition (I19:57) must be satis�ed with equality, which after
combining with the previous expression for the value function implies

�

"

rjKj (t) + wj (t)

�j
�
�j + �

� � = wj (t) .
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Combining this expression with Eq. (I19:63) and substituting ��1j (rj)
� = �j + g from Eq.

(I19:64) gives

�

"

�

�j
�
�j + �

� = (1� ) (1� �) �j�
�j + g

� h
1� LRj � (1� ) (1� �)

i
+ (1� ) (1� �) �j

.

Substituting for �j from Eq. (I19:59) and rearranging terms, we have

LRj (g) =
1 + g

�j
(1� (1� ) (1� �))

"
�

�
�j
� + 1

�
(1� ) (1� �) + 1 + g

�j

, (I19.67)

which solves the allocation of the labor force in country j in terms of the growth rate g.
Plugging LRj (g) into Eq. (I19:65) gives a single equation in terms of the parameters that
determines the growth rate g. Assuming that the resulting solution for the world labor
allocation satis�es LRj (g) 2 (0; 1) for each j, this solution is the unique BGP equilibrium
labor allocation and the corresponding g is the BGP growth rate, completing step two. Once
we determine LRj in terms of the exogenous parameters, our analysis for step one determines
the remaining equilibrium variables, completing the characterization of the BGP equilibrium.

The economic forces that lead to a BGP are diminishing returns due to international trade
and specialization. From the baseline analysis in the text, we already know that a country
cannot grow faster than other countries by accumulating capital, since it faces diminishing
returns in the world market for its goods. Similarly, a country cannot innovate too many
varieties, since it also faces diminishing returns in the number of varieties. To see this,
suppose country j increases the number of its varieties from �1j to �

2
j > �1j . Note that the

share of world income that goes to expenditure on the basket of traded intermediates remains
constant and equal to � due to the Cobb-Douglas aggregator. Thus, assuming (for simplicity)
that the price of all tradable goods are the same, country j increases its export revenues from

the share of �1j�=
�PJ

i=1 �i

�
of world income to the share �2j�=

�PJ
i=1 �i

�
of world income,

which implies that innovation features diminishing returns.9 In particular, the share of world
expenditure going to each variety decreases, which decreases the value of a new variety (cf.
(I19:66)) and acts as a stabilizing force. Also when the country employs more labor in R&D,
the supply of labor in production decreases and wages go up, which acts as another stabilizing
force. Both of these forces imply that the countries�varieties are constant on a BGP.

Exercise 19.27, Part (d). Assume that there are many countries so changing the
discount rate of a single country has a small e¤ect on the world BGP growth rate g. Then,
Eqs. (I19:67) and (I19:59) imply that an increase in the discount rate (typically) decreases the
labor employed in the R&D sector and the number of varieties that the country produces,
that is, less patient countries have fewer varieties and �worse technology� in equilibrium.
Intuitively, the interest rate is higher in less patient countries, hence the value of being a
monopolist is lower, which reduces innovation incentives and the equilibrium level of varieties.

Exercise 19.27, Part (e). We �rst claim that there cannot be balanced growth when
the R&D sector uses both capital and labor. Note that this is a 2 sector AK economy
(similar to Rebelo (1991)) hence the capital-labor ratio increases over time and the price of
capital relative to labor decreases. Then, with a mixed R&D production technology, the cost
of producing varieties relative to wages would also decrease. This in turn would increase

9Consider, for example, the extreme case in which innovation is so large that �1j �
PJ

i=1 �j . In this case
additional innovation does not increase export revenues (for a given level of world income).
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the incentives to innovate and the number of varieties in the world, that is, there would be
technological progress. But in an AK economy with technological progress, capital would
grow at ever increasing rates (due to the growth in A) and there would not be balanced
growth.

Next, consider the case in which the R&D sector uses only labor but the intermediate
goods are produced using both capital and labor. We claim that nothing essential changes in
this case and there is a BGP equilibrium with the same qualitative properties as in the baseline
case. In this case, the unit cost of producing a variety would be di¤erent hence the monopolist
pro�ts per unit sold (given in Eq. (I19:54)) would be di¤erent. However, the expression for
the value function in (I19:66) would remain the same. Intuitively, the share of traded goods
in world output is constant (due to the Cobb-Douglas production function) thus the demand
changes just enough to o¤set any relative price changes, leading to the same expression for
revenues, pro�ts and the value function. Hence, the free entry condition (I19:57) could be
solved following the same approach above. As the only essential di¤erence, we would have
to keep track of LIj (the amount of labor employed in the intermediate sector) along with
LRj and L

E
j and the labor market clearing condition would take the form LRj +L

E
j +L

I
j = 1.

If the varieties are also produced with a Cobb-Douglas production function using labor and
capital, then the share of labor employed in the intermediate sector, LIj , would be a constant
fraction of the share of labor employed in production, LEj +L

I
j . It follows that there exists a

BGP equilibrium with similar qualitative properties as in the baseline case.

Exercise 19.28

From Eq. (19:54), it follows that an increase in � weakly decreases wn (t) =ws (t). Since
all goods are traded at zero cost, wn (t) =ws (t) is also a measure of the PPP adjusted income
per capita and welfare in this model. Hence, increasing � always weakly closes the relative
income gap. With a higher �, there is an increase in demand for Southern labor since more
goods are imitated and produces in the South (cf. Eq. (19:53)). Since labor supply in the
South is �xed, each Southern good is supplied at a lower relative scale and a higher relative
world price (cf. Eqs. (19:51) and (19:50)), leading to an increase in the relative wage of
Southern labor (cf. Eq. (19:49)).

The e¤ects of � on the PPP adjusted income in the North are ambiguous. On the one
hand, more goods are imitated by the South, which reduces the price of these goods and
increases the purchasing power of a Northern worker. On the other hand, the relative wage
in the North decreases which works towards decreasing the welfare in the North. To see
which of these e¤ects dominates, we calculate the welfare of a Northern worker at the steady
state for a given level of goods N (t). First, consider the case in which the steady state is an
equalization equilibrium. In this case, wages are already equalized and increasing � has no
e¤ect on relative wages or relative prices, and hence no e¤ect on the welfare of a Northern
worker. So we focus on the second case, the specialization equilibrium. In this case, the
number of new and old goods in equilibrium is given by

Nn (t) =
�

� + �
N (t) , and No (t) =

�

� + �
N (t) .
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Note that a Northern worker with wage wn (t) solves

max
[c(t;�)]�

 Z N(t)

0
c (t; �)("�1)=" d�

!"=("�1)

s.t.
Z N(t)

0
c (t; �) p (t; �) � wn (t) .

Using the Dixit-Stiglitz aggregator, the optimal value of this problem is equal to wn (t) =P

where P =
�R N(t)
0 p (t; �)1�" d�

�1=(1�")
is the ideal price index. Recall that the price of old

and new goods are given by po (t) = ws (t) < pn (t) = wn (t). Then, wn (t) =P can be written
as 0@ wn (t)1�"

N (t)
�

�
�+�w

n (t)1�" + �
�+�w

s (t)1�"
�
1A1=(1�")

= N (t)1=("�1)
 

�

� + �
+

�

� + �

�
wn (t)

ws (t)

�("�1)!1=("�1)

= N (t)1=("�1)
 

�

� + �
+

�

� + �

�
�Ls

�Ln

�("�1)="!1=("�1)
.

The last two lines clarify the two e¤ects we have identi�ed. From the second line, for a given
level of wn (t) =ws (t) (which is greater than 1), increasing � tends to increase Northern welfare
since it lowers the aggregate price index P and increases the purchasing power in the North.
The third in turn line shows that, increasing � decreases wn (t) =ws (t) (the term in brackets)
and tends to decrease the welfare. Note that we have

d

d�

 
�

� + �
+

�1="

� + �

�
�Ls

Ln

�("�1)="!
= � �

(� + �)2
+

�
�=�+ 1� "
" (� + �)2

�
�1="

�
�Ls

Ln

�("�1)="
. (I19.68)

Hence, the steady state welfare in the North decreases in response to an increase in � i¤ the
expression in (I19:68) is negative. A su¢ cient condition for this to happen is " > �=� + 1

(while still assuming that (�Ls=�Ln)1=" > 1 so we are in the specialization equilibrium).10

The higher substitutability between goods, the lower the level of innovation in the North,
and the higher the initial level of imitation, the more likely that this su¢ cient condition will
hold and that the North will be worse o¤ from an increase in imitation. We conclude that, in
the Krugman (1979) model, increasing the rate of technology adoption closes the welfare gap
between the North and the South, but may make the North better or worse o¤ depending on
the parameters of the model.

10When " is su¢ ciently large, the goods are more substitutable so both the relative prices and relative
wages respond less to an increase in imitation, which shows that the two e¤ects that we have identi�ed are
both weaker. It turns out that, for su¢ ciently large ", the second e¤ect dominates and the Northern labor is
worse o¤ from an increase in imitation.
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Exercise 19.29

Exercise 19.29, Part (a). The economy as described in the exercise does not admit a
BGP equilibrium. Hence we analyze a slightly di¤erent economy in which the R&D technol-
ogy in the North also uses labor and is given by

_N (t) = �Nn (t)LRN : (I19.69)

We normalize the ideal price index to 1 at any t, i.e. Z N(t)

0
p (t; �)1�" d�

!1=(1�")
= 1. (I19.70)

We use subscripts fN;Sg to denote the allocations in the North and the South and we
denote the aggregate consumption in country j with Cj (t) =

�R N(t)
0 cj (t)

("�1)="
�"=("�1)

for

j 2 fN;Sg. Optimization by the representative consumer in country j 2 fN;Sg yields

cj (t; �) = p (t; �)�"Cj (t) for each � 2 N (t) and t (I19.71)
_Cj (t)

Cj (t)
=

1

�
(rj (t)� �) for each t,

in particular, the demand for each good is iso-elastic. A monopolist in the North uses one unit
of Northern labor to produce one unit and sells its product in both Southern and Northern
markets, thus she solves

max
p(t;�)

p (t; �)�" (CN (t) + CS (t)) (p (t; �)� wN (t)) ,

which leads to the optimal price

p (t; �) =
"

"� 1wN (t) , for all � 2 N
n (t) and t, (I19.72)

as desired. The monopolist�s per period pro�ts are given by

� (t; �) =
1

"� 1wN (t)
X

j2fN;Sg
cj (t; �) , for each � 2 Nn (t) . (I19.73)

Throughout, we assume " > 1, since otherwise we have the counterintuitive result that growth
of varieties reduces welfare (see Exercise 19.25).

Exercise 19.29, Part (b). Given Nn (t) ; No (t) and the labor allocated to production
in the North LEN = 1�LRN , the static equilibrium is characterized by the allocation of LEn (t)
between old and new good sectors and wages (LnN ; L

o
N ; wN (t) ; wS (t)) such that markets clear

and each worker in the North optimally chooses the sector to work. The price of each new
and each old good is the same, which we respectively denote by pn (t) and po (t). We also
denote the demand in country j for each new and old good with cnj (t) and c

o
j (t). We denote

the relative wages wN (t) =wS (t) by ! (t).
First note that the price of the new goods pn (t) is characterized in Eq. (I19:72). The old

goods po (t) are produced competitively in the South (and perhaps also in the North) thus
we have po (t) = wS (t). Next note that the supply of new and old goods are pinned down by
total labor allocated to the production of each kind, which impliesX

j2fN;Sg
cnj (t) =

LnN
Nn (t)

and
X

j2fN;Sg
coj (t) =

LoS + L
o
N

No (t)
: (I19.74)
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Using these expressions for the price and the demand for goods in the �rst-order condition
(I19:71), we have

LoS + L
o
N

LnN

Nn (t)

No (t)
=
coj (t)

cnj (t)
=

�
po (t)

pn (t)

��"
=

 
wS (t)
"
"�1wN (t)

!�"
which leads to an expression for relative wages

! (t) =
"� 1
"

�
LS + L

E
N � LnN
LnN

Nn (t)

No (t)

�1="
, (I19.75)

where we have used that all Southern labor is employed in the production of old goods and
LnN = LEN � LnN by labor market clearing in the North (recall that LEN = LN � LR is the
labor in the production sector).

As in the text, there are two cases to consider. If

"� 1
"

�
LS

LEN

Nn (t)

No (t)

�1="
> 1; (I19.76)

then we are in the specialization equilibrium with LnN = LEN , L
o
N = 0 and ! (t) is given by Eq.

(I19:75) (or the left hand side of Eq. (I19:76)). Else if the condition in (I19:76) fails, then
we are in the equalization equilibrium with ! (t) = 1 and LnN found by solving Eq. (I19:75).
Next note that substituting the prices for new and old goods in terms of wages, the ideal
price index Eq. (I19:70) can be written as

Nn (t)

�
"

"� 1wN (t)
�1�"

+No (t)wS (t)
1�" = 1. (I19.77)

Having characterized ! (t) = wN (t) =wS (t), we can separately solve for wN (t) and wS (t)
from the previous equation, which completes the characterization of the static equilibrium.

Exercise 19.29, Part (c). The value function of a monopolist who owns a new machine
in the North satis�es the HJB equation

rN (t)V (t; �) = � (t; �) + _V (t; �)� �V (t; �) : (I19.78)

Combining Eq. (I19:73) and Eq. (I19:74), per-period pro�ts can be written as

� (t; �) =
1

"� 1L
n
N

wN (t)

Nn (t)
:

Using this in the HJB Eq. (I19:78) and integrating, the net present discounted value of the
monopolist owning the patent for product � can be written as

V (�; t) =

Z 1

t
exp

�
�
Z s

t

�
r
�
s0
�
+ �
�
ds0
�

1

"� 1L
n
N

wN (s)

Nn (s)
ds: (I19.79)

This expression is di¤erent than the expression in Section 13.4 due to the presence of the �
term in the exponential discounting. This term captures the fact that, at �ow rate �, the
monopolist�s good is imitated and she loses the rents.
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Exercise 19.29, Part (d). Given the R&D technology we have assumed in (I19:69),
the free entry condition in an equilibrium with positive R&D is given by

�Nn (t)V (t; �) = wN (t) : (I19.80)

We next consider a BGP equilibrium in which No (t) and Nn (t) grow at the same constant
rate g, and the labor allocation in the North

�
LnN ; L

o
N ; L

R
N

�
is constant. In such an equilibrium,

Eq. (I19:75) implies that ! (t) is constant and Eq. (I19:77) implies that wN (t) and wS (t)
grow at rate g= ("� 1). Since we have normalized the ideal price index to 1, the consumption
in each country grows at the same rate as wages, that is, _Cj (t) =Cj (t) = g= ("� 1). From
the Euler equation for the North, this implies rN (t) = � + �g= ("� 1). Using these in the
value function (I19:79), we have

V (t; �) =
1

"� 1L
n
N

wN (t)

Nn (t)

1

�+ �g= ("� 1) + �� (g= ("� 1)� g) ,

where the (g= ("� 1)� g) term in the denominator captures the growth of wN (t) =Nn (t).
Using the previous expression for the value function in the free entry condition (I19:80), we
have

�
1

"� 1
LnN

(� � 1) g
"�1 + g + �+ �

= 1: (I19.81)

Note also that, on a BGP, we have _No (t) = �Nn (t), hence, No (t) grows at the constant
rate g only if

Nn (t)

No (t)
=
g

�
.

Given this ratio between new and old goods, and using LEN = 1�LRN , our static equilibrium
characterization in Part (c) can be rewritten as

! = max

 
1;
"� 1
"

�
LS

1� LRN
g

�

�1="!

LnN = min

0@1� LRN ; 1� LRN + LS
1 +

�
"
"�1

�"
�
g

1A . (I19.82)

Note also that from the R&D technology in Eq. (I19:69), the growth rate is given by

g =
_N (t)

N (t)
= �

Nn (t)

N (t)
LRN = �

g

g + �
LRN ,

hence LRN = (g + �) =� on a BGP. Plugging this in Eq. (I19:82) and using the resulting
expression in (I19:81), the world growth rate is uniquely solved from

�
1

"� 1

min

�
1� g+�

� ;
1� g+�

�
+LS

1+( "
"�1)

" �
g

�
(� � 1) g

"�1 + g + �+ �
= 1: (I19.83)

Exercise 19.29, Part (e). We claim that an increase in � decreases the world growth
rate g. To prove this, suppose, to reach a contradiction, that g increases in response to an
increase in �. Then, the numerator in Eq. (I19:83) would decrease and the denominator
would increase, yielding a contradiction. This proves that the BGP growth rate is decreasing
in �. Intuitively, a higher rate of imitation reduces the growth rate in this economy since it
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discourages R&D activity in the North. Next we consider the welfare e¤ects of an increase
in �. We have

Uj =

Z 1

0
exp (��t) Cj (t)

1��

1� � dt

=
1

1� �
Cj (0)

1��

�� gc (1� �)
.

Hence, welfare is increasing in the initial level of consumption, Cj (0) and in the growth rate
gc = g= ("� 1). The initial level of consumption is a complicated analytical expression that
depends on all of the variables (including � and g). Intuitively increasing � tends to increase
Cj (0) due to reduced monopoly distortions, since after imitation takes place, competition
eliminates the monopolistic mark-up. Therefore, on the one hand, increasing � is bad for
welfare since it decreases gc, but on the other hand, it is good for welfare since it reduces
static monopoly distortions. The net e¤ect will depend on which force dominates.

The welfare forces we have described so far apply to Northern as well as Southern
economies. There is a third welfare e¤ect of reducing � that e¤ects North and South asym-
metrically: a higher rate of imitation tends to decrease the relative wage of Northern workers.
From the expression in Eq. (I19:75), as � increases, the relative Northern wages (under plau-
sible assumptions on parameters) tend to decrease. Intuitively, when imitation increases, the
relative demand for new goods is lower (since there are relatively fewer new goods). Moreover,
since innovation is discouraged, relatively more Northern labor is employed in production of
new goods and the supply of new goods increases. These forces decrease the price of new
goods and the wages in the North (see also Exercise 19.28).

Combining these e¤ects on welfare, we note that Southern consumers may be worse o¤
from an increase in the rate of imitation. They bene�t from reduced monopoly distortions
and enjoy higher relative wages, but on the other hand they get hurt through reduced inno-
vation and reduced product variety in the future. The net e¤ect on Southern welfare will be
determined depending on the strength of these three economic forces. If innovation in North
is su¢ ciently discouraged and the representative consumer in the South cares su¢ ciently
about the future and/or has high intertemporal elasticity of substitution (i.e. low � and low
�), then an increase in imitation may make the Southern workers worse o¤.

Exercise 19.33

Exercise 19.33, Part (a). We characterize the BGP growth rate of each economy before
and after trade opening. We denote by Lj the population in country j, and by L the world
population.

Before Trade Opening. We conjecture a BGP equilibrium in which each country�s
knowledge stock N j (t) (and hence the world knowledge stock) grows at the same rate g. We
�rst solve for the common world growth rate. The per-period pro�ts for a monopolist in
country j are constant and given by

�j (t) = �
�
Lj � LjR

�
.

The interest rate is also constant on a BGP (and the same in both countries) and V j is given
by

V j (t; �) =
�j (t)

r
=
�
�
Lj � LjR

�
r

.
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Using this expression in the free entry condition �N (t)V j (t; �) = w (t), and noting that the
wages are given by w (t) = �N j (t) = (1� �), we have

��
�
Lj � LjR

�
N (t)

r
=

�

1� �N
j (t) : (I19.84)

Adding up the previous equation for each country j 2 f1; 2g, we get an equation that relates
LR and r,

� (L� LR) =
r

1� � .

Next, note that summing the R&D technology equation _N j (t) = �N (t)LjR over j 2 f1; 2g
yields g =

_N(t)
N(t) = �LR:Using this in the Euler equation for either country j, we have

g = �LR =
1

�
(r � �) ;

as a second equation between LR and r. Combining the two displayed equations, we uniquely
solve for LR as

LR =
(1� �) �L� �
� (� + 1� �) , (I19.85)

and the world growth rate as

g =
(1� �) �L� �
� + 1� � .

Next we turn to the allocation of labor within each country j 2 f1; 2g. SinceN1 (t) =N2 (t)

is constant, the R&D technology equation _N j (t) = �N (t)LjR implies N1 (t) =N2 (t) =
L1R=L

2
R. Similarly, dividing Eq. (I19:84) for each country yields N1 (t) =N2 (t) =�

L� L1R
�
=
�
L� L2R

�
. Combining these observations, we have

LjR
LR

=
Lj � LjR
L� LR

=
Lj

L
=
N j (t)

N (t)
for each j.

In other words, countries�technology levels are proportional to their populations, and each
country allocates the same share of its labor between the R&D and the production sectors,
that is LjR=L

j = LR=L for each j 2 f1; 2g. Then, the allocation of labor within countries
is uniquely characterized using the expression for the world R&D labor LR in Eq. (I19:85).
The BGP allocation we have described will indeed be an equilibrium if the transversality
condition also holds, that is, if � > (1� �) g. This completes the characterization of the BGP
equilibrium allocation. Note that there are transitional dynamics: on a BGP equilibrium, we
have N1 (t) =N2 (t) = L1=L2, thus if the initial levels of technology are not proportional to
population, the technology levels will adjust to this level along the transition path.

After Trade Opening. Suppose there is trade in intermediate goods. We assume that
each country�s intermediate goods are di¤erent. The integrated world economy is similar to
a closed economy, hence the analysis is identical to the one in Section 13.2. We conjecture a
BGP in which each country grows at the same constant rate g. The per-period pro�ts of a
monopolist are given by

�j = �
�
L1 � L1R + L2 � L2R

�
= � (L� LR) .

The interest rate is constant on a BGP and the value function is given by

V j =
��j

r
=
� (L� LR)

r
.
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Plugging this expression in the free entry condition �NV j = w = �N= (1� �), we have
�� (L� LR)N (t)

r
=

�

1� �N (t) ; (I19.86)

as the analogue of Eq. (I19:84). The interest can be solved as r = � (1� �) (L� LR), which,
by the Euler equation, implies

g =
1

�
(� (1� �) (L� LR)� �) .

Combining this with the R&D technology equation that implies g = _N (t) =N (t) = �LR, we
solve for the growth rate as

g =
(1� �) �L� �
� + 1� � . (I19.87)

The BGP allocation with this growth rate will indeed be an equilibrium if the transversality
condition is also satis�ed, which is the case under the parametric restriction � > (1� �) g.
Note that there are no transitional dynamics in the integrated world equilibrium: starting
from any N1 (0) ; N2 (0), the economies immediately start growing at rate g as in the closed
economy version of the model.

It follows that the growth rates in Parts 1 and 2 are identical. Comparing Eqs. (I19:84)
and (I19:86) provides the intuition for this result. On the one hand, the left hand side is
greater in (I19:86) since L�LR > Lj�LjR, that is, each innovated machine is more pro�table
due to the larger market size. On the other hand, the right hand side is also greater in (I19:86),
since N (t) > N j (t), that is wages and hence the cost of R&D are also greater due to better
technology in the competing production sector. Since the world economy is already integrated
in terms of knowledge �ows, these e¤ects exactly cancel each other in the BGP equilibrium
and the growth rate remains identical. However, there are static gains from trade, i.e. each
country�s output is larger at every point after trade opening. To see this, note that output
in country j before trade opening is given by

Y j (t) =
1

1� �N
j (t)Lj ,

whereas output in country j after trade opening is given by

�Y j (t) =
1

1� �N (t)L
j .

We have �Y j (t) > Y j (t) since N (t) > N j (t), that is, due to the Dixit-Stiglitz love-for-variety
in the �nal good sector, trade in intermediate goods increases output levels even though the
output growth rates remain identical.

Exercise 19.33, Part (b). In this case, there are no knowledge �ows and each economy
is essentially a closed economy. The analysis is identical to Section 13.2. Before trade opening,
we obtain as the analogue of Eq. (I19:84)

��
�
Lj � LjR

�
N j (t)

r
=

�

1� �N
j (t) : (I19.88)

and the growth rate of each economy is given by

gj =
(1� �) �Lj � �
� + 1� � . (I19.89)



Solutions Manual for Introduction to Modern Economic Growth 435

After trade opening, the analysis in Part (a) continues to apply and the world growth rate is
given by (I19:87).

Comparing Eq. (I19:89) with (I19:87), we have that the BGP growth rate increases in
both countries after trade opening. To see the intuition, we compare Eq. (I19:88) with
(I19:84). The market size and wage e¤ects identi�ed in Part (a) cancel each other also in
this case. However, trade opening creates additional knowledge spillovers which increases the
R&D incentives. In particular, note that the counterpart of the N j (t) term in Eq. (I19:88)
is N (t) > N j (t) in Eq. (I19:86), which implies that the world growth rate is higher after
trade opening. This analysis then suggests that, if the R&D sector uses scarce factors (such
as labor), trade per se may not increase growth but it may increase growth indirectly by
facilitating knowledge transfer.

Exercise 19.33, Part (c). The model suggests that trade can increase growth only if it
also facilitates knowledge spillovers. There is some empirical evidence in favor of knowledge
spillovers. For example Coe and Helpman (1995) show that R&D investment by own and by
foreign countries increase a country�s productivity growth. Moreover, R&D investment by
trade partners has a greater e¤ect relative to R&D investment by other countries, suggesting
that trade facilitates knowledge spillovers. However, there are also micro level studies that
analyze �rms after they enter exports market, and those studies do not necessarily �nd
an increase in �rm productivity after they enter foreign markets. For example, Bernard
and Jensen (1999) show that the more successful �rms tend to enter the exports markets,
however, once they enter, their productivity does not necessarily increase further. If one
de�nes knowledge spillovers as knowledge �ows from the industry to the production units
(�rms), the micro level studies cast doubt on the assumptions of the model in Part (a).

There is another interpretation of knowledge spillovers which is more consistent with both
the macro and micro level evidence, and which makes the model in Part (a) more plausible. It
could be that trade opening increases technology not because it increases knowledge spillovers
per se, but it causes a selection of more productive �rms within the industry as suggested
by Melitz (2003) and increases industry level productivity. These e¤ects would show in
the aggregate or industry level productivity but not necessarily in the micro studies that
consider the productivity of a particular �rm. With this broad interpretation of spillovers,
the speci�cation in Part (b) (that trade increases �knowledge spillovers�) makes more sense
since the selection forces that increase productivity rely on increased competition (in product
and labor markets) brought about by trade opening.

Exercise 19.34

For simplicity, we suppose that the population in both countries is the same, that is
Lj (t) = L (t) for each j. We �rst solve for the autarky equilibrium. Similar to the analysis
in Chapter 13, the machine producers make pro�ts �j (t) = �L (t), which now grow at rate
n. We conjecture a balanced growth path equilibrium in which the measure of machines
N j (t) grows at a common rate g� in each country j (and thus N (t) grows at rate g�) and
the interest rate rj (t) is constant at the common level r�. In such an equilibrium, the value
function for a technology �rm can be solved as

V j (t) =
�L (t)

r� � n;



436 Solutions Manual for Introduction to Modern Economic Growth

where the denominator is r� � n since pro�ts grow at rate n. Plugging this expression into
the free entry condition, we have

�N (t)�� �L (t)

r� � n = 1. (I19.90)

The previous equation is satis�ed for all t only if the constant growth rate of N (t) is given
by

g� =
n

�
:

Standard arguments then imply that there exists a BGP equilibrium path with this growth
rate if the parameters satisfy

n

�
(1� �) < � (I19.91)

so that the transversality condition holds in each country. Note also that the Euler equation
in either country implies that the interest rate is given by

r� = �+ �g� = �+ �
n

�
.

Plugging this in Eq. (I19:90) implies that the world normalized technology level
(N (t)� =L (t)) along the BGP is uniquely pinned down as 

N (t)�

L (t)

!�
=

��

�+ �n� � n
:

Hence, there are transitional dynamics in the sense that, starting with a di¤erent initial
condition N (0)� =L (0), the world normalized technology level N (t)� =L (t) converges to its
BGP equilibrium level.11

We next consider the equilibrium after trade opening. The machine producers in this
case make pro�ts �j (t) = 2�L (t) since they serve the larger world market. Similar to before,
we conjecture a balanced growth path equilibrium in which the number of machines in each
country grows at rate g�� and the interest rate is constant at r��. In such an equilibrium, a
technology �rm�s value function can be solved as

V j (t) =
2�Lj (t)

r� � n
and the free entry condition implies

�N (t)�� 2�L (t)

r�� � n = 1. (I19.92)

Once again, this equation is satis�ed for all t only if the growth rate is given by

g�� =
n

�
.

Standard arguments then show that there is a BGP equilibrium under the parametric restric-
tion (I19:91). Note that, along the BGP equilibrium we have g�� = g� and r�� = �+�g� = r�,
thus trade opening does not change the growth rate and the interest rate along the BGP.

11Note that the relative technology level in steady state N1 (t) =N2 (t) is indeterminate and depends (in
a non-linear fashion) on the initial level of technology N1 (0) =N2 (0), which is an interesting aspect of the
present model.
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However, note that Eq. (I19:92) implies a greater normalized world technology level in this
case, that is,  

N (t)�

L (t)

!��
=

2��

r� � n >

 
N (t)�

L (t)

!�
:

Hence, even though the BGP technology growth rate is identical, the BGP world technology
level is greater after trade opening. Starting from an initial state corresponding to the autarky
BGP equilibrium, i.e. starting from N (0)� =L (0) = ��= (r� � n), the normalized world
technology level N (t)� =L (t) gradually increases towards its new BGP value 2��= (r� � n).
Immediately after trade opening, there is faster innovation in the world and N (t) grows faster
than g�, but the growth rate gradually declines to the autarky growth rate g�.

Exercise 19.37

Exercise 19.37, Part (a). For expositional purposes, we call sector 1 the manufacturing
sector and sector 2 the agricultural sector and denote the sectoral allocations with superscripts
fm;ag. We also follow the notation in Section 19.7 (rather than the exercise statement) and
denote country allocations with subscripts fs; ng. We normalize pm (t) = 1 and we let pa (t)
denote the price of the agricultural good. We �rst characterize the labor allocations in the
static equilibrium for given levels of An (t) and As (t) such that

An (t) � As (t) and An (t) � 1: (I19.93)

We will verify below that this assumption holds at all t along the equilibrium path.
To characterize the equilibrium labor allocations, we �rst obtain the labor demand and

the labor supply equations for the world economy. Let Lij (t) denote the amount of labor
employed in sector i in country j. Pro�t maximization by the �nal good producers implies
that the relative demand for intermediate goods is given by

Xa
j (t)

Xm
j (t)

=

�
pa (t)

pm (t)

��"
for each j 2 fs; ng .

Using the supply of intermediate goods and market clearing, we have

Xa
s (t) +X

a
n (t) = Las (t) + L

a
n (t)

Xm
s (t) +X

m
n (t) = An (t)L

m
n (t) +As (t)L

m
s (t) .

Combining the demand and the supply equations for intermediate goods and using the nor-
malization pm (t) = 1, we obtain the labor demand equation

pa (t)" =
An (t)L

m
n (t) +As (t)L

m
s (t)

Las (t) + L
a
n (t)

. (I19.94)

Both the Southern and Northern labor get paid their marginal products and they have the
option to work in either sector. Hence, we have the labor supply equations

wn (t) � An (t) , with equality if Lmn (t) > 0 (I19.95)

wn (t) � pa (t) , with equality if Lan (t) > 0

ws (t) � As (t) , with equality if Lms (t) > 0

ws (t) � pa (t) , with equality if Las (t) > 0.

We next characterize the equilibrium labor allocations. In view of Assumption (I19:93),
we claim that Lmn (t) = Ln, that is, the North will specialize in manufacturing. Suppose, to
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reach a contradiction, that some labor in the North works in agriculture. From Eq. (I19:95),
this implies

wn (t) = pa (t) � An (t) : (I19.96)

Since we assume An (t) > As (t), it follows that pa (t) > As (t) and all Southern labor works
in agriculture. Then, from Eq. (I19:94), we have

pa (t) =

�
An (t)L

m
n

Ls + Lan

�1="
<

�
An (t)Ln

Ls

�1="
< An (t)

1=" < An (t) ,

where the �rst inequality uses Lmn (t) +L
a
n (t) = Ln, the second inequality uses Ln < Ls, and

the third inequality uses " > 1 and An (t) � 1. This provides a contradiction to Eq. (I19:96)
and proves our claim that the Northern labor specializes in manufacturing. There are two
possibilities for the labor allocation in the South. The �rst case involves also specialization
in the South, that is, all Southern labor works in agriculture, Las (t) = Ls and Lms (t) = 0. If
this case holds, the labor supply equation (I19:95) implies ws (t) = pa (t) � As (t). From the
labor demand equation (I19:94), we have pa (t) = (An (t)Ln=Ls)

1=". Combining the supply
and the demand sides, we note that this case is an equilibrium if and only if

Ls
Ln

� An (t)

As (t)
" . (I19.97)

The second case applies when Condition (I19:97) fails. In this case Southern labor works in
both sectors. Combining the labor demand equation and the labor supply equation in the
South, Lms is found as the solution to

wa (t) = pa (t) =

�
An (t)Ln +As (t)L

m
s

Ls � Lms

�1="
= As (t) ,

that is

Lms (t) =
Ls � LnAn (t) =As (t)"

1 +As (t)
1�" . (I19.98)

This completes the characterization of the labor allocation in the static equilibrium under
Assumption (I19:93).

We next prove that at time t = 0 there is some learning-by-doing in the South. Note that
we have An (0) = 1 and As (0) = (1� �). Hence Assumption (I19:93) holds at time t = 0 and
our static equilibrium characterization above applies. Note that the opposite of Condition
(I19:97) holds since

Ls
Ln

� An (0)

As (0)
" = (1� �)�" ,

where the inequality follows by the left hand side of condition (19:61) in the exercise state-
ment. Thus at time t = 0 there is no specialization in the South and the Southern labor works
in both sectors. Using (I19:98), the amount of Southern labor employed in manufacturing is
given by

Lms (0) =
Ls � (1� �)�" Ln
1 + (1� �)1�"

> 0.

Since some Southern labor is employed in manufacturing, there is some learning-by-doing in
the South. Eq. (19:61) is necessary for this result to ensure that the supply of labor in the
South is su¢ ciently large (in particular, larger than the world labor demand in agriculture)
so that some Southern labor is allocated to the manufacturing sector.
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Exercise 19.37, Part (b). We conjecture that Assumption (I19:93) holds at all t, which
we verify below. Under this conjecture, our static equilibrium characterization in Part (a)
applies at all t. Hence, the dynamic equilibrium is characterized by the static equilibrium
conditions above and the dynamic learning-by-doing conditions

_An (t)

An (t)
= �Ln (I19.99)

_As (t)

As (t)
= �Lms (t) .

We next claim that, along the conjectured path, Condition (I19:97) will be satis�ed at some
t, hence the South will eventually specialize in agriculture. First, note that if Condition
(I19:97) is satis�ed at some t, then it will be satis�ed at all t0 � t since An (t) will grow but
As (t) will stay constant at this time t. Therefore, suppose, to reach a contradiction, that
Condition (I19:97) is never satis�ed and that there is always learning-by-doing in the South.
Then Lms (t) is given by (I19:98), which implies

_As (t)

As (t)
= �

Ls � An(t)
As(t)

"Ln

1 +As (t)
1�" for all t. (I19.100)

As an intermediate step, we claim that

Ls
Ln

<
1

"
+
An (t)

As (t)
" for all t. (I19.101)

Note that this holds at time t = 0 by the right hand side of the inequality (19:61) in the
exercise statement. Moreover, whenever (I19:101) holds at some t, we have

"
_As (t)

As (t)
= "�

Ls � An(t)
As(t)

"Ln

1 +As (t)
1�"

� �
Ln

1 +As (t)
1�"

� �Ln =
_An (t)

An (t)
, (I19.102)

where the �rst and the last equality respectively use Eqs. (I19:100) and (I19:99) and the
�rst inequality follows from Eq. (I19:101) (which is our induction hypothesis). From Eq.
(I19:102), it follows that An (t) =As (t)

" is increasing whenever Eq. (I19:101) holds, hence
over time the right hand side of Eq. (I19:101) is further relaxed. It then follows by induction
that Eq. (I19:101) holds at all t, completing the intermediate step.

Note that the claim for the intermediate step (I19:101) implies Eq. (I19:102), which
shows that An (t) =As (t)

" is increasing for all t. It follows that An (t) =As (t)
" exceeds Ls=Ln

for su¢ ciently large t hence Condition (I19:97) is eventually satis�ed. This provides a contra-
diction and proves that South eventually specializes in agriculture. To complete the proof,
we also verify our conjecture that Assumption (I19:93) holds for all t. We have An (t) � 1
since An (0) = 1 and An (t) is increasing. To prove that An (t) � As (t), note that Eq.
(I19:102) implies _An (t) =An (t) > _As (t) =As (t) and thus An (t) =As (t) is increasing. Since
An (0) =As (0) > 1, we have An (t) =As (t) > 1 for all t, showing An (t) > As (t). This proves
that Assumption (I19:93) holds for all t, veri�es our conjecture and completes the proof that
the South eventually specializes in agriculture.
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Even though there is initially some learning-by-doing in the South, in the long run the
South will specialize in agriculture and the equilibrium will resemble the case analyzed in
Section 19.7. We need Condition (19:61) for this result since it ensures that the labor force
in the South is not too large and there is limited learning in manufacturing in the South. If
the labor force in the South is much larger than the labor force in the North, then the South
will employ a large amount of labor in manufacturing (even though it also produces all of the
agricultural goods) and its learning-by-doing (eventually) will exceed that of the North. In
this case, in the long run, the South might be more advanced and may eventually specialize in
manufacturing! Note that this result follows from our mechanical assumption that learning-
by-doing is proportional to aggregate manufacturing output. A larger population produces
more output hence bene�ts more from learning-by-doing. However, this type of learning-by-
doing may be less plausible if we take a decentralized view of the economy. If learning-by-
doing occurs within the production units (�rms), and if the aggregate production increase is
due to an increase in the number of �rms rather than an expansion by existing �rms, then
more production does not necessarily imply more learning-by-doing. Therefore, the result
that a much larger South would eventually take over North is best seen as an artifact of our
mechanical (and somewhat unrealistic) assumption for learning-by-doing. Condition (19:61)
allows us to neglect this case.



Chapter 20: Structural Change and Economic Growth

Exercise 20.3

Exercise 20.3, Part (a). The representative consumer chooses�
cA (t) ; cM (t) ; cS (t) ; k (t)

�1
t=0

to maximize (20:1) subject to (20:2) and the resource
constraints (written in e¤ective labor units)

_k (t)+
1

X (t)

�
cM (t)� pA (t) cA (t)� pM (t) cS (t)

�
= r (t) k (t)+

w (t)

X (t)
�(n+ g) k (t) . (I20.1)

Here, r (t) denotes the rental rate of capital which is also the interest rate since there is no
depreciation.

Exercise 20.3, Part (b). From the �rst-order conditions for the consumption aggrega-
tor c (t), the optimum consumption choice satis�es

pA (t)
cA (t)� A

�A
=
cM (t)

�M
= pS (t)

cS (t) + S

�S
. (I20.2)

Substituting for prices pA (t) and pS (t) from Eq. (20:15) and using Eq. (20:2), the previous
equation further implies that per-capita consumption is a constant multiple of the manufac-

turing consumption, that is c (t) = �cM (t) where � �
�
BA�A

BM�M

��A � BS�S

BM�M

��S
. Eq. (I20:2)

also characterizes cA (t) and cS (t) in terms of cM (t), which after substituting into Eq. (I20:1)
and using Eq. (20:15) to replace pA (t) and pS (t) shows that the consumer solves the following
optimization problem

max
[cM (t);k(t)]1t=0

Z 1

0
exp (� (�� n) t)

�
�cM (t)

�1�� � 1
1� � dt

s.t. _k (t) +
1

X (t)

�
cM (t)

�M
+BM

�
S

BS
� A

BA

��
(I20.3)

= r (t) k (t) +
w (t)

X (t)
� (n+ g) k (t) .

The current value Hamiltonian for this problem is

Ĥ
�
t; k (t) ; cM (t) ; � (t)

�
=

�
�cM (t)

�1�� � 1
1� �

+� (t)

�
r (t) k (t) +

w (t)

X (t)
� (n+ g) k (t)� 1

X (t)

�
cM (t)

�M
+BM

�
S

BS
� A

BA

���
.
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The �rst-order conditions are

ĤcM = 0 =) �1��cM (t)�� =
� (t)

�MX (t)

ĤK = (�� n)� (t)� _� (t) =) � _� (t)
� (t)

= r (t)� �� g.

Combining these conditions and using the fact that X (t) grows at rate g, we have the Euler
equation

_cM (t)

cM (t)
=
1

�
(r (t)� �) , (I20.4)

verifying the �rst part of Proposition 20.2.

Exercise 20.3, Part (c). Plugging the expression for prices in Eq. (20:15) in (I20:2),
we derive Eq. (20:17) of the proposition.

Exercise 20.5

Exercise 20.5, Parts (a) and (b). We �rst characterize the di¤erential equation sys-
tem that determines the equilibrium in this economy. Note that from optimization in the
manufacturing sector, the rental rate of capital is given by

r (t) = BMFK (KM (t) ; X (t)LM (t))

= BMf
0
�

KM (t)

X (t)LM (t)

�
= BMf

0 (k (t)) ,

where the second line de�nes f (x) � F (x; 1) and uses the fact that F is constant returns to
scale while the last equality uses Eq. (20:14). Using this expression for the interest rate, the
Euler equation (I20:4) can be written as

_cM (t)

cM (t)
=
1

�

�
BMf 0 (k (t))� �

�
. (I20.5)

Next, note that constant returns to scale in the manufacturing sector implies r (t) k (t) +
w (t) =X (t) = BMf (k (t)), which, after plugging in the household�s budget constraint (I20:3)
gives the resource constraints

_k (t) +
1

X (t)

�
cM (t)

�M
+BM

�
A

BA
� S

BS

��
= BMf (k (t))� (n+ g) k (t) . (I20.6)

The equilibrium path
�
cM (t) ; k (t)

�
t
is characterized by the two di¤erential equations (I20:5)

and (I20:6), the initial condition k (0), and the transversality condition given by

lim
t!1

k (t) exp

�
�
Z t

0

�
BMf 0 (k (s))� n� g

�
ds

�
= 0. (I20.7)

Next we claim that if Condition (20:18) is not satis�ed, then there is no CGP equilibrium.
Consider a CGP equilibrium on which cM (t) grows at a constant rate gc after some time T .
From the Euler equation (I20:5), k (t) = k� = f 0�1

�
(�gc + �) =B

M
�
is constant for all t � T .

Then, the resource constraint (I20:6) at any time t � T can be written as

BMf (k�)� (n+ g) k� = cM (T ) exp ((gc � g) (t� T ))
�M

+
exp (�g (t� T ))

X (T )
BM

�
A

BA
� S

BS

�
.
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If gc > g, then the right hand side exceeds the left hand side for su¢ ciently large t, leading
to a contradiction. If gc < g, then the right hand side goes to zero, but the left hand side
is positive, leading to a contradiction. Hence, it must be the case that gc = g. In this case,
exp (�g (t� T ))

�
A=BA � S=BS

�
remains constant only if A=BA � S=BS = 0, that is,

only if Condition (20:18) holds. It follows that Condition (20:18) is necessary for a CGP to
exist.

Next, we claim that Condition (20:18) is su¢ cient for a unique CGP to exist. Suppose
that Condition (20:18) holds and de�ne normalized manufacturing consumption ~cM (t) =
cM (t) =X (t). The di¤erential equation system (I20:5) and (I20:6) can be written in normal-
ized variables as

_k (t) +
~cM (t)

�M
= BMf (k (t))� (n+ g) k (t) . (I20.8)

d~cM (t) =dt

~cM (t)
=

1

�

�
BMf 0 (k (t))� �

�
� g.

This system has a unique steady state at which ~cM (t) =
�
cM
��
and k (t) = k� are constant

and are implicitly de�ned by

f 0 (k�) = (�+ �g) =BM and
�
~cM
��
= �M

�
BMf (k�)� (n+ g) k�

�
. (I20.9)

Moreover, for any k (0), there exists a saddle path
�
~cM (t) ; k (t)

�
t
that converges to the steady

state. The corresponding
�
cM (t) ; k (t)

�
t
also satis�es the transversality condition (I20:7) since

we have r� � n� g = �� n+ (1� �) g > 0 by Assumption 4. It follows that the equilibrium
path is saddle path stable in normalized variables, and cM (t) and K (t) =L (t) asymptotically
grow at rate g. Moreover, if k (0) = k�, then the equilibrium is at the steady state and cM (t)
and K (t) =L (t) grow exactly at rate g, that is, a CGP exists.

Next, to prove the rest of Proposition 20.4, we characterize the evolution of
cA (t) ; cS (t) ; cM (t) and the allocation of labor to sectors in the CGP equilibrium. Since�
~cM
��
is constant on the CGP, we have _cM (t) =cM (t) = g. The expressions in Eq. (20:19)

for the growth rates of cA (t) and cS (t) then follow from Eq. (20:17). Next, consider the
resource constraints for each sector j at the steady state, which can be written in per-capita
terms as

_K (t)

K (t)
k�X (t) + cM (t) = BM LM (t)

L (t)
X (t) f (k�) (I20.10)

cA (t) = BAL
A (t)

L (t)
X (t) f (k�)

cS (t) = BSL
S (t)

L (t)
X (t) f (k�) .

Since _K (t) =K (t) is constant and since cM (t) and X (t) grow at rate g, the �rst equation
implies that LM (t) =L (t) is constant, or equivalently, _LM (t) =LM (t) = n. Taking the time

derivative of the second equation, we have
_LA(t)
LA(t)

= _cA(t)
cA(t)

+ n� g. Substituting for _cA(t)
cA(t)

from
the �rst line of Eq. (20:19) and using the resource constraints (I20:10) leads to

_LA (t)

LA (t)
= n� g

AL (t) =LA (t)

BAX (t) f (k�)
,

which is the expression in (20:19). The expression for _LS (t) =LS (t) is similarly obtained,
completing the proof of Eq. (20:19). Finally, we note that the share of income accruing to
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capital on the CGP is given by

K (t) r (t)

Y (t)
=

K (t)BMf 0 (k�)

BMF (K (t) ; L (t)X (t))
=

K (t)

L (t)X (t)

f 0 (k�)

f (k�)
=
k�f 0 (k�)

f (k�)

which is constant. This completes the proof of Proposition 20.4.

Exercise 20.6

Our analysis in Exercise 20.5 shows that when Condition (20:18) is satis�ed, the equilib-
rium in normalized variables

�
~cM (t) ; k (t)

�
is saddle path stable and converges to the steady

state
��
~cM
��
; k�
�
. Moreover, the system in normalized variables is isomorphic to the stan-

dard neoclassical economy studied in Chapter 8, hence the saddle path is monotonic in k. In
particular, if k (0) < k�, then k (t) increases towards k�, and if k (0) > k�, then k (t) decreases
towards k� (cf. Proposition 8.7).

Exercise 20.7*

Exercise 20.7, Part (a). As in the model of Section 20.1, we normalize pM (t) = 1 for
all t. In this exercise, it turns out to be convenient to work with e¤ective manufacturing
labor units, therefore we let kj (t) = Kj (t) =

�
Lj (t)BM (t)

�
denote the capital to e¤ective

manufacturing labor ratio in sector j and k (t) = K (t) =
�
L (t)BM (t)

�
denote the total capital

to e¤ective manufacturing labor ratio. We also de�ne

wM (t) = w (t) =BM (t)

as the wages per e¤ective manufacturing labor unit. We �rst derive the analogue of Proposi-
tion 20.1 for the supply side of this economy. Given factor prices r (t) ; wM (t), the �rst-order
conditions for production in sector j imply

kj (t) =
wM (t)

r (t)

�j

1� �j , for each j 2 fA;M;Sg ,

i.e. the relative share of labor and capital in each sector j, k
j(t)r(t)
wM (t)

, is constant. Rearranging
this equation, we obtain

kA (t)
1� �A
�A

= kM (t)
1� �M
�M

= kS (t)
1� �S
�S

=
wM (t)

r (t)
(I20.11)

as the analogue of Eq. (20:14) in Proposition 20.1. Note also that the unit costs of goods
fA;Sg are given by

pA (t) = �Ar (t)�
A

�
w (t)

BA (t)

�1��A
= �Ar (t)�

A

(wM (t))
1��A

�
BM (t)

BA (t)

�1��A
(I20.12)

and pS (t) = �Sr (t)�
S

�
w (t)

BS (t)

�1��S
= �Sr (t)�

S

(wM (t))
1��S

�
BM (t)

BS (t)

�1��S
,

where �j �
�
�j
���j �

1� �j
��(1��j). This equation is the analogue of Eq. (20:15) in Propo-

sition 20.1. In this case the relative prices also depend on the factor prices r (t) and wM (t)
since di¤erent sectors use factors with di¤erent intensities. Note that the pro�t maximization
of manufacturing producers also provides a relationship between the factor prices r (t) ; wM (t)
and the ratio kM (t):

r (t) = �M
�
kM (t)

��M�1
and wM (t) =

�
1� �M

� �
kM (t)

��M
. (I20.13)
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Second, we derive the analogue of Proposition 20.2 for the demand side of the econ-
omy. The representative consumer chooses

�
cA (t) ; cM (t) ; cS (t) ; k (t)

�1
t=0

to maximize (20:1)
subject to the budget constraint written in e¤ective manufacturing labor units

_k (t) = r (t) k (t) + wM (t)�
1

BM (t)

�
pA (t) cA (t) + cM (t) + pS (t) cS (t)

�
�
�
n+ gM

�
k (t) .

(I20.14)
The �rst-order conditions show that the relative demand for the sectors is given by

pA (t)
�
cA (t)� A

�
�A

=
cM (t)

�M
=
pS (t)

�
cS (t) + S

�
�S

: (I20.15)

Using this, the budget constraint (I20:14) can be simpli�ed to

_k (t) +
1

BM (t)

�
cM (t)

�M
+ ApA (t)� SpS (t)

�
= r (t) k (t) + wM (t)�

�
n+ gM

�
k (t) .

(I20.16)
Hence the representative consumer chooses

�
cM (t) ; k (t)

�1
t=0

to maximize (20:1) subject to
the previous equation and Eq. (I20:15). The �rst-order conditions for this problem give

_cM (t)

cM (t)
=
1

�
(r (t)� �) , (I20.17)

as in Proposition 20.2. Moreover, after plugging (I20:12) into (I20:15), the relative demand
equation can be rewritten as

cM (t)

�M
= �Ar (t)�

A

(wM (t))
1��A

�
BM (t)

BA (t)

�1��A
cA (t)� A

�A
(I20.18)

= �Sr (t)�
S

(wM (t))
1��S

�
BM (t)

BS (t)

�1��S
cS (t) + S

�S
.

Eqs. (I20:17) and (I20:18) are the analogue of Proposition 20.2 since they characterize the
demand for each sector conditional on the path of factor prices [r (t) ; w (t)]t.

Exercise 20.7, Part (b). We next combine the supply and the demand side equations
and derive the necessary condition for a CGP equilibrium. Suppose there is a CGP equi-
librium in which cM (t) grows at a constant rate gc and the capital to e¤ective labor ratio
k (t) � k� is constant. From the Euler equation (I20:17), the rental rate r (t) � r� is also
constant. This implies, by Eq. (I20:13), that kM (t) �

�
kM
��
and wM (t) � w�M are also

constant. Since cM (t) grows at rate gc, the resource constraint (I20:16) implies that gc = gM

and that the term ApA (t)� SpS (t) is either zero for all t or grows at rate gM . Using Eq.
(I20:12), we can rewrite this term as

ApA (t)� SpS (t) = A�A (r�)�
A

(w�M )
1��A

�
BM (t)

BA (t)

�1��A
(I20.19)

�S�S (r�)�
S

(w�M )
1��S

�
BM (t)

BS (t)

�1��S
.

Since the growth rates of
�
BM (t)
BA(t)

�1��A
and

�
BM (t)
BS(t)

�1��S
are strictly less than gM , ApA (t)�

SpS (t) cannot grow at rate gM which implies that it must be zero for all t. This has two
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implications. First, Eq. (I20:19) implies that
�
BM (t)
BA(t)

�1��A
and

�
BM (t)
BS(t)

�1��S
must grow at

the same rate, that is, the technology growth rates must satisfy the restriction

gM =
gA
�
1� �A

�
� gS

�
1� �S

�
�S � �A . (I20.20)

Second, the initial prices must satisfy ApA (0) = SpS (0). Substituting for w�M=r
� from Eq.

(I20:11) into Eq. (I20:19), this requirement can be written as

A�A

S�S
=

�
1� �M
�M

�
kM
����A��S BS (0)1��

S

BM (0)�
S��A

BA (0)1��
A . (I20.21)

To characterize the endogenous ratio
�
kM
��
in terms of the exogenous parameters, note that

the Euler equation implies r� = �+ �gM . Using this in Eq.(I20:13),
�
kM
��
can be solved as

�
kM
��
=

�
�M

�+ �gM

�1=(1��M)
.

Substituting this expression for
�
kM
��
, the second requirement (I20:21) can be written as

A�A

S�S
=

0@1� �M
�M

�
�M

�+ �gM

�1=(1��M)1A�A��S

BS (0)1��
S

BM (0)�
S��A

BA (0)1��
A . (I20.22)

Hence, for a CGP equilibrium to exist, the parameters should satisfy the two requirements
Eqs. (I20:20) and (I20:22). Conversely, when these requirements hold, it can be seen that the
results of Section 20.1 generalize to this case and there exists a CGP equilibrium in which
cM (t) grows at the constant rate gM .

Exercise 20.8

Exercise 20.8, Part (a). A competitive equilibrium in this economy is
a sequence of allocations

�
LA (t) ; LM (t) ; Y A (t) ; YM (t) ; cA (t) ; cM (t)

�
t
and prices�

pA (t) ; pM (t) ; w (t) ; pZ (t)
�
t
such that the competitive production sectors maximize pro�ts,

consumers maximize utility, and all markets clear. We normalize the price of the manufac-
turing good, pM (t) = 1 in each period.

Since the factor markets are competitive, from the agricultural �nal good production we
have

w (t) = �pA (t)X (t)

�
LA (t)

Z

���1
and pZ (t) = (1� �) pA (t)X (t)

�
LA (t)

Z

��
. (I20.23)

and from the manufacturing good production we have

w (t) = X (t) . (I20.24)

Combining this with Eq. (I20:24), we have

pA (t) =
1

�

�
LA (t)

Z

�1��
, (I20.25)

which is a supply equation for labor in the agricultural sector.
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From the demand side, the representative consumer solves

max
[cA(t);cM (t)]t

Z 1

0
exp (� (�� n) t) 1

1� �

"��
cA (t)� A

��A
cM (t)�

M

�1��
� 1
#
dt

s.t. pA (t) cA (t) + cM (t) = w (t) .

Note that the representative consumer�s problem is purely static since there are no savings in
this economy. Assuming that there is an interior solution in which cA (t) > �A and cM (t) > 0
(we verify this assumption below), the static optimization of the consumer implies

pA (t)
�
cA (t)� A

�
�A

=
cM (t)

�M
.

We substitute the supply of cA (t) ; cM (t) in this equation and use labor market clearing to
get

pA (t)

�A

 
X (t)

�
LA (t)

��
(Z)1��

L (t)
� A

!
=

1

�M

 
X (t)

�
L (t)� LA (t)

�
L (t)

!
, (I20.26)

which is a demand equation for the agricultural sector that links price of the agricultural
good to the amount of labor employed in agriculture.

The equilibrium level of LA (t) is determined by solving the supply and demand equa-
tions (I20:25) and (I20:26) jointly. Putting these equations together and de�ning lA (t) =
LA (t) =L (t), we have

f
�
lA (t) ; t

�
� lA (t)� A

X (t)

�
lA (t)L (t)

Z

�1��
� ��A

�M
�
1� lA (t)

�
= 0, (I20.27)

which solves for the share of labor in agriculture, lA (t).
To complete the characterization of the equilibrium, we need to verify our assumption for

an interior solution, that is, we need to check that �r each t there exists a solution lA (t) to
Eq. (I20:27) which lies in [0; L (t)]. We also claim that the solution is unique when it exists.
To show these claims, �rst suppose the parameters satisfy

g � n (1� �) (I20.28)

so that L (t)1�� =X (t) is non-increasing. If this term is increasing, then for su¢ ciently large
t, f

�
lA; t

�
will be negative for all lA 2 [0; 1] and there will not be an interior solution. Under

Condition (I20:28), note that f (1; t) is increasing in t. Hence if we assume f (1; 0) > 0, then
we have f (1; t) > 0 for all t. Since we also have f (0; t) < 0, it follows by the intermediate
value theorem that for any t f

�
lA (t) ; t

�
= 0 has an interior solution lA (t) 2 (0; 1). The

condition f (1; 0) > 0 can be rewritten as

X (0)Z1�� (L (0))� > AL (0) . (I20.29)
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Next we claim that the solution to f
�
lA (t) ; t

�
= 0 is unique when it exists. To see this, let

lA 2 [0; 1] be a solution and note that

@f
�
lA (t) ; t

�
@lA (t)

jlA(t)=lA � 1� A (1� �)
�
lA (t)

���
X (t) =L (t)1�� Z1��

+
��A

�M

�����
lA(t)=lA

=
f
�
lA (t) ; t

�
lA (t)

+ �A
�
lA (t)

���
X (t) =L (t)1�� Z1��

+
��A

�M

�����
lA(t)=lA

=
��A

�M
+ �A

�
lA
���

X (t) =L (t)1�� Z1��
> 0,

where the third line uses f
�
lA; t

�
= 0. This shows that the function f (:; t) is always increasing

when it crosses the zero line, which further implies that it crosses the zero line only once and
there is a unique solution lA (t) 2 [0; 1], completing the proof of the claim.

Intuitively, Conditions (I20:28) and (I20:29) ensure that the agricultural productivity is
always su¢ ciently high to produce the subsistence requirement A for the population. We
conclude that under Conditions (I20:28) and (I20:29), there exists a unique equilibrium path
such that the share of labor in agriculture is the unique solution to Eq. (I20:27).

Exercise 20.8, Part (b). We claim that the unique solution lA (t) to Eq. (I20:27) is
decreasing over time, that is, the labor share of manufacturing grows. To see this, recall
that for each t the function f (:; t) crosses the zero line from below. Moreover, by Condition
(I20:28), the term X (t) =L (t)1�� grows thus f

�
lA; t

�
is increasing in t for a given lA, which

implies that the f (:; t) function shifts up over time. Since the function crosses zero from

below, this further implies that the crossing point shifts to the left over time, that is dl
A(t)
dt < 0,

proving our claim.
To see the intuition, we rearrange Eq. (I20:27) as

lA (t) = ht
�
lA (t)

�
� �M

�M + ��A
A

X (t) =L (t)1�� Z1��
lA (t)1�� +

��A

�M + ��A
. (I20.30)

Note that if A was equal to 0, the �rst term on the right hand side would be zero and
there would be a balanced growth path in which a constant share of labor is employed in
agriculture. The �rst term on the right hand side roughly corresponds to the amount of
additional labor that needs to be employed in agriculture to satisfy the subsistence level of
consumption. Due to su¢ ciently rapid technological progress (i.e. from Condition (I20:28)
the productivity in agriculture, X (t)L (t)� grows faster than the subsistence requirement,
AL (t) ), this term decreases, and consequently, the share of labor employed in agriculture
decreases. As technology progresses, less labor is required to cover the subsistence needs, and
it is optimal to shift more of the labor to the manufacturing sector.

Exercise 20.8, Part (c). Since the production function is Cobb-Douglas, the shares of
land and labor in agriculture are constant. More speci�cally, Eq. (I20:23) implies

pZ (t)Z

w (t)LA (t)
=

�

1� �
Substituting w (t) = X (t) from Eq. (I20:24), we have

pZ (t) =
�

1� � L
A (t)X (t) =

�

1� � l
A (t)L (t)X (t) . (I20.31)
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Hence, land rents increase in labor employed in the agricultural sector (which complements
land in production) and technological progress in manufacturing (which increases the price
of the agricultural good).

Plugging in the expression (I20:30) for lA (t), land rents can be rewritten as

pZ (t) =
�M

�M + ��A
AL (t)

Z1��
�
LA (t)

�1��
+

��A

�M + ��A
X (t)L (t) .

Note that it is possible for land rents to decrease along the equilibrium path. The second
term is increasing, but the �rst term need not be increasing since lA (t) is decreasing and
LA (t) = lA (t)L (t) might also be decreasing (for example, it is decreasing when there is no
population growth). Intuitively, land rents may be decreasing because of the demand side
imbalance, which implies that the share of agriculture (and hence the share of land) in output
is larger when productivity is lower. With technological progress, output increases but the
share of land in output decreases, hence land rents may be decreasing if the second e¤ect
dominates.

Nevertheless, we claim that the �rst e¤ect (increase in output) dominates in the
long run and the land rents asymptotically grow at rate g + n. To see this, note that
limt!1X (t) =L (t)1�� =1 (from Condition (I20:28)) and thus Eq. (I20:30) implies that the
demand side imbalance disappear and lA (t) tends to a constant level

lA !
�
lA
��
=

��A

�M + ��A
.

It then follows from Eq. (I20:31) that land rents asymptotically grow at rate n+g. It follows
that, in this economy, the returns to land can be non-monotonic, �rst decreasing as the
economy goes through structural change towards manufacturing, but eventually increasing
once the structural change is complete.

Exercise 20.9*

Our characterization in Exercise 20.5 also applies in this case and shows that the equi-
librium path

�
cM (t) ; k (t)

�
t
is characterized by the di¤erential equations (I20:5) and (I20:6)

along with the initial condition k (0) and the transversality condition (I20:7). Without Con-
dition (20:18), the system can still be written in normalized variables

�
~cM (t) ; k (t)

�
t
as

_k (t) +
~cM (t)

�M
+

BM

X (t)

�
A

BA
� S

BS

�
= BMf (k (t))� (n+ g) k (t) .

d~cM (t) =dt

~cM (t)
=

1

�

�
BMf 0 (k (t))� �

�
� g.

Note that this di¤erential equation system is non-autonomous (time dependent) but converges

to the autonomous system (I20:8) since limt!1
BM

X(t)

�
A

BA
� S

BS

�
= 0. Consequently, there

exists a path
�
~cM (t) ; k (t)

�
t
that solves the non-autonomous system above and converges to

the steady state
��
~cM
��
; k�
�
in Eq. (I20:9). The corresponding path

�
cM (t) ; k (t)

�
t
will also

satisfy the transversality condition since we assume � � n > (1� �) g. Hence, cM (t) and
K (t) =L (t) asymptotically grow at rate g also when Condition (20.18 fails. Intuitively, with
Stone-Geary preferences, the demand side imbalances disappear as X (t) grows hence there
is an asymptotic CGP equilibrium even when Condition (20:18) fails. However, as we have
noted above, there is no CGP equilibrium in which cM (t) grows exactly at a constant rate
after some period T .
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Exercise 20.16*

Exercise 20.16, Part (a). We �rst characterize the static equilibrium taking K (t) as
given. Maximization of the intermediate good producers yields

p1 (t)�1
Y1 (t)

K1 (t)
= r (t) , p1 (t) (1� �1)

Y1 (t)

L1 (t)
= w (t) , and (I20.32)

p2 (t)�2
Y2 (t)

K2 (t)
= r (t) , p2 (t) (1� �2)

Y2 (t)

L2 (t)
= w (t) ,

which summarizes the supply side of the economy. Let us normalize the price of the �nal
good to 1 at every period. Then the demand side is summarized by



1� 

�
Y1 (t)

Y2 (t)

��1="
=
p1 (t)

p2 (t)
, and (I20.33)

"p1 (t)
1�" + (1� )" p2 (t)1�" = 1.

Eqs. (I20:32) � (I20:33) along with the factor market clearing conditions K1 (t) +K2 (t) =
K (t) and L1 (t)+L2 (t) = L (t) constitute 8 equations in 8 unknowns, p1 (t) ; p2 (t) ; w (t) ; r (t)
and K1 (t) ; L1 (t) ;K2 (t) ; L2 (t). These equations characterize the static equilibrium alloca-
tions given K (t) and L (t). In particular, � (0) = K1 (0) =K (0) can be uniquely solved and
is a state variable (which will be important in our analysis below).

We next consider the dynamic equilibrium. Optimization of the representative household
gives the Euler equation and the transversality condition

_c (t)

c (t)
=
1

�
(r (t)� �) , (I20.34)

lim
t!1

exp

�
�
Z t

0
r (s) ds

�
K (t) = 0. (I20.35)

Hence, the dynamic equilibrium allocation can be represented by the path of allocations
and prices [c (t) ;K (t) ; r (t)]t which are characterized as follows: given the path of interest
rate [r (t)]t, the allocation of consumption and capital [c (t) ;K (t)]t is the solution to the
system of two di¤erential equations (20:32) and (I20:34) with the initial condition K (0) and
the transversality condition (I20:35), and given the path for the capital stock [K (t)]t, the
rental rate of capital (and the interest rate) r (t) at each time t is determined from the static
equilibrium conditions above.

We next characterize the dynamic equilibrium conditions in terms of normalized variables.
We de�ne the normalized variables

' (t) = c (t) =
�
L (t)A1 (t)

1=(1��1)
�
; � (t) = K (t) =

�
L (t)A1 (t)

1=(1��1)
�
:

The Euler equation can be rewritten using the normalized variables as

_' (t)

' (t)
=
1

�
(r (t)� �)� n� a1= (1� �1) , (I20.36)

where recall that a1 is the growth rate of A1 (t). To make progress, we need to characterize
r (t) in terms of normalized variables. Note that from Eq. (I20:32), we have

r (t) = �1p1 (t)A1 (t)K1 (t)
�1�1 L1 (t)

1��1

= �1

�
Y (t)

Y1 (t)

�1="
� (t)�1�1 � (t)1��1 � (t)�(1��1) ,
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where the second line uses the de�nition of � (t) and also substitutes � (t) = K1 (t) =K (t)

and � (t) = L1 (t) =L (t). Using Eqs. (20:43) and (20:31), we have Y (t)
Y1(t)

=

"=("�1)
h
1 + �1

�2

1��(t)
�(t)

i"=("�1)
, which, after plugging in the previous displayed equation gives

r (t) = �1
"=("�1)

�
1 +

�1
�2

1� � (t)
� (t)

�1=("�1)
� (t)�1�1 � (t)1��1 � (t)�(1��1) , (I20.37)

which characterizes r (t) in terms of the normalized variables. As suggested in the exercise
statement, we de�ne

� (t) =
Y (t)

Y1 (t)
= "=("�1)

�
1 +

�1
�2

1� � (t)
� (t)

� "
"�1

. (I20.38)

Using this expression to simplify r (t) and plugging r (t) in Eq. (I20:36), we have

_' (t)

' (t)
=
1

�

�
�1� (t)

1=" � (t)�(1��1) � (t)1��1 � (t)�(1��1) � �
�
� n� a1= (1� �1) , (I20.39)

which gives us the �rst dynamic equation.
To get the second equation, consider the resource constraint

_K (t) = Y (t)� C (t) ,

which, after normalizing with A1 (t)
1=(�1�1) L1 (t) and using the supply side equations yield

_� (t)

� (t)
=

Y (t)

K (t)
� ' (t)� (t)�1 � n� a1= (1� �1)

=
Y (t)

Y1 (t)

A1 (t)K1 (t)
�1 L1 (t)

1��1

K (t)
� ' (t)� (t)�1 � n� a1= (1� �1)

= � (t)� (t)�1 � (t)1��1 A1 (t)K (t)
�1�1 L (t)1��1 � ' (t)� (t)�1 � n� a1= (1� �1) .

This gives us the second dynamic equilibrium condition

_� (t)

� (t)
= � (t)� (t)�1 � (t)1��1 � (t)�(1��1) � ' (t)� (t)�1 � n� a1= (1� �1) . (I20.40)

Finally, to get the third equation, recall that Eq. (20:43) provides an expression for � (t)
in terms of Y1(t)Y2(t)

. Di¤erentiating this expression we have

_� (t)

� (t)
= (1� � (t)) "� 1

"

"
_Y1 (t)

Y1 (t)
�
_Y2 (t)

Y2 (t)

#
.

Using Eq. (20:33) to substitute for Y1 (t) and Y2 (t) and rearranging terms, we have

_� (t)

� (t) (1� � (t))
"

"� 1 =
_A1 (t)

A1 (t)
�
_A2 (t)

A2 (t)
+ �1

d(�(t)K(t))
dt

� (t)K (t)
� �2

d(1��(t)K(t))
dt

(1� � (t))K (t)

+ (1� �1)
d(�(t)L(t))

dt

� (t)K (t)
� (1� �2)

d(1��(t)L(t))
dt

(1� � (t))K (t)

= a1 � a2 + (�1 � �2)
"
_� (t)

� (t)
+
_K (t)

K (t)

#
� (�1 � �2)

"
_� (t)

� (t)
+
_L (t)

L (t)

#

��2
�

_� (t)

� (t) (1� � (t))

�
� (1� �2)

 
_� (t)

� (t) (1� � (t))

!
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Next note that di¤erentiating Eq. (20:44) yields
_�(t)

�(t)1��(t) =
_�(t)

�(t)(1��(t)) , which after substi-
tuting in the previous equation and rearranging terms, gives

_� (t)

� (t) (1� � (t))

�
("� 1)�1 + (�1 � �2) (� (t)� � (t))

�
= a1 � a2 + (�1 � �2)

 
_K (t)

K (t)
� n

!
.

Substituting K (t) = � (t)A1 (t)
1=(1��1) L (t) in the previous expression yields

_� (t)

� (t)
=
(1� � (t))

h
a2 � a1 1��21��1 + (�2 � �1)

_�(t)
�(t)

i
(1� ")�1 + (�2 � �1) (� (t)� � (t))

, (I20.41)

as the third dynamic equation.
Note that we have Eqs. (I20:39) ; (I20:40) ; (I20:41) as a system of three di¤erential equa-

tions in three variables ' (t) ; � (t) ; � (t). Moreover, � (0) is given, and as we have argued
above, � (0) is also given as the solution to the static equilibrium at time 0. Hence, these
initial conditions and the transversality condition (I20:35) yield a unique solution, which
corresponds to the equilibrium.

Exercise 20.16, Part (b). Substituting K (t) = � (t)A1 (t)
1=(1��1) L (t), the transver-

sality condition (I20:35) can be written as

lim
t!1

exp

�
�
Z t

0

�
r (s)� a1

1� �1
g � n

�
ds

�
� (t) = 0. (I20.42)

Substituting for r (t) from Eq. (I20:37) gives the transversality condition for the normalized
variables.

Exercise 20.16, Part (c). Recall that we have shown that any allocation that satis�es
the static and dynamic equilibrium conditions, that is, Eqs. (I20:32)� (I20:35) corresponds
to an equilibrium path. Suppose that a path of allocations [' (t) ; � (t) ; � (t)]t satis�es the
system (I20:39) ; (I20:40) ; (I20:41), the initial conditions, and the transversality condition in
(I20:42). We can then reconstruct

c (t) = ' (t)A1 (t)
1=(1��1) L (t)

K (t) = � (t)A1 (t)
1=(1��1) L (t)

� (t) =

�
1 +

�1
�2

1� �2
1� �1

�
1

� (t)
� 1
���1

.

and r (t) from Eq. (I20:37). It can be seen that the path [c (t) ;K (t) ; r (t)]t satis�es the dy-
namic equilibrium conditions (I20:34)� (I20:35), and � (t) ; � (t) along with the constructed
prices satisfy the static equilibrium conditions (I20:32)� (I20:33). This proves that the allo-
cations and prices constructed from the normalized variables are an equilibrium. Intuitively,
Eq. (I20:39) is essentially equivalent to the Euler equation, Eq. (I20:40) is equivalent to the
capital accumulation condition, and Eq. (I20:41) is equivalent to the fact that the allocation
of resources between sectors, � (t), is determined by the static equilibrium conditions. Hence,
the allocation in normalized variables [' (t) ; � (t) ; � (t)]t corresponds to an equilibrium allo-
cation.
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Exercise 20.16, Part (d). We look for a CGP equilibrium in which consumption per-
capita c (t) and the output of the intermediate sectors Y1 (t) ; Y2 (t) grow at asymptotically
constant rates, which we respectively denote by gc; g1, and g2. We claim that, under our
parametric assumptions, sector 1 is the dominant sector and consumption per capita grows
at rate a1= (1� �1) (so normalized consumption ' (t) is asymptotically constant). Since gc
is asymptotically constant, from the Euler equation, we have that r (t) limits to a constant,
which we denote by r. Since C (t) = c (t)L (t) asymptotically grows at rate gc + n, the
aggregate budget constraint

Y (t) = C (t) + _K (t)

and the transversality condition can only be satis�ed if _K (t) and Y (t) also asymptotically
grow at rate gc + n. This further implies that K (t) asymptotically grows at rate gc + n. On

a CGP in which Y1 (t) and Y2 (t) asymptotically grow at a constant rate, limt!1
�
Y1(t)
Y2(t)

� 1�"
"

exists (but could be in�nite) thus Eqs. (20:43) and (20:44) imply that limt!1 � (t) � �� and
limt!1 � (t) � �� also exist. Since the allocation of factors between sectors is asymptotically
constant and the capital stock grows at a constant rate gc + n, Eq. (20:33) implies

g1 = a1 + gc�1 + n and g2 = a2 + gc�1 + n.

Using these expressions for the growth rate of Y1 (t) and Y2 (t) in the CES production function
we have

lim
t!1

_Y (t)

Y (t)
=

�
min (g1; g2) = min (a1 + gc�1; a2 + gc�2) + n if " > 1
max (g1; g2) = max (a1 + gc�1; a2 + gc�2) + n if " < 1

: (I20.43)

Since Y (t) asymptotically grows at the constant rate gc+n, the previous equation provides a
characterization of the asymptotic growth rate gc in terms of the parameters. First suppose
" < 1. Recall that the exercise statement assumes a1= (1� �1) < a2= (1� �2), hence Eq.
(I20:43) implies

gc = a1= (1� �1) . (I20.44)

Else if " > 1, then the exercise statement assumes a1= (1� �1) > a2= (1� �2) and Eq.
(I20:43) again yields Eq. (I20:44). Hence in either case, due to our parametric assumptions,
sector 1 is the dominant sector and consumption per capita asymptotically grows at the (cap-
ital accumulation adjusted) growth rate of technology in sector 1. Next, using the de�nition
of ' (t), we have

lim
t!1

_' (t)

' (t)
= gc � a1= (1� �1) = 0,

which shows that ' (t) limits to a constant on a CGP, which we denote by '�. Recall
also that K (t) asymptotically grows at rate gc + n = a1= (1� �1) + n, hence � (t) =

K (t) =
�
A1 (t)

1=(1��1) L (t)
�
also limits to a constant, which we denote by ��. Moreover,

we have, either " < 1 and g1 > g2, or " > 1 and g1 < g2 and in both cases Eq. (20:43)
implies � (t)! �� = 1. Eq. (20:44) then implies � (t)! 1, proving that all of the normalized
variables limit to a constant on this CGP.

Next note that the asymptotic values of the normalized variables ('�; ��; ��) correspond to
a steady state of the dynamic system given by (I20:39),(I20:40) and (I20:41). To calculate the
steady state in closed form, we plug � (t) = �� ! 1 in Eq. (I20:38) to solve � (t)! �� � 

"
"�1 .

Plugging this expression for �� and �� = �� = 1 in Eq. (I20:40), we can also solve for �� in
terms of exogenous parameters. Hence, in a CGP equilibrium, normalized variables limit to
the steady state ('�; ��; ��) given by
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�� = 1; �� = 1; �� =

�
�+ � (n+ a1= (1� �1))

�1"=("�1)

�1=(�1�1)
(I20.45)

and '� = (��)�1 "=("�1) � �� (n+ a1= (1� �1)) .

This provides an alternative characterization of the CGP equilibrium and an alternative
proof of Proposition 20.10. In a CGP equilibrium, consumption per capita asymptotically
grows at rate gc = a1= (1� �1), capital and output asymptotically grow at rate gc + n, and
sectors 1 and 2 grow at di¤erent rates g1 = a1= (1� �1) and g2 = a2= (1� �2). Resources
are gradually allocated to sector 1 (the dominant sector) and the share of resources allocated
to sector 1 limits to 1.

Exercise 20.16, Part (e). We linearize the system in normalized variables
(I20:39) ; (I20:40),(I20:41) around its steady state given in Eq. (I20:45) and study the dy-
namics of the equilibrium. The system can be written as

d (' (t) ; � (t) ; � (t)) =dt = f (' (t) ; � (t) ; � (t)) ,

where f is a vector valued function with components

f' = '

�
1

�

h
�1� (t)

1=" � (t)1��1 � (t)�(1��1) � (t)�(1��1) � �
i
� n� a1

1� �1

�
;

f� = � (t)1��1 � (t)�1 � (t)�1 � (t)� ' (t)�
�
n+

a1
1� �1

�
� (t) ;

f� =
� (t) (1� � (t))

h
(�2 � �1) _�(t)�(t) + a2 �

1��2
1��1a1

i
(1� ")�1 + (�2 � �1) (� (t)� � (t))

.

The steady state in (I20:45) satis�es f ('�; ��; ��) = 0. Let us denote the steady state vector
by x� = ('�; ��; ��). We consider the linear system

( _'; _�; _�)0 = rf (x�) (('; �; �)� x�)0 , (I20.46)

where rf (x�) denotes the Jacobian of the vector valued function f evaluated at x�, i.e.

rf (x�) =

24 r'f' (x
�) ;r�f' (x

�) ;r�f' (x
�)

r'f� (x
�) ;r�f� (x

�) ;r�f� (x
�)

r'f� (x
�) ;r�f� (x

�) ;r�f� (x
�)

35 . (I20.47)

We are particularly interested in the signs of the eigenvalues of rf (x�) which characterize
the behavior of the linearized system. Some elements of the above matrix and their signs are
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calculated as

r'f' (x
�) =

f' (x
�)

'�
= 0

r�f' (x
�) = (�1 � 1)'

1

�
�1

"=("�1) (��)�(2��1) < 0

r'f� (x
�) = �1 < 0

r'f� (x
�) = 0

r�f� (x
�) =

�� (1� ��)
(1� ")�1

(�2 � �1)r� (�f� (x
�)) = 0

r�f� (x
�) =

f� (x
�)

��
� f� (x

�)

1� �� � �
� (1� ��) d

d�

0@
h
(�2 � �1) _�(t)�(t) + a2 �

1��2
1��1a1

i
(1� ")�1 + (�2 � �1) (� (t)� � (t))

1A
= �f� (x

�)

1� �� =
���

h
a2 � 1��2

1��1a1
i

(1� ")�1
< 0,

where the last inequality follows since, when " < 1, we have a1= (1� �1) < a2= (1� �2), and
when " > 1, we have the opposite. In particular, the matrix in (I20:47) has the form24 0 �

�
0 0 �

35 : (I20.48)

Using a minorant expansion with the �rst column, the determinant is given as the product
of the three negative entries that we have calculated, that is

Det (rf (x�)) = �r�f' (x
�)r'f� (x

�)r�f� (x
�) :

Since each of r�f' (x
�),r'f� (x

�),r�f� (x
�) is negative, the determinant is positive. Then

there are either no negative eigenvalues, or there are two negative eigenvalues and one pos-
itive eigenvalue. By the structure of the Jacobian in (I20:48), r�f� (x

�) < 0 is one of the
eigenvalues of the matrix, which implies that the linear system (I20:46) has two negative
eigenvalues.

Therefore, the system in normalized variables is locally saddle path stable: given the two
state variables � (0), � (0), the consumption variable ' (0) starts on the stable plane and
tends to the steady state as t!1. This argument establishes that the CGP equilibrium is
stable. The argument also provides the intuition for why � (t) should be considered a state
variable. We have already seen that given the state variables (i.e. given K (t)), the static
equilibrium uniquely pins down � (t) and hence � (t) cannot freely adjust and must be a state
variable. The analysis of local dynamics around the steady state con�rms this �nding. Since
there are two negative eigenvalues, the system has a two dimensional stable plane, thus there
should be two state variables and the remaining variable should adjust so that the system is
saddle path stable.

Exercise 20.17

We assume that the production functions for the sectors are given by

YS (t) = A (t)KS (t)
�S LS (t)

1��S

YM (t) = A (t)KS (t)
�M LS (t)

1��M ,
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where �M ; �S (with �M > �S) denote the share of capital in each sector and _A (t) =A (t) =
g > 0 denotes the common rate of Hicks-neutral technological progress. We could assume,
as in Rebelo (1991), that only manufacturing goods are used in investment. However, this
assumption will create an additional demand for investment (over services) that might grow as
the economy accumulates capital. Instead, we want to isolate the standard demand side e¤ect
that tends to reallocate resources from manufacturing to services as the households�income
increases. Therefore, we will solve an alternative exercise in which we assume that C (t) is
a �nal good (rather than a consumption aggregator) and investment goods are produced by
a conversion technology using the �nal good. More speci�cally, instead of the consumption
aggregator speci�ed in the problem, suppose there is a competitive �nal good sector with the
technology

Y (t) =
�
YS (t) + 

SL (t)
��S

YM (t)
�M , (I20.49)

where �M = 1��S and the �nal good is divided between consumption and investment Y (t) =
C (t) + I (t). Note that the �nal good production technology (I20:49) features a standard
demand side e¤ect similar to that in the exercise statement. We have normalized S by the
total population to ensure that population growth itself does not create a demand shift to
services. Note also that this production technology has diminishing returns to scale in inputs
YS (t) and YM (t), thus the competitive �nal good sector will make pro�ts in equilibrium.
We assume that the pro�ts are distributed back to the representative consumer. We also
normalize the price of the �nal good to 1, pY (t) = 1 and we denote the relative price of the
service goods by p (t) = pS (t) =pM (t).

We �rst characterize the static equilibrium for a given level of capital-labor ratio k (t) �
K (t) =L (t) and the level of technology A (t), which we later use to characterize the dynamic
equilibrium. Our analysis for the static equilibrium (in particular, Lemma I20.1 below) shows
that the relative price and the employment share of services will go up in response to capital
deepening. The analysis for the dynamic equilibrium shows that, asymptotically, the demand
side imbalance vanishes and consumption in manufacturing grows faster than services due to
the supply side imbalance.

The Static Equilibrium. To characterize the static equilibrium, we consider the supply
and the demand sides of the economy separately. Let �S (t) = KS (t) =K (t) and �S (t) =
LS (t) =L (t) denote shares of factors allocated to services. On the supply side, we �rst derive a
relationship between factor allocations �S (t) and �S (t). Pro�t maximization by the services
and manufacturing producers gives

pS (t)�S
YS (t)

KS (t)
= r (t) , pS (t) (1� �S)

YS (t)

LS (t)
= w (t) , (I20.50)

pM (t)�M
YM (t)

KM (t)
= r (t) , pM (t) (1� �M )

YM (t)

LM (t)
= w (t) .

Combining these equations yields

kS (t)
1� �S
�S

= kM (t)
1� �M
�M

=
w (t)

r (t)
, (I20.51)

where we used kj (t) = Kj (t) =Lj (t) to denote the capital-labor ratio in a sector j 2 fS;Mg.
Let k (t) = K (t) =L (t) denote the aggregate capital-labor ratio at time t. Dividing Eq.
(I20:51) by k (t) gives

�S
1� �S

�S (t)

�S (t)
=

�M
1� �m

1� �S (t)
1� �S (t)

,
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which further provides a relationship between �S (t) and �S (t)

�S (t) =

�
1 +

1� �S
1� �M

�M
�S

1� �S (t)
�S (t)

��1
. (I20.52)

Note that �S (t) is increasing in �S (t), that is, the resources are allocated together to the
sectors.

Next we characterize �S (t) given the relative price of services p (t) and the capital-labor
ratio k (t). By Eq. (I20:50), we have

pS (t) (1� �S) (kS (t))�S = w (t) = pM (t) (1� �M ) (kM (t))�M .
From Eq. (I20:51), we have that the capital-labor ratio in manufacturing is a constant
multiple of the capital-labor ratio in services. Using this in the preceding equation, we have

p (t) (1� �S) (kS (t))�S = (1� �M )
�
�M
�S

1� �S
1� �M

kS (t)

��M
;

which further yields

p (t) kS (t)
�S��M =

�
�M
�S

��M �1� �M
1� �S

�1��M
. (I20.53)

Dividing by k (t)�S��M , the previous equation can further be written as

�S (t)

�S (t)
=

 �
�M
�S

��M �1� �M
1� �S

�1��M!1=(�m��S)
(p (t))1=(�S��M ) k (t) .

Plugging Eq. (I20:52) in the preceding equation, we have:

�S (t) =

�
1� �S
1� �M

�M
�S

� 1
��1

(I20.54)24 1� �S
1� �M

�M
�S

�
 �

�M
�S

��M �1� �M
1� �S

�1��M 1

p (t)

!1=(�M��S)
k (t)

35 ,
which characterizes the resource allocation �S (t) given the relative price p (t) and the capital-
labor ratio k (t).

Eqs. (I20:54) and (I20:52) summarize the supply side of the economy. In particular,
Eq. (I20:54) enables us to solve for �s (t) given k (t) and p (t), and Eq. (I20:52) solves for
�S (t). Using also market clearing in capital and labor (that is, �M (t) = 1 � �S (t) and
�M (t) = 1� �S (t)), these equations enable us to solve for KS (t) ; LS (t) ;KM (t) ; LM (t) as
functions of p (t). Before we move on to the demand side, let us interpret Eq. (I20:54). We
are particularly interested in how �S (t) changes as k (t) increases, i.e. in response to capital
deepening. Since 1��S

1��M
�M
�S

> 1 (from �M > �S), Eq. (I20:54) shows that, absent price e¤ects
�S (t) tends to decrease in response to capital deepening. Intuitively, since manufacturing is
the capital intensive sector, as the economy accumulates more capital it tends to reallocate
resources towards manufacturing. However, there is a potentially counteracting price e¤ect.
In particular, Eq. (I20:54) also shows that �S (t) is increasing in p (t), that is, as services
become more valuable the economy tends to reallocate resources towards services. From the
analysis of the demand side below, we will see that increasing k (t) tends to increase p (t),
hence the price e¤ect counteracts the e¤ect due to capital deepening. In fact, with the Cobb-
Douglas production function, if there were no demand side imbalances these two e¤ects would
exactly cancel and �S (t) would remain constant in equilibrium (see Proposition 20.6).
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We next formally analyze the demand side. Given the production technology in (I20:49),
the �rst-order conditions for the �nal good producers imply

pS (t) (YS (t) + SL (t))

�S
=
pM (t)YM (t)

�M
.

Using market clearing in services and manufacturing sectors, this equation can be rewritten
as

p (t)
A (t) kS (t)

�S LS (t) + SL (t)

�S
=
A (t) kM (t)

�M LM (t)

�M
.

Using Eq. (I20:51) which relates kM (t) to kS (t), we have

p (t) (A (t) kS (t)
�S LS (t) + SL (t)) = A (t)

�S
�M

�
�M

1� �M
1� �S
�S

kS (t)

��M
LM (t) .

Dividing by A (t)L (t) kS (t)
�M and simplifying, we have

p (t) kS (t)
�S��M

�
�S (t) + S

1

A (t) kS (t)
�S

�
(I20.55)

=
�S
�M

�
�M

1� �m
1� �S
�S

��M
(1� �S (t)) .

This gives us a demand equation that links p (t) to KS (t) ;KM (t) ; LS (t) ; LM (t). In par-
ticular, absent any reallocation (had � (t) and � (t) been constant), and forgetting about the
term with S for now, increasing k (t) increases kS (t) and increases p (t) since �S < �M .
Intuitively, increasing k (t) makes manufacturing sector grow faster (since it is more capital
intensive) and increases the price of services. As explained in Section 20.2.1, the reallocation
e¤ects cannot completely undo the faster growth in manufacturing thus the demand side
forces tend to increase p (t) in response to capital deepening.

The static equilibrium is determined by the supply Eqs. (I20:54) and (I20:52), the demand
equation (I20:55), and market clearing in capital and labor. This constitutes a system with
5 equations in 5 unknowns, KS (t) ;KM (t) ; LS (t) ; LM (t) ; p (t), which has a unique solution
(given k (t) and A (t)). Moreover, once we solve for these allocations, pS (t) and pM (t) can
be determined from the pro�t maximization of the �nal good sector (i.e. as the marginal
product of service and manufacturing goods given the technology (I20:49)). The following
lemma characterizes the properties of the static equilibrium allocation, showing that the
relative price and the employment of services increases in response to capital deepening.

Lemma I20.1. The static equilibrium allocations satisfy

(i)
@p (t)

@k (t)
> 0, (ii)

@�S (t)

@k (t)
> 0,

@�S (t)

@k (t)
> 0.

Before we prove the claim, we provide an interpretation. Part (i) formalizes the price
e¤ect we have discussed above: as k (t) increases, the manufacturing sector grows faster
than services, hence the price of services go up. Reallocation e¤ects can only partially o¤set
this e¤ect. Part (ii) shows that, labor and capital (which necessarily move together by Eq.
(I20:52)) are reallocated to services. Intuitively, the supply side e¤ects do not cause a reallo-
cation in this economy due to the Cobb-Douglas aggregator, hence the e¤ect of reallocation
comes purely from the demand side. The demand side imbalances are such that the demand
for services is increasing with income per capita (and thus increasing with capital deepen-
ing), which increases the price of services and causes a reallocation of resources towards the
services sector.
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Proof. Using Eq. (I20:53), Equation (I20:55) can be rewritten as�
�M
�S

��M �1� �M
1� �S

�1��M �
�S (t) +

S
A (t) ks (t)

�S

�
=�

�M
1� �M

1� �S
�S

��M �S
�M

(1� �S (t)) .

Simplifying the expression and using Eq. (I20:53) once more, we have

�S (t)+
S
A (t)

"�
�M
�S

��M �1� �M
1� �S

�1��M 1

p (t)

# �S
�M��S

=
1� �S
1� �M

�S
�M

(1� �S (t)) .

Solving �S (t) from this equation, we have

�S (t) =

�
1� �S
1� �M

�S
�M

+ 1

��1 2664 1� �S1� �M
�S
�M

� S
A (t)

264
�
�M
�S

��M �1��M
1��S

�1��M
p (t)

375
�S

�M��S

3775 .
(I20.56)

Recall that Eq. (I20:54) is a supply side equation and provides an increasing relationship
between �S (t) and p (t), which we denote by the function �1S (p (t)). Eq. (I20:56) provides
another increasing relationship between �S (t) and p (t), which we denote with the function
�2S (p (t)). The equilibrium is the intersection between these two curves. Note that, as
k (t) increases, �1S (p (t)) curve shifts to the right and the �

2
S (p (t)) curve remains unchanged.

Hence, the e¤ect of an increase in k (t) depends on how the two increasing curves �1S (p (t))
and �2S (p (t)) intersect: either �S (t) and p (t) both go down or they both go up. We next
prove that �1S (p (t)) and �

2
S (p (t)) curves always intersect in a way such that both �S (t) and

p (t) go up. To see this, note that both curves have the form

�iS (p (t)) = Di � Eip (t)�Bi ,
for some constants Di; Ei; Bi. Moreover, we have

D1 =

�
1� �S
1� �M

�M
�S

� 1
��1 1� �S

1� �M
�M
�S

>

�
1� �S
1� �M

�S
�M

+ 1

��1 1� �S
1� �M

�S
�M

= D2

and B1 = 1= (�M � �S) > �S= (�M � �S) = B2. At the intersection point
�
��S (t) ; �p (t)

�
, we

also have
D1 � E1�p (t)�B1 = D2 � E2�p (t)�B2 ,

which implies E1�p (t)
�B1 > E2�p (t)

�B2 since D1 > D2. Combining this with B1 > B2, we
have

d�1 (p (t))

dp (t)

����
(��S(t);�p(t))

=
B1E1�p (t)

�B1

p (t)
>
B2E2�p (t)

�B2

p (t)
=
d�2 (p (t))

dp (t)

����
(��S(t);�p(t))

.

That is, in the (�S (t) ; p (t)) plane (where p (t) corresponds to the y axis), the supply curve
�1S (p (t)) is increasing faster than �

2
S (p (t)) (at the crossing point) so that �

1
S (p (t)) crosses

�2S (p (t)) from below. Hence, when k (t) increases, �
1
S (p (t)) curve shifts to the right and both
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p (t) and �S (t) increase. Eq. (I20:52) then further implies that �S (t) increases, completing
the proof of the claim. �

The Dynamic Equilibrium. The analysis so far has characterized the static variables
given k (t) and A (t). We now consider the dynamic equilibrium. The representative consumer
maximizes

max
[c(t);k(t)]t

Z 1

0
exp (� (�� n) t) c (t)

1��

1� � dt

s.t. YS (t) and YM (t) are solved from the static eq. given k (t) and A (t) .

_k (t) =
(YS (t) + SL (t))

�S YM (t)
�M

L (t)
� c (t)� (n+ �) k (t) , and (I20.57)

_A (t)

A (t)
= g,

_L (t)

L (t)
= n. (I20.58)

The consumer�s dynamic optimization is equivalent to

_c (t)

c (t)
=
1

�
(r (t)� �) , (I20.59)

and the transversality condition

lim
t!1

k (t) exp

�
�
Z t

0
(r (s)� n) ds

�
= 0. (I20.60)

The dynamic equilibrium path [k (t) ; c (t)]t is then characterized by two di¤erential equations
(I20:57) and (I20:59) given the initial condition k (0) � K (0) =L (0) and the transversal-
ity condition (I20:60) [and given the exogenous processes for technology and population in
(I20:58)].

We assume that the technological progress g is large enough so that there is growth and
capital accumulation in this economy at all points in time. Hence, k (t) grows on the dynamic
equilibrium path. Lemma I20:1 then suggests that p (t) increases over time.1 Since A (t) also
grows, the term in Eq. (I20:56) that contains s gets smaller and limits to 0, hence we have

lim
t!1

�S (t) = �S =

�
1� �S
1� �M

�S
�M

+ 1

��1 1� �S
1� �M

�S
�M

. (I20.61)

In other words, in this economy, demand side imbalances fade out as the economy grows and
all that remains are the supply side imbalances. Since the �nal good production is Cobb-
Douglas, as Section 20.2 demonstrates, the supply side imbalances are completely o¤set by
price e¤ects and the allocation of labor (and capital) between sectors tends to an intermediate
constant, that is

�S (t)! ��S 2 (0; 1) and �S (t)! ��S 2 (0; 1) .
To characterize the asymptotic behavior of consumption and the capital stock, we consider

a CGP equilibrium in which c (t) grows at an asymptotically constant rate gc. Then, from
the Euler equation, r (t) is also asymptotically constant at r = �gc + �. From the resource

1Strictly speaking, Lemma I20:1 does not prove this claim since the static equilibrium values also depend
on A (t), which is changing over time. Below, we verify this conjecture by showing that p (t) asymptotically
grows at a positive constant rate.
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constraint (I20:57), the capital-labor ratio k (t) also asymptotically grows at rate gc. It follows
that kS (t) = (�S (t) =�S (t)) k (t) and kM (t) asymptotically grow at rate gc. Recall that,

YM (t) = A (t)KM (t)
�M LM (t)

1��M = A (t) kM (t)
�M �M (t)L (t)

and YS (t) = A (t)KS (t)
�S LS (t)

1��S = A (t) kS (t)
�S �S (t)L (t) .

Hence, asymptotically, YM (t) grows at rate �Mgc+n and YS (t) grows at rate �Sgc+n. Using

Eqs. (I20:61) and (I20:54), we have that k (t) =
�
p (t)1=(�M��S)

�
limits to a constant, thus p (t)

asymptotically grows at the positive rate gp = (�M � �S) gc. Intuitively, the manufacturing
sector asymptotically grows faster (since �Mgc + n > �Sgc + n) and the price of services
grows just enough to o¤set the di¤erence so that the share of both sectors, pM (t)YM (t) and
pS (t)YM (t) remain constant.

We next calculate the growth rate gc in terms of the exogenous variables. From Eq.
(I20:50), we have r (t) = pS (t)A (t)�S (ks (t))

�S�1. Since the interest rate is constant on a
BGP and gc = gk, we have

gpS + g + (�S � 1) gc = 0,

which determines the growth rate in terms of the growth rate of the price of services gpS .
To �nd gpS , note that the production function (I20:49) asymptotes to a constant returns

to scale function thus limt!1
�
pS(t)
�S

��S �pM (t)
�M

��M
= pY (t) = 1. This implies that p (t) =

pS (t) =pM (t) asymptotically grows at the constant rate gc (�M � �S) and thus

gpS = gc (�M � �S)
�M

�M + �S
.

Combining the two displayed equations, we solve

gc =
g

1� �M �M
�M+�S

� �S �S
�M+�S

(I20.62)

as the growth rate in this economy. The allocations we have described will indeed correspond
to an asymptotic CGP if the transversality condition, � > (1� �) gc, is satis�ed where gc is
given by the formula in (I20:62).

Asymptotically, production (and hence consumption) of manufacturing goods grows
faster. Note that, when there is only the demand side reallocation e¤ect towards the ser-
vices (as in the model analyzed in Section 20.1), consumption of services grows faster than
manufacturing. However, this is not necessarily the case in the present model since there is
also the supply side e¤ect that manufacturing sector is more capital intensive. In fact, in the
limit, the demand side imbalance becomes insigni�cant and the remaining supply side e¤ect
makes consumption of manufacturing goods grow faster.

Exercise 20.18

Exercise 20.18, Part (a). Eq. (20:74) in Section 20.3 establishes that the labor share
in manufacturing remains constant at n� = ��1

�
A=BA

�
, where

�(n) � G(1� n)� �G0(1� n)F (n)
(1� �)F 0(n) (I20.63)
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is a strictly decreasing function. Agricultural consumption and production is then also con-
stant and given by

cA (t) = BAG (1� n�)

= BA

�
�(n�) +

�G0(1� n�)F (n�)
(1� �)F 0(n�)

�
= A +BA �

1� �
G0(1� ��1

�
A=BA

�
)F (��1

�
A=BA

�
)

F 0(��1 (A=BA))
; (I20.64)

where the second line uses Eq. (I20:63) and the last line substitutes n� = ��1
�
A=BA

�
.

Exercise 20.18, Part (b). Note that � (:) is a decreasing function, so the share of
agriculture, 1� n� = 1� ��1

�
A=BA

�
is decreasing in BA, which works towards decreasing

the agricultural consumption. On the other hand, for a given n�, higher BA works towards
increasing the agricultural consumption due to higher productivity. We claim that the second
e¤ect dominates and the agricultural consumption in equilibrium increases with productivity.
To see this, di¤erentiate Eq. (I20:64) to get

dcA (t)

dBA

1� �
�

=
G0(1� n�)F (n�)

F 0(n�)
+
d��1

�
A=BA

�
dBA

BA

�
��

d

dn�
G0(1� n�)

�
F (n�)

F 0 (n�)
+

�
d

dn�

�
F (n�)

F 0(n�)

��
G0 (1� n�)

�
.

=
G0(1� n�)F (n�)

F 0(n�)
+

1

�0 (n�)
BA

�
�
�G00

(1� n�) F (n
�)

F 0 (n�)
+

�
1� F (n�)F 00 (n�)

(F 0(n�))2

�
G0 (1� n�)

�
.

All terms in the previous expression are greater than 0 since � is increasing in n� and G and
F are concave and increasing functions, proving dcA (t) =dBA > 0 as desired.

To see the intuition, consider the adjustment in this economy when BA suddenly increases
to some B

A
> BA. Keeping the allocation of labor constant at n�, the relative price of

manufacturing goods to agricultural goods is given by

pM (t)

pA (t)
=
1� �
�

cA (t)� A
cM (t)

=
1� �
�

BAG (1� n�)� A
X (t)F (n�)

. (I20.65)

Thus, due to the subsistence term A, at the time of the change, the relative price of manufac-
turing goods increases by a proportion greater than B

A
=BA. On the other hand, the marginal

productivity of labor in agriculture relative to manufacturing, B
AG0(1�n�)
X(t)F 0(n�) , only increases by

the proportion B
A
=BA. Since the price e¤ect dominates the relative productivity change,

some labor gets reallocated towards the manufacturing sector so that the relative price of
manufacturing declines and the relative marginal productivity of agriculture increases. How-
ever, at the new equilibrium, p

M (t)

pA(t)
is greater than before the change since the reallocation

e¤ect can only partially undo the price e¤ect which caused the reallocation to begin with.
Eq. (I20:65) then implies

cA (t)� A

cM (t)
>
cA (t)� A
cM (t)

.
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It follows that we cannot have cA (t) < cA (t) since this would contradict the previous in-
equality in view of cM (t) > cM (t) (which in turn is because some labor is reallocated to
manufacturing). Hence, the new equilibrium features cA (t) > cA (t), i.e. a higher level of
agricultural output and consumption. In words, a productivity increase in agriculture re-
allocates some labor to the manufacturing sector (by freeing up some labor that used be
employed to satisfy the subsistence requirement), but this reallocation cannot be so large to
reduce the consumption of the agriculture sector (since this would imply reversing the price
e¤ect that caused the reallocation to begin with).

Exercise 20.18, Part (c). We claim that the share of agriculture in total expenditure
is constant, which in turn proves that expenditure on agriculture grows at the same rate as
output. To see this, note that we have

w (t) = BAG0 (1� n�) = p (t)X (t)F 0 (n�) , (I20.66)

which implies that p (t)X (t) stays constant. Recall that the revenue of the manufacturing
sector is p (t)X (t)F (n�), which is constant, and the revenue of the agriculture sector is
BAG (1� n�), which is also constant. Hence, the share of agriculture in total expenditure is
constant and given by

BAG (1� n�)
BAG (1� n�) + p (t)X (t)F (n�) =

BAG (1� n�)
BAG (1� n�) +BAG0 (1� n�) F (n)

F 0(n�)

=
G (1� n�)

G (1� n�) + [G (1� n�)� � (n�)] 1���
=

�

1� 1��
G(1���1(A=BA))

A

BA

, (I20.67)

where the �rst line uses Eq. (I20:66) and the second line uses (I20:63). The expression in
(I20:67) is intuitive. When A = 0, the preferences are Cobb-Douglas, so that a relative
technological change is completely o¤set by relative price e¤ects and the share of expenditure
in agriculture is constant and equal to �. When A > 0 and there is no productivity growth
in agriculture, the price e¤ects still exactly o¤set the productivity growth in manufacturing
and the share of agriculture is constant. But this constant share is greater than �, intuitively
because due to the subsistence requirement households spend a greater fraction of their
income on agriculture. Note also that the share of agriculture in (I20:67) is increasing in A

and decreasing in BA. The higher A, the higher the subsistence requirement and the more
individuals spend on agriculture. Similarly, the higher BA the cheaper the agricultural good
and the less individuals spend on agriculture.

Exercise 20.19*

The equilibrium of this economy is a path of allocations�
[x (�; t)]�2N(t) ; L

M (t) ; LA (t) ;

CA (t) ; CM (t) ; ZM (t) ; N (t)

�
t

and prices
�
pA (t) ; pM (t) ; r (t) ; w (t)

�
t
such that

�rms in the agricultural and manufacturing sectors maximize pro�ts, consumers maximize
utility, the R&D sector maximizes pro�ts, the evolution of N (t) is determined by the
free-entry condition and all markets clear. We normalize the price of the manufacturing
sector to one, i.e. pM (t) = 1 for each t. Let LA (t) be the share of labor employed in
agriculture. We conjecture an equilibrium in which LA (t) � LA is constant. Since the
letter � is used as the share of agriculture in output, we use � to denote the number of
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varieties produced by a unit investment in R&D, that is, the R&D technology is given by
_N (t) = �Z (t).
We �rst characterize the demand side. The representative consumer solves

max
[cA(t);cM (t);a(t)]t

Z 1

0
exp (��t)

�
cA (t)� A

��
cM (t)1�� dt

s.t. _a (t) = r (t) a (t) + w (t)� cM (t)� pA (t) cA (t) ,

where a (t) denotes the per capita assets in this economy. The static �rst-order conditions
give

pA (t)
�
cA (t)� A

�
�

=
cM (t)

1� � . (I20.68)

In the equilibrium that we conjecture, we have cA (t) = BAG
�
LA
�
which is constant. Then

the dynamic �rst-order condition for the choice of cM (t) along the equilibrium path gives

g � _cM (t)

cM (t)
=
1

�
(r (t)� �) . (I20.69)

From the pro�t maximization of the manufacturing �nal good producers, the demand for
each variety is given by

x (�; t) = p (�; t)�1=�
�
L� LA

�
which shows that the optimal price is p (�; t) = 1

1�� (1� �) = 1 and the optimal quantity is
x (�; t) = L�LA. The monopolists�per-period pro�ts are then given by � (�; t) = �

�
L� LA

�
.

In a positive growth equilibrium, the no-arbitrage condition is given by �V (�; t) = 1, which
implies that the value function is constant over time. Since the pro�ts are constant, the
value function is constant only if the interest rate is constant r (t) = r. This further implies
V (�; t) = ��

�
L� LA

�
=r, which after plugging into the free entry condition characterizes

the interest rate as

r = �B (L� LA) . (I20.70)

From the maximization of the �nal good sector, wages are given by

w (t) =
�

1� �N (t) .

Using this in the pro�t maximization for the agricultural sector, we have

BAG0
�
LA
�
= w (t) =pA (t) =

�

1� �
N (t)

pA (t)
, (I20.71)

which completes the characterization of the supply side.
We next combine the demand and the supply side equations to solve for the equilibrium.

Using Eq. (I20:70) in (I20:69), the growth rate in the manufacturing sector is given by

g =
_cM (t)

cM (t)
=
1

�

�
��
�
L� LA

�
� �
�
. (I20.72)

Moreover, the resource constraint for the manufacturing good implies

LcM (t) =
1

1� �N (t)
�
L� LA

�
� (1� �)N (t)

�
L� LA

�
�

_N (t)

�
. (I20.73)
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Since cM (t) grows at the constant rate g, there is a unique level of cM (0) so that, the previous
di¤erential equation for N (t) has a stable solution. For this choice of cM (0), N (t) also grows
at rate g and Eq. (I20:73) can be rewritten as

cM (t) =

�
1

1� �
�
L� LA

�
� (1� �)

�
L� LA

�
� g

�

�
N (t) .
L

Next, substituting this expression for cM (t), using cA (t)L = BAG
�
LA
�
and substituting for

pA (t) from Eq. (I20:71), the demand equation (I20:68) implies

�

1� �
N (t)

BAG0 (LA)

�
BAG

�
LA
�
� AL

�
=

�

1� �

�
� (2� �)
1� �

�
L� LA

�
� g

�

�
N (t) ,

which is satis�ed if and only if LA is a solution to

1

1� �
1

G0 (LA)

�
G
�
LA
�
� A

BA
L

�
=
L� LA
1� �

�
� (2� �)
(1� �) � 1

�
+

�

� (1� �) , (I20.74)

where we also used the expression for the growth rate in (I20:72). This shows that employment
in agriculture is indeed constant on this equilibrium and characterizes LA. The path that we
have described will be an equilibrium if the solution LA to this equation lies in (0; L) and
the growth rate g in Eq. (I20:72) satis�es � > (1� �) g so that the transversality condition
holds. Note that there is no transitional dynamics in the equilibrium we describe: starting
at t = 0, varieties and production in manufacturing grow at the constant rate g:

Note a few properties of the BGP equilibrium. The output in the manufacturing sector
grows at rate g while the agricultural output is constant, thus there is structural change in
the sense that relative production (and consumption) of manufacturing increases. However,
the share of labor employed in the manufacturing sector remains constant. Intuitively, the
demand side ensures that the price of the agricultural goods (relative to the manufacturing
goods) also grows at rate g, which exactly o¤sets the technological progress in manufacturing
and allows for a constant labor share to be employed in agriculture.

Next consider an increase in BA. From (I20:74), when � (2� �) > (1� �) (which is to
say that the share of agriculture is su¢ ciently large), an increase in BA always decreases
LA. A reduction in LA in turn increases the growth rate of the economy in (I20:72). The
intuition for this result is as follows. If there were no demand side imbalance (towards
agriculture), this economy would only have supply side imbalances with a Cobb-Douglas
aggregator. Then growth in manufacturing would be completely o¤set by price e¤ects and
the share of labor in manufacturing would remain constant. In addition to the supply side
e¤ects, the economy also has a demand side imbalance towards agriculture which shifts some
labor towards agriculture. With a higher BA, the subsistence requirement of the economy
can be satis�ed with less labor thus some labor gets allocated to manufacturing. With more
labor employed in manufacturing, the standard market size e¤ect increases innovation and
hence the endogenous growth rate of the economy.





Chapter 21: Structural Transformations and Market Failures
in Development

Exercise 21.1

Once we allow individuals to make a non-trivial portfolio decision, each individual still
has two options. She can join the �nancial coalition and earn Q > q with certainty as the
idiosyncratic risk is shared or she can invest some part of her endowment in the risky asset,
not join the �nancial coalition and earn the random return Q+ ". Note that by relaxing the
assumption that each individual has to invest either all or none of her wealth in the risky
saving technology we do not have to consider the option of investing in the riskless asset
separately as choosing a riskless portfolio is contained in the option of investing a part of
the endowment in the risky asset while not joining the �nancial coalition. The bene�t of
choosing the second option over the �rst one is, that she does not have to pay the �xed costs
� to join the coalition. Let us denote the values from these options as V FC(Wi(t); R(t+ 1))
for joining the �nancial coalition and V R(Wi(t); R(t + 1)) for choosing the risky asset. It is
clear that the �rst option is exactly the same as given in the book (Section 21.1), i.e.

V FC
i (Wi (t) ; R (t+ 1)) = log

�
1

1 + �
(Wi (t)� �)

�
+ � log

�
�R (t+ 1)Q

1 + �
(Wi (t)� �)

�
= log

 
1

1 + �

�
�R (t+ 1)Q

1 + �

��
(Wi (t)� �)1+�

!
:

The value of investing in the risky asset without joining the �nancial coalition is given by

V R
i (Wi (t) ; R (t+ 1)) = max

fc(t);s(t);x(t)g
log c(t) + �Et log c(t+ 1)

s.t. Wi (t) = c(t) + x(t)s(t) + (1� x(t))s(t)
c(t+ 1) = [x(t)s(t)q + (1� x(t))s(t)(Q+ ")]R(t+ 1)

x(t) 2 [0; 1];

where x(t) denotes the share of savings invested in the riskless asset. Note that as x(t) = 1
is always available, we will have

V R
i (Wi (t) ; R (t+ 1)) � V N

i (Wi (t) ; R (t+ 1))

where recall V N
i (Wi (t) ; R (t+ 1)) was de�ned as the value of investing everything in the

risky asset. Let us write the maximization problem a little bit more compact by replacing
c(t+ 1) and c(t). This yields

V R
i (Wi (t) ; R (t+ 1)) (I21.1)

= max
fs(t);x(t)2[0;1]g

log(Wi(t)� s(t)) + �Et log[x(t)s(t)q + (1� x(t))s(t)(Q+ ")]R(t+ 1):

467
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The necessary conditions for an interior solution for this problem are given by

�Et
�

x(t)q + (1� x(t))(Q+ ")
x(t)s(t)q + (1� x(t))s(t)(Q+ ")

�
=

1

(Wi(t)� s(t))
(I21.2)

�Et
�

q �Q� "
x(t)q + (1� x(t))(Q+ ")

�
= 0: (I21.3)

First of all, realize that (I21.2) still determines the individual�s optimal savings conveniently
as

s(t) =
�

1 + �
Wi(t); (I21.4)

i.e. total savings are exactly the same as in the model where we did not allow for a portfolio
choice. This is a very convenient property of the log utility functions. (I21.3) then shows that
the maximizing portfolio share x�(t) is determined as a function of Q and q only (and the
distribution of "). In particular, the optimal portfolio share does not depend on the capital
stock as it is neither dependent on Wi(t) or s(t) (which would introduce a dependence on
the current capital stock) nor on R(t+1) which would introduce a dependency on the future
capital stock K(t+1) (and hence on the current capital stock via the accumulation equation).
Therefore we can write the maximizing portfolio share as

x�(t) = x(Q; q): (I21.5)

To see that (I21.3) determines x(Q; q) uniquely, note that

@

@x
Et
�

q �Q� "
xq + (1� x)(Q+ ")

�
= �Et

�
q �Q� "

xq + (1� x)(Q+ ")

�2
;

so that the LHS of (I21.3) is strictly decreasing in x. Furthermore note that 0 � x(Q; q) < 1
as for x = 1 we get that

Et
�
q �Q� "

q

�
=
q �Q
q

< 0;

as " is a mean-zero shock. Hence, the individual will never hold a riskless portfolio. the
intuition is that when holding the riskless portfolio, the consumer is locally risk neutral so
that the risk induced by the marginal unit of the riskless asset (which has a higher expected
return) is only of second order. Additionally, we have for x = 0 that

Et
�
q �Q� "
Q+ "

�
= Et

�
q

Q+ "

�
� 1 = q

�
Et
�

1

Q+ "

�
� 1
q

�
:

Hence, x will be interior as long as Et
h

1
Q+"

i
> 1

q (which does not follow from our assumption

that Et[Q+ "] = Q > q but will be satis�ed if Q is big enough or the support of " is small).
For notational simplicity and without loss of generality as no results are dependent on this
assumption, let us suppose this is the case. The most important implication of (I21.5) is, that
all individuals who invest a positive amount of funds in the risky sector will invest exactly the
same fraction of their savings. It is precisely this property which implies that all qualitative
results go through even though we allow here for a meaningful portfolio choice. Too see this
formally, substitute (I21.4) and (I21.5) into (I21.1) to get the value of investing a positive
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amount in the risky sector as

V R
i (Wi (t) ; R (t+ 1))

= log

�
Wi(t)

1 + �

�
+ �Et log

�
�R(t+ 1)

1 + �
Wi(t)[x(Q; q)q + (1� x(Q; q))(Q+ ")]

�
= log

�
Wi(t)

1 + �

�
+ � log

�
�R(t+ 1)

1 + �
Wi(t)

�
+ �Et log ([x(Q; q)q + (1� x(Q; q))(Q+ ")])

= log

 
1

1 + �

�
�R(t+ 1)

1 + �

��
Wi(t)

1+�

!
+ �(Q; q)

where we de�ned �(Q; q) = �Et log ([x(Q; q)q + (1� x(Q; q))(Q+ ")]) as this term is only a
function of the exogenous parameters Q and q. In order to characterize the optimal behavior
we just have to compare the two values V FC

i , and V R
i . Joining the �nancial coalition is

preferred as long as

V FC
i (Wi (t) ; R (t+ 1)) � V R

i (Wi (t) ; R (t+ 1))

log

 
(Wi (t)� �)1+�

1 + �

�
�R (t+ 1)Q

1 + �

��!
� log

 
Wi(t)

1+�

1 + �

�
�R(t+ 1)

1 + �

��!
+ �(Q; q)

Wi (t)� �
Wi(t)

�
�
exp (�(Q; q))Q��

�1=(1+�)
Wi(t) � �

1 + (exp (�(Q; q))Q��)1=(1+�)
� Ŵ :

This is a very convenient result, because it again shows that there will be a cuto¤ level of
wealth Ŵ characterizing the optimal behavior. In particular, Ŵ does not depend on the
capital stock and therefore is not dependent on time. This being said, the equilibrium takes
the following form: those individuals with Wi(t) < Ŵ will hold a risky portfolio where the
share of risky assets is given by 1 � x(Q; q) > 0. Those individuals with Wi(t) � Ŵ will
pay the �xed costs, join the �nancial coalition and enjoy the riskless return Q. Hence, the
investment decision is still characterized by a cut-o¤ rule so that the qualitative results on the
aggregate level derived in Section 21.1 are not changed. In particular note that the capital
accumulation will still be deterministic as the shocks " are purely idiosyncratic. However,
now there are �uctuations in consumption as some individuals choose a risky portfolio and
might get a bad draw from the underlying stochastic shock.

Exercise 21.2

Exercise 21.2, Part (a). The capital accumulation equation was given in (21.5) as

K(t+ 1) =
�

1 + �

"
q

Z �(t)

l
ldG(l) +Q

Z �l

�(t)
ldG(l)

#
(1� �)K(t)� � �

1 + �
Q�[1�G(�(t))]

=
�

1 + �

"
q(1� �)K(t)� + (Q� q)

Z �l

�(t)
ldG(l)(1� �)K(t)�

#

� �

1 + �
Q�[1�G(�(t))]; (I21.6)
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where �(t) is de�ned as �(t) = W �

(1��)K(t)� , W
� is given by W � = �

1�(q=Q)�=(1+�)
and average

labor supply
R �l
l ldG(l) is normalized to one. Consequently, the partial derivative of future

capital K(t+ 1) with respect to current capital K(t) is given by

@K(t+ 1)

@K(t)
=

�

1 + �
q�(1� �)K(t)��1 + (Q� q)

Z �l

�(t)
ldG(l)�(1� �)K(t)��1

� �

1 + �

�
(Q� q)(1� �)K(t)��(t)g(�(t)) @�(t)

@K(t)
�Q�g(�(t)) @�(t)

@K(t)

�
;

where we denoted the density function of G by g. As the �rst term is positive we get that

@K(t+ 1)

@K(t)
� � �

1 + �
[(Q� q)(1� �)K(t)��(t)g(�(t))�Q�g(�(t))] @�(t)

@K(t)
: (I21.7)

Now observe that
@�(t)

@K(t)
= �W

��

1� �K(t)
���1

and
@�(t)

@K(t)
(1� �)K(t)��(t) = �(W

�)2�

1� � K(t)���1:

Hence, the expression on the RHS of (I21.7) can be simpli�ed to

@�(t)

@K(t)
[(Q� q)(1� �)K(t)��(t)g(�(t))�Q�g(�(t))]

= �g(�(t))W
��

1� �K(t)
���1 [(Q� q)W � �Q�] : (I21.8)

But now note that (Q� q)W � > Q� as

(Q� q)
Q�

W � =
Q� q

Q
�
1� (q=Q)�=(1+�)

� > 1:
This shows that the term in (I21.8) is negative so that (I21.7) implies that

@K(t+ 1)

@K(t)
> 0

as required.
To show the second part, i.e. that there exists some capital level �K such that the capital

stock increases over time whenever K(t) < �K,1 let us �rst de�ne

~K =

�
W �

(1� �)�l

�1=�
:

For K(t) � ~K we then have that

�(t) =
W �

(1� �)K(t)� =
W �

(1� �) ~K�

 
~K

K(t)

!�
= �l

 
~K

K(t)

!�
� �l:

1Please note that there is a small typo in the exercise statement. The exercise asks you to show that
capital increases over time whenever K(t) < �K (not K(t) > �K as asked in the statement found in the book).
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So once the capital level is lower than ~K, the capital accumulation equation in (I21.6) reduces
to

K(t+ 1) =
�

1 + �
q(1� �)K(t)�: (I21.9)

Then de�ne

K̂ =

�
�q(1� �)
1 + �

�1=(1��)
:

From (I21.9) we then get that for K(t) < K̂

K(t+ 1)�K(t)
K(t)

=
�

1 + �
q(1� �)K(t)��1 � 1 =

 
K̂

K(t)

!1��
� 1 > 0;

i.e. wheneverK(t) < K̂ andK(t) < ~K,K(t) increases over time. Hence, let �K = minfK̂; ~Kg.
By construction K(t) increases over time as long as K(t) < �K.

Exercise 21.2, Part (b). A steady state in this economy is characterized by some level
of capital K� such that K(t+ 1) = K(t) = K�. This implies that in such a steady state we
have �(t) = �� = W �

(1��)(K�)� so that using (I21.6), K
� solves

K� =
�

1 + �

"
q(1� �)(K�)� + (Q� q)

Z �l

��
ldG(l)(1� �)(K�)� �Q�[1�G(��)]

#
: (I21.10)

But there is no reason to believe that (I21.10) has unique solution as we did not put any
restriction on G or the upper bound of labor supply �l. The intuition why multiple steady
states are possible in this economy is the following. If capital is low, wages are low as wages
are given by

w(t) = (1� �)K(t)�:
But if wages are low, only few people are rich enough to be willing to invest in the high
return project (and incur the �xed costs). This depresses capital accumulation and wages
will be low in the future. Hence there might be a steady state with a low capital level. If
on the other hand the economy is capital-rich, wages are high, many individuals consider it
worthwhile to participate in the �nancial market and the future capital stock will be large.
Such a situation would correspond to a steady state with a high level of capital.

Exercise 21.2, Part (c). To �nd a su¢ cient condition for a unique steady state, note
that this reduces to �nding a su¢ cient condition for the equation

K� =
�

1 + �

"
q(1� �)(K�)� + (Q� q)

Z �l

��
ldG(l)(1� �)(K�)� �Q�[1�G(��)]

#
to have a unique solution. Again we de�ned �� = W �

(1��)(K�)� . Hence let us de�ne the function

h(K) =

�
1+�

h
q(1� �)K� + (Q� q)

R �l
� ldG(l)(1� �)K

� �Q�[1�G(�)]
i
�K

K
: (I21.11)

By construction, the steady state levels K� are implicitly de�ned by

h(K�) = 0: (I21.12)
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Hence, there will be a unique steady state, if and only if there exists a unique solution to
(I21.12). As

lim
K!1

h(K) = lim
K!1

�
1+�

h
q(1� �)(K)� + (Q� q)

R �l
� ldG(l)(1� �)(K)

� �Q�[1�G(�)]
i
�K

K

= lim
K!1

�
1+� [Q(1� �)K

� �Q�]
K

� 1 = �1;

and

lim
K!0

h(K) = lim
K!0

�
1+�

h
q(1� �)(K)� + (Q� q)

R �l
� ldG(l)(1� �)(K)

� �Q�[1�G(�)]
i
�K

K

= lim
K!0

�
1+� q(1� �)(K)

�

K
� 1 =1;

a su¢ cient condition for a unique steady state is that h(:) is strictly decreasing in K. By
di¤erentiating (I21.11), we see that this will be the case if

q(1� �)2K� + (Q� q)(1� �)2K�

Z �l

W�
(1��)K�

ldG�Q�
�
1�G

�
W �

(1� �)K�

��
> g

�
W �

(1� �)K�

�
W �

(1� �)K�
[(Q� q)W � �Q��] : (I21.13)

As the RHS of (I21.13) is positive, this condition is not automatically satis�ed (which again
shows that this model will not automatically have a unique steady state).

But suppose that this is the case. As

K(t+ 1)�K(t)
K(t)

= h(K(t));

h(:) is strictly decreasing and satis�es h(K�) = 0 by construction, we get that for K(t) < K�

K(t+ 1)�K(t)
K(t)

= h(K(t)) > h(K�) = 0:

Hence, whenever K(t) < K�, it will be the case that K(t+ 1) > K(t). Analogously we also
have that

K(t+ 1) < K(t) whenever K(t) > K�:

Hence, the capital stock of this economy will converge to the unique steady state level of
capital K� for all initial conditions K(0).

Exercise 21.4

In order to analyze the full dynamics of the model presented in subsection 21.3.1, let us
gather the main equations governing the dynamics. The migration decision of the labor force
is given in (21.26) by

_LR (t)

8<:
= ��LR (t) if wU (t) > wR (t)

2
�
��LR (t) ; 0

�
if wU (t) = wR (t)

= 0 if wU (t) < wR (t)
: (I21.14)
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As labor markets are competitive, wages are given by the marginal product of labor, which
implies that

wR (t) = BA and wU (t) =
@F
�
K (t) ; LU (t)

�
@L

= f(k(t))� k(t)f 0(k(t)); (I21.15)

where k(t) denotes the urban capital-labor ratio, i.e.

k(t) =
K(t)

LU (t)
:

Furthermore recall that we de�ned the wage equalizing capital-labor ratio as �k, i.e. �k is
implicitly de�ned by

f(�k)� �kf 0(�k) = BA: (I21.16)

Note that (I21.16) implies that

k < �k =) wU < wR and k > �k =) wU > wR: (I21.17)

The dynamics of the urban capital-labor ratio are given by

_k (t) =
_K(t)

LU (t)
� k(t)

_LU (t)

LU (t)

= sf(k(t))� �k(t) + k(t)
_LR(t)

LR(t)

LR(t)

LU (t)

= sf(k(t))� k(t)
 
� � �(t)

_LR(t)

LR(t)

!
; (I21.18)

where �(t) was de�ned as the rural-to-urban population ratio, i.e. �(t) = LR(t)
LU (t)

. Using

(I21.18), (I21.15), (I21.16) and (I21.17), the law of motion for LR(t) given in (I21.14) implies
that

_k (t) =

8><>:
sf (k (t))� (� + �� (t)) k (t) if k(t) > �k

sf (k (t))� �k (t) if k(t) < �k

sf(k(t))� k(t)
�
� � �(t) _L

R(t)
LR(t)

�
if k(t) = �k

; (I21.19)

where
_LR(t)
LR(t)

in the third case is consistent with (I21.14) and re�ects the fact that the change
in the rural labor force is not uniquely pinned down in case rural and urban wages are equal.
Additionally we implicitly de�ned steady state capital-labor ratio k̂

sf(k̂) = �k̂.

Using this notation we can now analyze the full dynamics in this economy. The analysis in the
book only considered the case where the following conditions were satis�ed simultaneously:

k(0) < k̂ (I21.20)

k(0) > �k (I21.21)

sf(k(0)� (� + �� (0)) k (0) < 0: (I21.22)

To analyze the full dynamics of the model, let us now consider the di¤erent cases, where
those initial conditions do not hold simultaneously. For simplicity let us assume that

k̂ > �k: (I21.23)

Note that this is also in line with the analysis in the book, which considered the case of
�k < k(0) < k̂. (I21.23) implies that the steady will involve L̂R = 0 and L̂U = 1. To see this,
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suppose there was a steady state where k(t) = k� and �(t) = �� 2 (0; 1) were constant and
there was no full migration to the city. For �(t) to be constant we need that

0 = _�(t) =
_LR(t)LU (t)� LR(t) _LU (t)

(LU (t))2
=
_LR(t)

�
LU (t) + LR(t)

�
(LU (t))2

=
_LR(t)

(LU (t))2
;

i.e. _LR(t) = 0. Using (I21.14) and our assertion that
�
LR
��
> 0 implies wU � wR, which by

(I21.17) implies that

f(k�)� k�f 0(k�) � BA = f(�k)� �kf 0(�k); (I21.24)

as otherwise everyone would migrate to the city. But for k(t) to be constant we need that

0 = _k(t) = sf (k�)� �k� (I21.25)

so that k� = k̂ as (I21.25) has a unique solution given by k̂. But as f(k)� kf 0(k) is strictly
increasing in k, (I21.24) requires that

k̂ � �k;
which contradicts our assumption (I21.23). Hence, (I21.23) implies that the only steady state
will involve full migration to the city. This being said let us now turn to the full analysis of
the model.

Case 1: (I21.21) and (I21.22) hold, but (I21.20) does not.
Let us start with the case of k(0) > k̂. As (I21.21) is still satis�ed, it will still be the case

that wU (0) > wR(t) so that initially, rural workers will migrate at rate �. From (I21.22) we
the know that the capital-labor ratio will initially decrease. In fact, the capital-labor ratio
will decrease until some t = t0 is reached where k(t0) = k̂. To see this, note that for all
k(t) > k̂ > �k (see (I21.23)) we have from (I21.19) that

_k(t) = sf (k (t))� (� + �� (t)) k (t) = sf (k (t))� �k (t)� �� (t) k (t) < sf (k (t))� �k (t) < 0;

where the last inequality uses that

sf (k (t))� �k (t) = k(t)

�
sf(k(t))

k(t)
� �
�
= k(t)

"
sf(k(t))

k(t)
� sf(k̂)

k̂

#
< 0

as sf(k)
k is decreasing in k and k(t) > k̂. Hence, the capital-labor ratio is decreasing as long

as k(t) > k̂. If the capital-labor ever "passes" the steady state, i.e. if we have _k(t0) < 0,
depends on the behavior of LR(t). Clearly, LR(t) decreases as along as k(t) > �k. Hence, _k(t0)
is given by

_k(t0) = sf
�
k
�
t0
��
� �k

�
t0
�
� ��

�
t0
�
k
�
t0
�
= ���

�
t0
�
k
�
t0
�
; (I21.26)

where recall t0 is de�ned to be the �rst time where k(t0) = k̂ and therefore sf (k (t0))��k (t0) =
sf(k̂) � �k̂ = 0 So if � (t0) > 0, the capital-labor ratio will further decrease. If however
� (t0) = 0, i.e. if full migration has already taken place, the economy has reached its steady
state and will stay at k(t) = k̂ and LR(t) = 0 = L̂R forever. So suppose that � (t0) > 0 so
that k(t) will pass its steady state level. Once it has done so, k(t) will be contained in the
set [�k; k̂]. To see this, note that (I21.26) shows that _k(t) � 0 if k(t) = k̂. Similarly note that
for k(t) = �k, (I21.19) shows that

_k(t) = sf(�k)� �k
 
� � �(t)

_LR(t)

LR(t)

!
� 0;
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where the inequality follows from the fact that sf(�k) � �k� > 0 and
_LR(t)
LR(t)

= 0 for k(t) <
�k. Hence, during this phase labor will constantly be migrating to the city so that �(t) is
decreasing over time. This readily implies that there will be some point in time t = t00, where
�(t00) = 0. From then on, the capital-labor ratio will increase over time and converge to its
steady state level k̂, where it will stay forever. Note that the behavior of k(t) during this
phase of transition is not necessarily monotone. As long as k(t) > �k we have that

_k(t) = [sf(k(t))� k(t)�]� �(t)k(t)�:
Whereas the �rst term in brackets is positive, the last term is negative. Hence the expression
is in general ambiguous (see the analysis of Case 2 below for a more formal presentation).
As �(t) is decreasing over time however, the in�uence of the last term will decrease so that
k(t) will increase to its steady state value eventually.

To analyze the behavior of urban wages, note that

wU (t) = f(k(t))� k(t)f 0(k(t))
is a one-to-one function of k(t), which is increasing in k(t). Hence, wU (t) will mimic the
behavior of k(t), i.e. wages will decrease initially. Then they will either stay at their steady
state value or further decreases. In the latter case there will potentially be a period of
�uctuations until they �nally start increasing towards their steady state value.

Case 2: (I21.20) and (I21.22) hold, but (I21.21) does not.
With (I21.21) being violated, it is clear that wU (0) < wR(0).2 Hence the initial dynamics

of the capital-labor ratio will be given by
_k(t) = sf (k (t))� �k (t) > 0;

where the inequality follows from k(0) < k̂. As the capital-labor ratio will be increasing as
long as k(t) < �k, there will be some point in time t0 where k(t0) = �k. Once the capital-labor
ratio has reached the level where wages are equalized, there are again two cases to consider.
If

sf
�
�k
�
� ��k � �k��(t0) = sf

�
�k
�
� ��k � �k��(0) < 0;

i.e. if the capital-labor ratio would decrease if rural workers were migrating at rate �, there

will be partial migration (i.e. 0 >
_LR(t)
LR(t)

> ��) and the capital-labor ratio will stay at k(t) = �k
for a while. From

_k(t) = sf
�
�k
�
� ��k + �k

_LR(t)

LR(t)
�(t) = 0

we get that
_LR(t)

LR(t)
�(t) = �1�k

�
sf
�
�k
�
� ��k

�
< 0: (I21.27)

As �(t) > 0, this shows that
_LR(t)
LR(t)

< 0 so that �(t) will be decreasing over time. Hence��� _LR(t)LR(t)

��� will be increasing, i.e. rural workers will migrate at an ever faster rate to keep

2Note that this case violates the assumption made in the book that

@F (K(0); 1)

@L
> BA

as

wU (0) =
@F (K(0); LU (0))

@L
>
@F (K(0); 1)

@L
:
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(I21.27) satis�ed. This process will keep going on until at t = t00 the rural-to-urban ratio has
reached the level

�(t00) =
1

��k

�
sf
�
�k
�
� ��k

�
; (I21.28)

which implies that _k(t00) = 0 and
_LR(t00)
LR(t00)

= ��. As _�(t00) < 0, the capital-labor ratio will

then start increasing. From then on, we will have k(t) > �k so that �(t) keeps declining for
all t > t00 as rural labor migrates at rate �. Hence there exists t000 such that �(t000) = 0. Note
that k(t000) < k̂ as for all t < t000 we will have _k(t) < 0 for all k(t) � k̂ (see the analysis in
Case 1 above). Hence starting at t000 the capital-labor ratio will increase towards the steady
state and remain there once it has reached it. For the transition phase note that again the
behavior of k(t) will not necessarily be monotone. The law of motion for all t 2 (t00; t000) (i.e.
when k(t) is still between �k and k(t000) < k̂) is given by

_k(t) = sf (k(t))� �k(t)� k(t)��(t);
where again sf (k(t)) � �k(t) is positive but declining in k(t) and k(t)��(t) is also positive,
increasing in k(t) and declining in t (for given k(t)) as �(t) is decreasing. So there might be
�uctuations in k(t) which are not necessarily monotone. To see this formally, note that we
can pin down the behavior of �(t) via its law of motion and the initial condition in (I21.28).
First of all note that for all t � t00

_�(t) =
d

dt

�
LR(t)

LU (t)

�
=

d

dt

�
LR(t)

1� LR(t)

�
=
_LR(t)

LR(t)
�(t)(1� �(t)) = ���(t)(1� �(t)); (I21.29)

as k(t) > �k for all t � t00 (and hence
_LR(t00)
LR(t00)

= ��). Therefore,

�(t) = �(t00) +

Z t

t00
_�(s)ds = �(t00)� �

Z t

t00
�(s)(1� �(s))ds;

so that the capital accumulation equation is given by
_k(t) = sf (k(t))� �k(t)� k(t)��(t)

= sf (k(t))� �k(t)� k(t)��(t00) + k(t)�2
Z t

t00
�(s)(1� �(s))ds; (I21.30)

where �(s) accumulates according to (I21.29). But now note that (I21.30) can be written as

_k(t) = k(t)

�
sf (k(t))

k(t)
� � � ��(t00)

�
+ k(t)�2

Z t

t00
�(s)(1� �(s))ds

= k(t)

"
sf (k(t))

k(t)
�
sf
�
�k
�

�k

#
+ k(t)�2

Z t

t00
�(s)(1� �(s))ds;

where the second line uses (I21.28). As sf(k)
k is decreasing in k and k(t) > �k for all t > t00,

the �rst term is negative and the second term is positive. Hence, there is no guarantee
that _k(t) > 0 for all t > t00, i.e. there might be �uctuations during the transition phase.
Eventually however, these �uctuations will cease and the capital-labor ratio will increase.
The behavior of wages is again analogous. After a period of increasing wages, wages will
stagnate while rural labor is moving to city. After some time, the �ow of rural workers is
too small to put enough downward pressure on wages to accommodate the wage-increasing
force of capital accumulation. Wages start rising and will potentially �uctuate for some time
at higher levels. Eventually, the entire population will be living in the city and wages will
increase towards their steady state value as the capital-labor ratio increases over time.
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Case 3: (I21.20) and (I21.21) hold, but (I21.22) does not.
In case (I21.22) is violated, the capital-labor ratio will increase initially, i.e. in spite of

rural labor migrating at their maximum rate � (as (I21.21) implies that wU (0) > wR(0)) the
force of capital accumulation is strong enough for k(t) to increase initially. As in Cases 1 and
2 analyzed above, k(t) will be contained in compact set [�k; k̂] for all t and will converge to its
steady state value as �(t) is strictly decreasing over time as wU (t) > wR(t) for all t. Again
the evolution of k(t) is not necessarily monotone as (like in the cases above) both the force
of capital accumulation (as k(t) < k̂) will be active (which tends to increase k) and there will
be migration (which tends to decrease k). Eventually the former e¤ect will dominate (as �(t)
converges to zero so that rural migration ceases) but during the transition phase the total
e¤ect is ambiguous. Like in the cases above, the dynamic behavior of k(t) maps one-to-one
into the dynamics or urban wages. Wages will therefore increase initially, then potentially
�uctuate for some time and then increase towards their steady state value.

Exercise 21.6

Exercise 21.6, Part (a). The easiest way to see why the problem above in fact char-
acterizes the equilibrium allocation of workers to tasks is a simple application of the Welfare
Theorems laid out in Section 5.6. The production sets of this economy satisfy the require-
ments for an application of the Second Welfare Theorem (Theorem 5.7), i.e. they are cones
and are convex. Let us furthermore assume that the consumption side of this economy is
characterized by individuals endowed with utility functions that are quasi-concave and sat-
isfy local non-satiation. Then the Second Welfare Theorem implies that we can �nd prices
and transfers such that a Pareto optimal allocation can be decentralized as a competitive
equilibrium. But the allocation of labor across sectors that solves the maximization problem
in (21.31) will be the allocation chosen in any Pareto optimal allocation. Hence, any equilib-
rium in this economy will have a labor allocation across sectors characterized by (21.31). To
sustain such an allocation as an equilibrium, consider a price system of the following form:
let wL and wH be the current wage rate for skilled and unskilled workers respectively. Taking
these prices as given, a �rm with access to technology h will employ L low skilled and hL
high skilled workers Such a �rm will have a pro�t of

�(h) = AhL� wLL� wHhL = (Ah � wL � wHh)L:
Now note that we need to have

Ah � wL � wHh � 0 8h (I21.31)

for (wL; wH) to be equilibrium prices. Otherwise the �rm with access to the technology
for which (I21.31) was violated would demand an in�nite amount of labor. But (I21.31) is
exactly identical to (21.32) where the respective wages are replaced by the respective Lagrange
multipliers.

Exercise 21.6, Part (b). To derive the �rst-order conditions given in (21.32) let us set
up the Lagrangian for the maximization problem. In particular let us explicitly incorporate
the non-negativity constraints on labor inputs L(h). The Lagrangian is given by

L =
Z �h

0
AhL (h) dh+ �L

 
L�

Z �h

0
L (h) dh

!
+ �H

 
H �

Z �h

0
hL (h) dh

!
+

Z �h

0
�(h)L(h)dh

where �L; �H ; [�(h)]h2[0:�h] are the multipliers associated with the two resource constraints and
the non-negativity constraints. Note especially there is a continuum of constraints associated
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with the constraint that labor inputs cannot be negative. The necessary conditions for this
problem are given by

@L
@L(h)

= Ah � �L � �Hh+ �(h) = 0 8h 2 [0; �h] (I21.32)

�L � 0; �L

 
L�

Z �h

0
L (h) dh

!
= 0 (I21.33)

�H � 0; �H

 
H �

Z �h

0
hL (h) dh

!
= 0

�(h) � 0; �(h)L(h) = 0 8h 2 [0; �h]; (I21.34)

where (I21.33) to (I21.34) are the respective complementary slackness conditions. (I21.32)
then implies that for all h, it will be true that

Ah = �L + �Hh� �(h) � �L + �Hh;

as �(h) � 0 (see (I21.34)). Furthermore note that we will necessarily have �L > 0, i.e. the
resource constraint for low skilled labor will be binding. This follows immediately from the
fact that the technology A0 does not require any high skilled labor so that the maximand could
be increased by using that technology if there was additional low skilled labor. Additionally,
the resource constraint for high skilled labor will also be binding as Ah is increasing in h.
Intuitively, if there were some idle skilled workers, you would use the low skilled workers
now employed with technology A0 together with those skilled workers in the sector with high
technology Ah. This would increase the total amount of goods produced. Hence we will also
always have �H > 0.

Exercise 21.6, Part (c). To derive su¢ cient conditions such that the solution involves
all skilled workers to be employed with the �highest�technology �h let us again consider the
necessary conditions in (I21.32) to (I21.34) So suppose there is such a solution. In such a
solution the resource constraint for skilled labor will be binding so that �H > 0. Additionally
it is clear that the non-negativity constraint for the �h-technology is not binding, i.e. �(�h) = 0.
Hence (I21.32) implies that

A�h = �L + �H�h:

Additionally we know that there will be no sector active requiring some skilled labor. This
follows from the fact that all skilled labor is used in the �h-sector. The low skilled labor which
has not been used yet (recall that we assumed that H=L < �h) will therefore be employed
with the A0 technology so that �(0) = 0. Hence we also get that

A0 = �L:

These equations are su¢ cient to pin down the multipliers on the resource constraint. We
get that �L = A0 and �H = (A�h � A0)=�h. For this to be solution to the problem, the
non-negativity constraints will have to be binding for all h 2 (0; �h), i.e.

�(h) = �L + �Hh�Ah = A0 +
(A�h �A0)

�h
h�Ah > 0 8h 2 (0; �h):

Hence a su¢ cient condition in terms of exogenous parameters is

Ah < A0 +
(A�h �A0)

�h
h =

�h� h
�h

A0 +
h
�h
A�h 8h 2 (0; �h): (I21.35)
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This is a very intuitive condition: the technology of all �intermediate�sectors h 2 (0; �h) has
to be below the convex combination of the two sector 0 and �h. If that is the case, i.e. if Ah
is convex as a function of h, then it is the case that the solution to this problem involves full
specialization in that only the extreme sectors 0 and �h are employed.

Exercise 21.6, Part (d). To come up with an example where the highest sector is not
used, let us consider a case where (I21.35) is not satis�ed. So suppose that technology Ah is
given by

Ah =

�
A0 + h if h � hC

A0 + h
C + (h� hC)� if h > hC

` (I21.36)

where  > �. Hence the technology is continuous and piecewise linear, where the slope is
higher for lower technologies. With this technology is easy to verify that (I21.35) is violated.
This is simply due to the fact that for technology hC we get that

�h� hC
�h

A0 +
hC

�h
A�h =

�h� hC
�h

A0 +
hC

�h

�
A0 + h

C + (�h� hC)�
�

= A0 +
hC

�h

�
hC + (�h� hC)�

�
= A0 + h

c +
hC

�h
(�h� hC) (�� )

< A0 + h
c = Ahc :

Hence, whereas the condition in (I21.35) required Ah to be a convex function of h, the
technology in our example given in (I21.36) is concave in h.

Note however that this was only derived as a su¢ cient condition for a solution where only
the �h-technology is used with high skill labor. Hence we need to be a little more careful to
show that in this example no worker will be employed in the �h sector. Let us prove this by
contradiction. Suppose technology �h is used. Then we get that

�L = A0 and �H =
A�h �A0

�h

as shown above. But now note that

�H =
A�h �A0

�h
=
hC + (�h� hC)�

�h
= �+

hC

�h
( � �) < 

so that for h < hC we have

Ah � �L � �Hh+ �(h) = A0 + h� �L � �Hh+ �(h) = ( � �H)h+ �(h) > 0
which violates the �rst-order condition in (I21.32). Hence, �h cannot be the only sector
employing skilled labor.

So suppose that some workers are employed in that technology. Hence, �(�h) = 0. Above
we showed that there will be some other sector h using skilled workers Hence, such a solution
features

A�h = �L + �H�h (I21.37)

Ah = �L + �Hh: (I21.38)

Suppose �rst that h > hC . Then we get that A�h �Ah = (�h� h)�. Additionally we get from
(I21.37) and (I21.38) that A�h �Ah = (�h� h)�H : Hence,

�H = �: (I21.39)
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But then consider some sector h0 � hC . Assume this sector is not active. This is the case if

Ah0 = A0 + h
0 < �L + �H�h = A0 + �h

0
;

which contradicts our assumption  > �. As h0 is arbitrary, all technologies h0 � hC will be
active so that �(h0) = 0 for all h0 � h. But then it is clear that we get from the two �rst-order
conditions for sectors h0 and h00 with h0 < h00 � hC that

Ah00 �Ah0 = (h00 � h0) = (h00 � h0)�H ;
so that

�H = ;

which contradicts (I21.39). Hence, h > hC cannot be active.
Suppose now that some sector h � hC is active. From the �rst-order conditions we get

A�h �Ah = �H(�h� h). But from the de�nition of the technology we have

A�h �Ah = A0 + ( � �)hC + �h��A0 � h
= ( � �)(hC � h) + (�h� h)�;

so that

�H = �+ ( � �)h
C � h
�h� h

< 

where the last inequality follows from hC < �h. This however violates the �rst-order condition
(I21.37) for technology h+�. To see this, note that

Ah+� = Ah +� = �L + �Hh+� > �L + �H(h+�);

which violates (I21.37). So if technology �h is active, no other sector employing skilled labor
can be active. However we showed above that this is impossible too. Hence, with the
technology given in (I21.36) there will be no workers employed with the �h-technology.

Exercise 21.6, Part (e). With the results derived above it should be clear that an
equilibrium exists where more then two technologies are being used in equilibrium. Let us
again consider the necessary conditions for the maximization problem above and suppose
that the technologies h00 > h0 are being used. Those technologies have to satisfy

Ah00 �Ah0 = (h00 � h0)�H :
This shows that for all sectors which are being used in equilibrium we need that the production
increase from using a more skill-intensive technology is proportional to the additional amount
of skilled labor used. Additionally we need that it exceeds the increase from all technologies
h which are not used in equilibrium, because for h to not being used we need that

Ah00 �Ah = �L + h
00�H � �L � h�H + �(h) = (h00 � h)�H + �(h) > (h00 � h)�H ;

where we used that �(h) > 0 as h is not being used. To see how this can be an equilibrium,
suppose that equilibrium wages for skilled and unskilled labor are given by wS and wL
respectively. The pro�t from employing one unit unskilled and h00 units skilled labor using
technology h00 is then given by

�00 = Ah00 � wSh00 � wL:
Similarly, using the unit of unskilled labor and the h0 complementary units of skilled labor
with technology h0 gives a pro�t of

�0 = Ah0 � wSh0 � wL;
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so that
�00 � �0 = Ah00 � wSh00 �Ah0 + wSh0 = (h00 � h0)(�H � wS):

This shows that for �S = wS the pro�t from using the two technologies is the same. Hence,
�rms are indi¤erent from using either of those technologies so that an equilibrium exists,
where two technologies are used.

Note however, then whenever such an equilibrium exists, there also exists another equilib-
rium where only one technology is used and the A0 technology employes the residual unskilled
labor. Hence, there is no loss of generality to consider only two �rms Ah and A0, where the
Ah �rm uses H

h units of unskilled labor and the A0 �rm uses the residual L � H
h units of

unskilled labor.

Exercise 21.9

Let us �rst derive the optimal education spending of an individual i earning wage income
wi(t). The appropriate maximization problem is given by

max
ci(t);ei(t)

(1� �) log ci (t) + � log ei (t) s.t: ci (t) + ei (t) � wi (t) :

As the constraint will of course be binding, the necessary and su¢ cient �rst-order condition
is given by

1� �
ci (t)

� �

wi(t)� ci (t)
= 0:

Solving this for the optimal consumption and educational levels yields

ci(t) = (1� �)wi(t) and ei(t) = �wi(t):

As labor markets are competitive, equilibrium wages are given by wi(t) = Ahi(t). Hence, the
law of motion of human capital in a dynasty is given by

hi (t+ 1) = ei (t)
 = (�wi(t))

 = (�Ahi(t))
 : (I21.40)

A steady state is de�ned as a level of human capital h� such that h(t) = h(t+1) = h�. Using
(I21.40) this steady state level is given by

h� = (�Ah�) = (�A)=(1�) :

As  2 (0; 1) it is immediate that this steady state level is unique. Hence to prove the
convergence result we have to show two things. First of all we have to show that

h(t+ 1) > h(t)() h(t) < h�, (I21.41)

i.e. h(t) is increasing over time if and only if it is below the steady state level. Additionally
we have to show that there is no overshooting, i.e. that

h(t) < h� =) h(t+ 1) < h� and h(t) > h� =) h(t+ 1) > h�: (I21.42)

Consider �rst the former claim contained in (I21.41). To prove this result, de�ne the function

G(h(t)) =
h(t+ 1)� h(t)

h(t)
=
(�Ah(t))

h(t)
� 1 =

�
h�

h(t)

�1�
� 1:

As  < 1, we get that

h(t) < h� () G(h(t)) > 0() h(t+ 1) > h(t);
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which proves (I21.41). To prove that there is no overshooting, observe that

h(t+ 1)� h� = (�Ahi(t))
 � h� =

�
hi(t)

h�

�
h� � h�

= h�
��

hi(t)

h�

�
� 1
�
;

so that (I21.42) is satis�ed. This shows that there is a unique level of human capital h� =
(�A)=(1�) which the dynasty is monotonically converging to.

This example shows that non-convexities are indeed important in generating multiple
steady states. With non-convexities in the production function (or here in the accumulation
equation for human capital), an additional unit of input might have a more than proportional
e¤ect on output (or on future human capital). I.e. there is a range, where output grows at
an increasing rate. To see this more formally, consider again the accumulation of the model
presented in the book. It was given by

h(t+ 1) =

�
(�Ah(t)) if h(t) � (�A)�1

�h if h(t) < (�A)�1
;

where �h < 1. Hence, for all h(t) < (�A)�1 a marginal increase in h(t) does not contribute
anything to the accumulation of future human capital, whereas for h(t) � (�A)�1, a higher
level of human capital will increase future human capital. Note in particular that the return
of the "marginal unit" at h(t) = (�A)�1 is in�nity. Hence, there are ranges of h(t) where
h(t+ 1) increases more than proportionally to the increase in inputs.

In contrast, the production technology considered in this exercise is convex. In particular
we have

h(t+ 1) = (�Ah(t))

so that the average return
h(t+ 1)

h(t)
= (�A) h(t)�1

is decreasing in h(t). As the economy in this exercise has a unique steady state (and con-
vergence is monotone) and the economy considered in book can have multiple steady states,
non-convexities are important to generate traps and multiple steady states.

Exercise 21.10

Exercise 21.10, Part (a). To show this claim, consider Figure 21.8. The analysis in
that section showed that there are two steady states given by �h and h�. Furthermore it was
also established there that all dynasties with h(0) < (�A)�1 will monotonically converge to
the �rst steady state involving a level of human capital of �h while all dynasties characterized
with the initial condition h(0) > (�A)�1 will monotonically converge to the "high" steady
state involving h�. So consider the case of h(0) = �h and let � < (�A)�1 � �h: By construction
the entire distribution of initial human capital levels lies within the basin of attraction of the
low steady state �h. Hence, all dynasties converge to the same level of human capital �h, so
that the average level of human capital will be equal to �h. The income in this economy will be
equal to the sum of all wage payments (as there is no capital). Hence, y =

R
widi = A�h. Now

suppose we would increase �, such that � > (�A)�1� �h, i.e. let us write � = (�A)�1� �h+�.
The basin of attraction of the low steady state comprises all households with h(0) < (�A)�1.
Those households converge to a level of human capital equal to �h. On the other hand,
the basin of attraction of the high steady state is not empty anymore but consists of all
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household characterized by h(0) > (�A)�1 . All those households converge to the high steady
state h� > �h. Hence, the average level of (asymptotic) human capital in this economy is
higher. In fact it is given by

�h =
2���
2�

�h+
�

2�
h� = �h+

�

2�
(h� � �h) > �h;

where we used the fact that the basin of attraction for the high steady state has a measure
equal to �

2� . Income in this economy is given by

y =

Z
widi = A�h > A�h:

Hence, an increase in initial inequality will increase both the long-run level of average human
capital and income.

To see that the converse can easily be true as well, consider the case where h(0) = h�

and � < h� � (�A)�1. Clearly the entire population is within the basin of attraction of
the high steady state so that average human capital and income will converge to h� and Ah�

respectively. If we now increase inequality (i.e. have � = h��(�A)�1+�), a positive measure
of people will be within the basin of attraction for the low steady state. This population has
a measure of �2� , so that average human capital and income are given by h

�+ �
2�(
�h�h�) < h�

and Ah� + �
2�A(

�h � h�) < Ah�. Hence, a higher degree of inequality can also decrease the
long-run performance of the economy.

Exercise 21.10, Part (b). We did not use any property of the uniform distribution in
the argument above except that we could easily express the measure of people in the respective
basin of attractions by the parameters of the support of the distribution. This however was
purely for convenience and was not responsible for any of the qualitative results. The decisive
property we require for these results to generalize to di¤erent types of distribution was that we
needed the distribution to have mass on the tails so that increasing the support would actually
"push" some individuals in the other basin of attraction. So any distribution satisfying this
will give us the same qualitative result that a higher level of inequality might both increase
or decrease the long-run performance depending on the initial conditions captured by h(0).

Exercise 21.10, Part (c). Consider now the model presented in subsection 21.6.2,
which in contrast to the model analyzed so far now allows for borrowing and lending. The
credit market is imperfect so that the borrowing rate i exceeds the lending rate r. Consider
Figure 21.9. The analysis in that section established that the model has two stable steady
states �xU and �xS . Whereas the basin of attraction for the low steady state �xU is given by
[0; x�], the basin of attraction for the high steady state �xS is given by (x�;1). This being
said, we can show the result in exactly the same way as we did it for the model of subsection
21.6.1. Suppose for example that the support of the distribution is given by [�xS � �; �xS + �]
with � < �xS � x�. By construction all individuals are situated within the basin of attraction
of the high steady state �xS so that the economy will converge to an average wealth level of �xS .
If we now increase � so that � = �xS � x�+�, there will be a positive measure of individuals
characterized by x(0) 2 [x���; x�] which are within the basin of attraction of the low steady
state �xU so that their wealth holdings will converge to �xU . All other individuals are of course
still converging to �xS . Hence, an increase in inequality will decrease average wealth holdings.
To see the converse results, suppose that the support of the wealth distribution is given by
[�xU��; �xU+�] where � < x�� �xU . The average wealth holdings in this economy will converge
to �xU as all individuals are situated in the basin of attraction of the low steady state. If now
inequality was increased so that � = x� � �xU + �, some individuals would be pushed into



484 Solutions Manual for Introduction to Modern Economic Growth

the basin of attraction of the high steady state �xS so that average wealth holdings would be
higher. Hence, higher inequality might increase economic performance in the long-run. This
shows that all qualitative results of the model analyzed in subsection 21.6.1 carry over to the
more general model analyzed in subsection 21.6.2.

Exercise 21.10, Part (d). The results here seem to suggest that inequality is harmful
in rich societies (where all individuals could have taken the productive investment opportu-
nities), whereas it might be helpful in poor societies (so that at least some individuals could
invest in productive projects to leave the basin of attraction of the poverty trap). Although
this argument is clearly helpful to frame our ideas to analyze the consequences of inequality,
it is important to realize that it is not the case that rich and poor countries only di¤er in their
distribution of income. It is rather the case that the other model parameters like the credit
market imperfection i�r or the required investment into human capital (here captured by the
parameter h) also di¤er. To see how this could change the results, consider for example the
case where rich countries are not subject to any capital market imperfections. As investment
in education is e¢ cient (recall the assumption captured in (21.55)), all individuals will invest
in education and there will be a unique steady state. But this implies that the initial wealth
distribution does not a¤ect the e¢ ciency of the economy at all, i.e. we should not expect to
see any relationship between inequality and income in rich countries.

Similarly it is important to realize that the e¤ects of inequality are dependent on the
distribution of income relative to the investment needed (here the parameter h) and the
other parameters of the model (especially wages the wS and wU , which are dependent on
the countries�technologies). So we would really need to call an economy "poor" if average
income is low relative to those parameters. Suppose for simplicity that all parameters are
scaled down by some �xed amounts � < 1. If the income distribution would also be scaled
down by �, the behavior of the economy would be exactly the same, so that we should not
see any di¤erent e¤ect of inequality in rich and poor countries. The results we derived above
are only comparative statics exercises in that we shifted the income distribution for given
parameters. This however is an experiment that can only rarely be done with real world
data. But without controlling for those parameters there are no robust conclusions to be
drawn about the e¤ect of inequality on aggregate income.

Exercise 21.11

Exercise 21.11, Part (a). We characterize the investment decision and allocations of
an individual that starts life with wealth x. For simplicity we assume that the wage shock
for the unskilled individual is realized after she makes the decision not to get education and
that the same shock applies at both stages of her life. We �rst consider an individual with
x � h, that is, the case in which the individual has enough wealth to �nance education. If
she chooses to get education she receives

V (x j x > h;E = 1) = max
b;c

E
h
(1� �)�(1��) ���c1��b�

i
s.t. b+ c = ws + (1 + r) (x� h) ,

which yields

V (x j x > h;E = 1) = ws + (1 + r) (x� h) . (I21.43)
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If instead she chooses not to get education, she receives

V (x j x > h;E = 0) = max
b;c

E
h
(1� �)�(1��) ���c1��b�

i
s.t. b+ c = (1 + r)x+ (wu + ") (2 + r) .

Note that the constraint of this problem is stochastic. The �rst-order conditions imply

b = � [(1 + r)x+ (wu + ") (2 + r)]

c = (1� �) [(1 + r)x+ (wu + ") (2 + r)] .

which yields

V (x j x > h;E = 0) = E [(1 + r)x+ (wu + ") (2 + r)] = (1 + r)x+ wu (2 + r) . (I21.44)

Comparing Eqs. (I21:43) and (I21:44), an individual with x > h invests in education under
exactly the same condition as in the baseline model, i.e. she invests if and only if

ws � (1 + r)h > wu (2 + r) . (I21.45)

As in the baseline model, we assume that condition (I21:45) holds, and thus, an individual
with x > h always invests in education. Moreover, the above analysis shows that the bequest
that she leaves to her o¤spring is deterministic and is given by

b (x j x > h) = � (ws + (1 + r) (x� h)) :

Next we consider an individual with x < h. If she chooses education, she will have to
�nance part of her education by outside sources at rate i > r, hence she receives

V (x j x < h;E = 1) = max
b;c

E
h
(1� �)�(1��) ���c1��b�

i
b+ c = ws + (1 + i) (x� h) ,

which yields
V (x j x < h;E = 1) = ws + (1 + i) (x� h) .

In this case, she leaves her o¤spring a bequest of

b (x j x < h;E = 1) = � [ws + (1 + i) (x� h)] .

On the other hand, if the individual chooses not to invest in education, her expected utility
is calculated from Eq. (I21:44), hence she receives

Vi (x j x < h;E = 0) = (1 + r)x+ wu (2 + r) ,

and leaves her o¤spring a stochastic bequest given by

b (x j E = 0) = � [(1 + r)x+ (wu + ") (2 + r)]

= � [(1 + r)x+ wu (2 + r)] + � (2 + r) ".

It follows that an individual with x < h chooses to invest in education if and only if

x � f � (2 + r)wu + (1 + i)h� ws
i� r ,

which is identical to the cuto¤ in the baseline model. Di¤erent than the baseline case, in
this case, if an individual chooses not to invest in education, the bequest she leaves to her
o¤spring is not deterministic.
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From the above characterization, we summarize the evolution of bequests in equilibrium
with the following stochastic process

x (t+ 1) =

8<: � (ws + (1 + r) (x� h)) , if x (t) � h
� [ws + (1 + i) (x� h)] , if h > x (t) � f

� [(1 + r)x+ wu (2 + r)] + � (2 + r) ", if x (t) < h.
(I21.46)

We next investigate the dynamics for a dynasty that starts with wealth x (0). Note that the
dynamics in Eq. (I21:46) are very similar to the dynamics in the baseline model. Recall
that, when the parameters satisfy the appropriate assumptions, there will be multiple steady
states in the baseline model: dynasties with x > x� will converge to the high steady state xs,
while the dynasties with x < x� will converge to the low steady state xu, where

xu =
wu (2 + r)

1=� � 1� r .

x� =
ws � h (1 + i)
1=� � 1� i ,

xs =
ws � h (1 + r)
1=� � 1� r

The next lemma shows that the dynamics will be similar in the stochastic version when
[��; �] is a su¢ ciently small interval.

Lemma I21.1. Suppose that

a � �
2 + r

1� � (1 + r)� � f � xu.

Then, in �nite time and almost surely, a dynasty will either reach xs and will remain there
forever, or it will reach the interval Xu � [xu � a; xu + a] and will remain there forever.

Proof. Note that b (xs) = xs, that is, when a dynasty reaches the high steady state she
stays there deterministically. It follows that xs is a deterministic steady state. Next, we claim
that the set Xu is a quasi-steady state, that is, if x (t0) 2 Xu for some t0, then x (t) 2 Xufor
all t > t0. Consider some x 2 Xu. Since xu + a � f , by Eq. (I21:46) we have

b (x) = � [(1 + r)x+ wu (2 + r)] + � (2 + r) "

� � [(1 + r)x+ wu (2 + r)] + � (2 + r)�

� � [(1 + r) (xu + a) + wu (2 + r)] + � (2 + r)�

= xu + � [a (1 + r) + (2 + r)�]

= xu + a,

where the second line uses the fact that " � �, the third line uses the fact that x � xu + a,
the fourth line uses the de�nition of xu, and the last line uses the de�nition of a. Similarly,
we have b (x) � xu � a, which establishes that Xu is a quasi-steady state.

Next, we claim that dynasties either asymptotically converge to xs or converge to the set
Xu in �nite time. Suppose, to reach a contradiction, that there is a dynasty with a stochastic
process of wealth fx (t)g1t=0 that doesn�t converge to either (quasi) steady state. If x (t0) > x�

for any t0, x evolves deterministically for t0 > t and converges to xs as in the baseline model.
Else if, x (t0) < xu+a for any t, the above analysis shows that x converges and remains inside
the set Xu. Hence x (t) must remain in the interval (xu + a; x�) for all t. Note that, when
x (t0) 2 (f; x�) for some t0, then x deterministically converges to below f . So we assume that
the sequence x (t) always lies in (xu+ a; f ] without loss of generality. Then the dynasty that
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doesn�t converge to the steady states never gets education and always receives a stochastic
wage shock. From the analysis for the deterministic case, the dynasty would converge to xu if
it receives the shock " = 0 (deterministic wages) for su¢ ciently many times in a row. Hence,
it will reach a wealth level below xu if it receives a shock " � 0 su¢ ciently many times in a
row. For any N , there is a positive probability that this dynasty will receive a shock with
" � 0 for N consecutive periods. It follows that the dynasty reaches a wealth level below
xu with positive probability, contradicting the fact that x (t) always lies in (xu + a; f ]. This
completes the proof of the lemma. �

Exercise 21.11, Part (b). With this functional form for the utility function, the indirect
utility function of the individual is linear in her wage income, as can be seen from our
analysis in Part (a). Hence, the individual maximizes expected income which simpli�es the
analysis and makes the stochastic model very similar to the baseline deterministic model. In
particular, it allows us to abstract away from considerations of risk in the individual�s choice
for education and her bequest motives. Even though risk may be important in some of these
decisions, in this problem we abstract away from risk considerations to focus on the poverty
traps resulting from the non-convexity in the education choice.

Exercise 21.11, Part (c). This time there is no absorbing set around xu, and similar
arguments to the proof of Lemma I21.1 show that every dynasty reaches the interval, [x�;1)
with probability 1. But note that, once the dynasty reaches some x > x�, it converges to
the high steady state xs deterministically. It follows that the wealth level of every dynasty
asymptotically converges to xs. The unique ergodic distribution is a unit mass at xs.

The results are di¤erent in this case since there is a non-zero probability that every
dynasty will get very lucky and will get out of the poverty trap. In the previous speci�cation,
dynasties could get lucky but this event was not signi�cant enough to change the education
investment decision of the individual. In this case, favorable realizations of the income shock
(such as winning a lottery) could be so large as to induce the next generation to get education
and to get the dynasty out of the poverty trap. However, the statement does not say anything
about how fast the dynasties would converge to the high steady state. If the probability of
very lucky events is very low (but positive), it might take a very long time for the dynasty
to get out of the poverty trap. We should also emphasize that the results in this model
are not driven by the two-period nature and the short-sightedness of the individuals. One
could have the intuition that dynasties would always get out of the poverty trap if individuals
were forward looking and took into account how much their o¤spring (and their o¤springs)
would bene�t from a bequest. But this intuition is not always correct, in particular, it is
also possible to have multiple steady states in an in�nite horizon neoclassical growth model
with a non-convex production technology. A very poor and forward looking dynasty may not
�nd it optimal to invest in education since it will have to make a big initial sacri�ce in terms
of consumption to make it out of the poverty trap. Very signi�cant chance events (such as
winning the lottery) help the individual leap the non-convex threshold and get out of poverty
but smaller scale chance events will not overturn the powerful economic force keeping these
individuals at poverty.

Exercise 21.11, Part (d). There are four cases to consider. First, consider the case in
which v has support [��; �] where � is small and " has support [��; �] where � is small. The
same analysis as in Part (a) applies to this case and shows that there are two quasi-steady
states, sets Xs and Xu around respectively xs and xu, such that the dynasty will converge
to and will remain in one of these sets. Second, if v has unbounded support and " has a
bounded and small support, then the dynasty will converge to Xu and will remain there
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forever. In this case, the low steady state is absorbing while the high steady state is not, so
every dynasty becomes poverty trapped with probability 1. Third, consider the opposite case
in which " has unbounded support while v has a bounded and small support. This case is
similar to Part (c) above and the dynasty converges to the high (quasi) steady state Xs with
probability 1. Finally, if both " and v have unbounded supports, the Markov process that
x follows is "irreducible", in the sense that it is possible to go from any wealth level to any
other wealth level. In particular, there are no absorbing states (or quasi-states). If the process
satis�es some regularity properties, then there will be an invariant ergodic distribution over
all wealth levels.

Exercise 21.12

Exercise 21.12, Part (a). We have to show two things. First of all we have to show
that all banks will necessarily engage in monitoring. Then we have to show that equilibrium
borrowing rates will be given by i = r + m. To show the �rst claim, suppose that there
was an equilibrium where no monitoring takes place and some individuals receive a positive
amount of credit. For this to be an equilibrium, all individuals have to maximize utility. But
this implies that all individuals will default on their loan as running away does not have any
negative consequences (recall that they will never be caught and that the model is a two
period model so that no long-term contracts are possible) but strictly increases the income
available at the end of the life. This however cannot be an equilibrium, because banks are
losing money on their loans. Hence there are two potential equilibria. In the �rst one, no
loans are given at all. In the second one, banks incur monitoring expenses. Let us �rst show
that there is no equilibrium where no loans are made. As shown in subsection 21.6.2, the
critical wealth level for an individual to invest in education if she would have to take out a
loan at rate i was given by

x � f � (2 + r)wu + (1 + i)h� ws
i� r :

Assuming that the initial wealth distribution has positive mass over its whole support, there
will be positive demand for loans at rate i as long as f < h. To see that this is always the
case, note that

f =
(2 + r)wu + (1 + i)h� ws

i� r < h() (2 + r)wu + (1 + r)h < ws;

which is the case from our assumption (21.55). Additionally note that

lim
i!1

(2 + r)wu + (1 + i)h� ws
i� r = h:

Using this we can characterize the demand function for loans. Let wealth x be distributed
by Gt. The demand for loans at time t as a function of the interest rate i is then given by
Dt(i) =

R h
f(i)(h � x)dGt(x) which satis�es Dt(i) > 0 and limi!1Dt(i) = 0 by our analysis

above. This proves that we will never have an equilibrium where no loans are provided.
Because if so, then there would be a pro�table deviation from banks o¤ering loans at an
interest rate i > r + m and exerting monitoring e¤ort. From the argument above, there
would be positive demand for those loans and the o¤ering bank would make positive pro�ts.
Hence, all equilibria are characterized by a positive number of credit contracts traded and
banks exerting monitoring e¤orts.

This being said we now have to show that there is no equilibrium involving a borrowing
rate of i > r+m. This follows from a typical Bertrand competition argument. Suppose there
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was an equilibrium with a borrowing rate i > r + m and N banks. Then there exists one
bank (say bank 1) with pro�ts �1 satisfying

�1 <

Z h

f(i)
(i� r �m)(h� x)dGt(x): (I21.47)

To understand (I21.47) note that individual x takes out a loan of size h � x and the bank
serving that client makes a pro�t (i�r�m)(h�x) on that loan. With N banks being active,
there has to exist one bank which does not serve the whole market. Hence, the inequality in
(I21.47) is strict. So let us write

R h
f(i)(i� r�m)(h�x)dGt(x)��1 = �. By lowering interest

rates to i� " and attracting the whole market bank 1 could increase its pro�ts asZ h

f(i�")
(i� "� r �m)(h� x)dGt(x)� �1

= ��
 Z h

f(i)
(i� r �m)(h� x)dGt(x)�

Z h

f(i�")
(i� "� r �m)(h� x)dGt(x)

!
> 0

for " small enough. Hence the above cannot be an equilibrium. This proves that the unique
equilibrium will be characterized by banks o¤ering credit contracts at the rate i = r+m and
exerting monitoring e¤orts. With m > 0 this of course implies that i > r. But this is exactly
the case analyzed in subsection 21.6.2 as the choice of i was arbitrary. Hence, a model like
this provides a simple microfoundation for the version of the Galor-Zeira model analyzed in
subsection 21.6.2.

Exercise 21.12, Part (b). Consider now the case where monitoring involves a �xed
costs M . By the same arguments as above, there will be no equilibrium where banks do not
monitor. If banks do provide a loan and monitor the repayment, they must exactly break-
even. This follows again from Bertrand competition in the banking sector. Hence consider a
bank o¤ering a loan of size h�x. Let us denote the amount of money the consumer borrowing
h�x pays back by i(x)(h�x), i.e. i(x) is the e¤ective interest rate the consumer x is charged.
For the bank to break even, this amount has to cover the costs of providing the loan, i.e.

i(x)(h� x) = r(h� x) +M;

where we used that the costs of each unit of capital are given by r and the �xed costs M
are incurred whenever any monitoring takes place. Hence, the equilibrium borrowing rate is
given by

i(x) = r +
M

h� x; (I21.48)

which immediately shows that the average borrowing rate is decreasing in the size of loan as
the �xed monitoring costs are split across more �borrowing units�. Let us now analyze the
model in subsection 21.6.2 where the borrowing rate is given by (I21.48).

Again it is clear that no individual with x � h will take out a loan. Instead those
individuals will invest in education (as the educational investment is e¢ cient) and will leave
bequests of

bn (x (t)) = � (ws + (1 + r) (x (t)� h)) :
Now consider an individual with x < h. Clearly there are no incentives to take out a higher,
nor a smaller loan as (I21.48) shows that i(x) > r. As in subsection 21.6.2 we have to compare
the income at the end of the life to decide if it is worth to take out a loan. By taking out a
loan, the individual generates an income at the end of her life of

ys(x) = ws + (1 + i(x))(x� h):
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This equation simply states that the only source of income the individual generates are the
skilled wages at the end of the life (recall that you cannot work while you are young because
you spend the time getting educated) and that the loan h� x including the interest on this
loan has to be paid back. Using (I21.48) we get that

ys(x) = ws + (1 + r)(x� h)�M: (I21.49)

If the individual does not invest in education, her income is given by

yu(x) = (1 + r)(x+ wu) + wu: (I21.50)

This follows from the fact that without investing in education you earn wu in every period
and you earn an interest rate of r for any unit of savings (which are given by the initial
wealth endowment x plus the �rst period wages wu). Hence, in order to characterize the
optimal investment decision, individuals invest in education if and only if ys(x) � yu(x).
Using (I21.49) and (I21.50) this implies that

ws � (2 + r)wu + (1 + r)h+M: (I21.51)

The crucial implication of (I21.51) is that this condition does not depend on the individual�s
wealth! Hence, if (I21.51) is satis�ed, then all individuals will invest in education, whereas if
(I21.51) is violated, no individual with x < h will invest in education. The intuition for this
result is that we can interpret this debt contract as a �xed decrease in the skill premium.
This is especially apparent in (I21.49) where the e¤ective high skill wage after having taken
out a loan to �nance education is given by ws �M . Hence this model is mathematically
equivalent to one with perfect capital markets (i.e. everyone can borrow at rate r) but where
poorer people have a lower return to education - they earn ws �M instead of ws. Hence the
educational decision should not depend on the individuals income x but only if it is e¢ cient
given that skilled wages are e¤ectively lower. And investment is e¢ cient if and only if (I21.51)
is satis�ed. Using this result we can characterize the correspondence describing equilibrium
dynamics as

If ws � (2 + r)wu + (1 + r)h+M , then

x (t+ 1) =

�
bs (x (t)) = � (ws + (1 + r)(x(t)� h)�M) if x (t) < h
bn (x (t)) = � (ws + (1 + r) (x (t)� h)) if x (t) � h

:

If ws < (2 + r)wu + (1 + r)h+M , then

x (t+ 1) =

�
bu (x (t)) = � ((1 + r) (wu + x (t)) + wu) if x (t) < h
bn (x (t)) = � (ws + (1 + r) (x (t)� h)) if x (t) � h

;

The equilibrium dynamics are relatively simple. Observe �rst that all those loci representing
x(t+1) as a function of x(t), are parallel to each other as each unit of initial wealth x(t) earns
a return of r. Then consider the second case, i.e. the case where ws < (2+r)wu+(1+r)h+M
so that poor individuals do not invest in education. With the same parametric con�guration
as in subsection 21.6.2 it is therefore clear that we have the same two stable states �xU and
�xS displayed in Figure 21.9. However, we do not have the steeper locus for individuals taking
out loans at the higher rate i so that this model does not feature the unstable steady state
x�. Instead the function representing equilibrium dynamics is not continuous and the jump
occurs of course at x = h. If we have ws � (2+r)wu+(1+r)h+M where everyone invests in
education, the two parts of the function representing the dynamics di¤er just by the constant
amount M by which the part for 0 < x (t) < h is shifted down. Hence there are two cases.
If M is su¢ ciently small so that the lower part of the locus is always above the 45 degree
line (i.e. � (ws �M) > h), there is a unique steady state given by �xS to which all dynasties
will monotonically converge. If on the other hand M is high enough so that the the function
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representing the dynamics crosses the 45 degree line in the interval 0 < x (t) < h; there are
two steady states which are stable. Again there is no unstable steady state as x� in Figure
21.9.

Summing up we can distinguish two cases. If M is su¢ ciently high, there will be two
stable steady states and the long-run evolution will be similar to the economy characterized
in subsection 21.6.2 (although we might have all people investing in education). If M is
small enough, the behavior of the economy will be very di¤erent: all individuals will invest
in education and even though poor individuals have to pay the extra amount M to cover the
monitoring costs, it is small enough such that there is only one steady state and all dynasties
converge to it.

Exercise 21.12, Part (c). If individuals cannot be prevented from running away by
incurring monitoring costs, the analysis gets a little more involved. We assume that contracts
take the following form: if an individual with wealth x takes out a loan of size z the interest
charged is equal to i(z; x). After receiving the loan, the individual decides if he wants to
run away or not. In case he runs away, the bank gets �y with probability p, where y is the
income (including wage payments) of the individual. In case the individual does not run
away, the bank gets (1 + i(z; x)) z. Let us now characterize the contracts that can occur in
equilibrium. First of all note that we will have i(z; x) � r, as r are the banks�opportunity
costs. This implies that individuals will never want to take out more money than necessary,
i.e. conditional on taking out a loan, an individual with wealth x will take out a loan of size
h�x. Then note that Bertrand competition in the banking sector will make sure that banks
cannot make positive pro�ts. In particular, this implies that i(h � x; x) = r, whenever the
individual does not run away in equilibrium. So consider the decision to run away. By not
running away and paying the interest i(h� x; x), utility is given by

log(ws � (1 + i(h� x; x))(h� x)) + log((1� �)1����):
If the individual runs away, utility is given by

(1�p) log(ws)+p log((1��)ws)+log((1��)1����) = log(ws)+p log(1��)+log((1��)1����);
as the end of period income when the loan is not repaid is given by ws and the individual
is caught with probability p (and then has to pay �ws). Hence, the individual does not run
away if

log(ws � (1 + i(h� x; x))(h� x)) � log(ws) + p log(1� �): (I21.52)
By the zero pro�t condition of banks, equilibrium interest rates i(h� x; x) will be given by r
whenever (I21.52) holds true. Using this, we get that the condition for banks being able to
lend at rate r is given by

log(ws � (1 + r)(h� x)) � log(ws) + p log(1� �):
As 1� � < 1 we have that log(1� �) < 0. Hence the condition is clearly satis�ed for x close
enough to h. Furthermore, the LHS is strictly decreasing in x. Hence, by continuity there
will exists x̂, such that

log(ws � (1 + r)(h� x̂)) = log(ws) + p log(1� �); (I21.53)

i.e. someone with wealth x̂ will be exactly indi¤erent between repaying his loan with interest
r and running away3. All individuals with x 2 (x̂; h] will be strictly better repaying the loan.
Hence, whenever h > x � x̂, the banking sector will be willing to lend h � x at interest
rate r. What about the individuals with x < x̂? First of all note that there is no way to

3Note that if x̂ < 0, everyone in this economy can get a loan at interest rate r.
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provide loans, where default is prevented. To induce repayment, interest rates would have
to be lowered. But at interest rates below r, banks would make losses. Hence, whenever
x < x̂, the banking sector will not provide �nance where orderly repayment takes place in
equilibrium. So if a bank lends to someone with x < x̂, there will be default in equilibrium.
The net payo¤ of the bank when lending to someone with wealth x < x̂ is given by

�B(x) = p�ws � (1 + r)(h� x); (I21.54)

where the �rst term is expected amount the bank can recover and the last term contains the
opportunity costs of capital. From (I21.53) we know that

log(ws � (1 + r)(h� x̂)) = log ((1� �)pws)
which implies

(1 + r)(h� x̂) = [1� (1� �)p]ws: (I21.55)
As �B(x) � �B(x̂) for all x < x̂ (see (I21.54)), we therefore �nd that

�B(x) � �B(x̂)

= (p�� [1� (1� �)p])ws
= (p�+ (1� �)p � 1)ws:

But as both p and � are smaller than one, we get that4

p�+ (1� �)p < 1:
Hence we �nd that

�B(x) < 0 for all x < x̂;

so that no loans are made to individuals with wealth below x̂. The intuition for this result
is the following: as consumers in this economy are risk-averse and banks are risk-neutral,
banks would have to make expected losses for the consumers to prefer the lottery over the
safe project. To see this, note from (I21.53) that the certainty equivalent of getting ws with
probability 1 � p and (1 � �)ws with probability p for the consumer with income x̂ is given
by

ws � (1 + r)(h� x̂):
By risk aversion, this certainty equivalent is smaller than the expected payo¤, i.e.

ws � (1 + r)(h� x̂) < p(1� �)ws + (1� p)ws:
Rearranging terms yields

p�ws � (1 + r)(h� x̂) < 0.
But the term on the LHS is exactly the expected payo¤ of the bank (see (I21.54)). Hence,
whenever the consumer choose to run away, i.e. chooses to take the risky over the safe
payo¤, the bank strictly prefers not to make the loan as she would need to be subsidizing the
consumer for him to be willing take the risk.

This captures the typical commitment problem with incomplete capital markets. If in-
dividuals are too poor, they cannot commit to not run away so that no loans are made in

4To see this, de�ne f(�) = p�+ (1� �)p. As f(0) = 1 and f(1) = p and

f 0(�) = p� p(1� �)p�1

= p

�
(1� �)1�p � 1
(1� �)1�p

�
< 0;

we get that
f(�) = p�+ (1� �)p < 1 for all � 2 (0; 1]:
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equilibrium. This analysis established that the loan market in the model takes the following
form. All individuals with x > h do not take out a loan because they can pay for their
educational expenses out of their own wealth. Individuals with x 2 [x̂; h] take out a loan of
size h � x and pay an interest rate of r. Finally, the poor agents with x < x̂ cannot �nd
credit on the market and therefore are not able to invest in education. Note also that in this
case, the educational decision is straightforward. As education is e¢ cient at an interest r
(recall that we assumed that ws > (1 + r)h + (2 + r)wu), all agents that can get credit at
this interest rate, will want to do so and incur the education expenditures. Hence, the end
of period income as a function of initial wealth is given by

y(x) =

�
(2 + r)wu + (1 + r)x if x < x̂
ws + (1 + r)(x� h) if x � x̂

;

where recall x̂ < h as shown above. As bequests are just a fraction � of this income, the
equilibrium correspondence describing the dynamic behavior of wealth is given by

x(t+ 1) =

�
� [(2 + r)wu + (1 + r)x(t)] if x(t) < x̂
� [ws + (1 + r)(x(t)� h)] if x(t) � x̂

: (I21.56)

How will this equilibrium correspondence look like? First of all note that it is discontinuous
at x = x̂, as

(2 + r)wu + (1 + r)x̂� (ws + (1 + r)(x̂� h)) = (2 + r)wu � ws + (1 + r)h < 0

from our assumption that education is (strictly) e¢ cient. Secondly note that both parts (i.e.
for both x(t) < x̂ and x(t) � x̂) of the equilibrium correspondence in (I21.56) will have a slope
equal to �(1+r) so that they are parallel as everyone in this economy is borrowing and lending
and interest rate r. This shows that if �(1 + r) < 1 and ws is high enough (in particular we
need that ws+(1+r)(x̂�h) > x̂) and wu is low enough (so that � [(2 + r)wu + (1 + r)x̂] < x̂),
there will be two steady states, both of which are locally stable. The low steady state x�L is
given by

x�L = � [(2 + r)wu + (1 + r)x
�
L] =

�(2 + r)

1� �(1 + r)wu

and the high steady state x�H is given by

x�H = � [ws + (1 + r)(x
�
H � h)] =

�

1� �(1 + r) (ws � (1 + r)h) :

Furthermore, the dynamics are very simple. All dynasties starting with x(0) < x̂ will converge
to x�L and all dynasties with x(0) � x̂ will converge to x�H . Within those two regions [0; x̂)
and [x̂;1) convergence is monotone in the sense that

x(t) increases towards x�L if x(0) < x�L
x(t) decreases towards x�L if x�L < x(0) < x̂
x(t) increases towards x�H if x̂ � x(0) < x�H
x(t) decreases towards x�H if x�H < x(0):

This characterizes the equilibrium dynamics in this economy.

Exercise 21.12, Part (d). Let us now analyze the responsiveness of educational invest-
ments in each of these models. We have shown that the model characterized in the �rst part
is exactly the model analyzed in subsection 21.6.2. The analysis in this section showed that
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the set of individuals investing in education SED1 (where we identify individuals with their
wealth levels) was given by

SED1 =

�
x

����x � (2 + r)wu + (1 + r +m)h� ws
m

= f

�
:

As the threshold f is decreasing in ws, more individuals will invest in education. In particular,
if ws increases to ws +�, all individuals with wealth x satisfying

f � �

m
� x < f

will now invest in education but did not do so before.
For the model analyzed in the second part, the education response is very di¤erent. There

we showed that depending on parameters, either the entire population will invest in education
or no individual with x < h will be willing to invest in education (as the interest rate required
to so would be too high). The crucial condition for educational investment was

ws � (2 + r)wu + (1 + r)h+M; (I21.57)

i.e. if this condition is satis�ed, everyone will invest in education. Hence the response to an
increase in the skill premium is discontinuous. There will be no response whenever (I21.57)
was satis�ed before or if (I21.57) was violated and still is violated after the change. If however
the increase in the skill premium � is such that

ws < (2 + r)wu + (1 + r)h+M < ws +�;

suddenly everyone with x < h will start investing in education. Hence there might either be
no response at all or the response is substantial. Additionally, the high steady state is shifted
to the right as ws increases.

In the third model, the set of individuals investing in education was characterized by a
wealth cut-o¤ x̂, such that all individuals with x � x̂ incurred educational expenses. Hence to
characterize the educational response to an increase in the skill premium we have to analyze
how x̂ changes in ws. In (I21.55) x̂ was de�ned by

(1 + r)(h� x̂) = [1� (1� �)p]ws; (I21.58)

so that
@x̂

@ws
= �1� (1� �)

p

1 + r
< 0:

Hence, the number of people investing in education, which are characterized by x > x̂,
increases when the skill premium increases. The reason is that an increase in the skill premium
increases the amount of money banks can con�scate in case the individual runs away and is
caught. This reduces the incentive to default on the loan and the marginal agent x̂ will now
be strictly better o¤ to repay the loan. This can also be seen from (I21.58) which shows that
for given x̂, the RHS will increase, i.e. the net costs of running away are increasing in ws, so
that paying back the loan becomes relatively cheaper (note that (1+ r)(h� x̂) is the amount
agent x̂ pays back). Hence, the incentive constraint will be relaxed so that some people
can now get a loan who could not have gotten one before. Via this channel an increase in
the skill-premium will cause a higher level of aggregate educational expenses. This analysis
(especially the di¤erence between the �rst and the third and the second model) shows that
the exact mechanism how credit market imperfections are modelled is absolutely crucial for
the comparative statics the model delivers.



Chapter 22: Institutions, Political Economy and Growth

Exercise 22.2

Note �rst that we have to drop the assumption of risk-neutrality on the middle class
producers�behalf. The reason is that in equilibrium the production side will have a similar
structure like the AK-economy characterized in Chapter 11 (see especially subsection 11.4).
Hence, the equilibrium interest rate will be constant so that with risk neutrality, there will
not be an interior solution for the problem of the middle class agents. Let us for simplicity
assume that middle class producers have a utility function given by u(c) = log(c).

We will see that the assumption of risk aversion complicates the analysis signi�cantly.
As this exercise is less about the exact structure of the equilibrium tax sequence and more
about the growth e¤ects of taxation, our presentation will concentrate on the main issues.
For a full analysis of a similar economy with risk averse agents we refer to Exercise 22.17.

So consider the problem of middle class producers. The most important e¤ect of intro-
ducing risk aversion will be seen to lie in the fact that choices made at time t will depend
on the entire path of future taxes f�(s)g1s=t. Hence, we have to introduce this path of future
taxes as a state variable for the entrepreneurs� problem. To do so let us introduce some
notation. Middle class producers face a tax sequence f�(t)g1t=0, which they take as given.
The problem is still stationary in the sense that once the current level of capital and future
taxes f�(s)g1s=t are controlled for, the problem will not depend on calender time. Hence we
can write the recursive formulation of the problem of the middle class as

V (K; f�(s)g1s=m)
= max

fK0;Lg

�
log
�
(1� �(m))F (K;AL) + (1� �)K �K 0 � wL

�
+ �V (K 0; f�(s)g1s=m+1

	
;

where

0 � K 0 � (1� �(m))F (K;AL) + (1� �)K �K 0 � wL
and where we already substituted the budget constraint

C(t) = (1� �(t))F (K(t); A(t)L) + (1� �)K(t)�K(t+ 1)� w(t)L(t): (I22.1)

Like in the exposition given in section 22.2, let us without loss of generality assume that
Li(t) = 1 (note that this exercise assumes that there is a measure one of entrepreneurs, i.e.
�m = 1). Using this, the �rst-order condition and the Envelope Condition are given by

�VK(K
0; f�(s)g1s=m+1) =

1

�C(K; f�(s)g1s=m)

VK(K; f�(s)g1s=m) =
1

�C(K; f�(s)g1s=m)
[(1� �(m))FK(K;A) + (1� �)] ;

where we denoted consumption by the policy function �C , i.e. C(m) = �C(K(m); f�(s)g1s=m).
Combining these optimality conditions, the middle class�optimal consumption and capital

495
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choice is determined by the Euler equation

�C(K 0; f�(s)g1s=m+1)
�C(K; f�(s)g1s=m)

= �
�
(1� �(m+ 1))FK(K

0; A) + (1� �)
�
: (I22.2)

As (I22.2) describes the capital choice of all agents, all middle class�agents will chose the
same capital level Ki(t) = K(t). Hence, the endogenous total factor productivity term is
given by

A(t) = B

Z 1

0
Ki (t) di = B

Z 1

0
K (t) di = BK(t):

Substituting this in (I22.2) and reintroducing the time indices, we get that

C(t+ 1)

C(t)
= � [(1� �(t+ 1))FK(K(t+ 1); BK(t+ 1)) + (1� �)]

= �[(1� �(t+ 1))FK(1; B) + (1� �)]; (I22.3)

where we used the fact that F has constant returns to scale in K (and increasing returns in K
and L). Note especially that FK(1; B) is a constant like in the AK-economy. Hence the middle
class producers�problem is characterized by the Euler equations, the resource constraint and
the transversality conditions. For a given tax sequence f�(t)g1t=0, these equations determine
the entire path of allocations [[Ki(t); Ci(t)]

1
t=0]

1
i=0 :

To complete the description of the equilibrium (and in particular to learn about the
growth consequences of taxing entrepreneurs) we have to determine the optimal tax sequence
f�(t)g1t=0. The budget constraint of the government is still given by

Tw (t) + �mTm (t) + �eT e (t) � � (t)

Z
Sm

F (Ki (t) ; A (t)Li (t)) di;

where the only di¤erence to (22.8) is the changed production structure (which now depends
on the (endogenous) TFP term). As the elite�s only income is generated by tax revenues, the
optimal solution will involve

Tw(t) = Tm(t) = 0

so that

Ce(t) = T e (t) =
� (t)

�e

Z 1

0
F (Ki (t) ; A(t)Li (t)) di: (I22.4)

Using that
F (Ki (t) ; A(t)Li (t)) = F (K (t) ; BK(t)) = K(t)F (1; B);

the elite�s consumption level in (I22.4) is given by

Ce(t) = T e (t) =
1

�e
� (t)K(t)F (1; B): (I22.5)

Assuming that the agents of the elite are still risk-neutral, the problem of the elite is given
by

max
f� 0(t)g1t=0

V E
�
f� 0(t)g1t=0

�
= max
f� 0(t)g1t=0

1X
t=0

�t
�
1

�e
� 0 (t)K(t; f� 0(t)g1t=0)F (1; B)

�
;

where K(t; f� 0(t)g1t=0) denotes the entrepreneur�s optimal capital choice for a given tax se-
quence f� 0(t)g1t=0. Note that the elite realizes that those capital choices depend on the whole
sequence of taxes and that each entrepreneur i will choose the same capital level if she faces
the same tax sequence. For the purpose of this exercise we actually do not have to solve
this problem. So let us just note that under regularity conditions, this problem will have an
interior solution, say f��(t)g1t=0. In particular one can also show that there is an equilibrium
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where taxes are constant, i.e. ��(t) = �� > 0. As a formal proof in a similar environment
(although an environment which does not feature growth) is contained in exercise 22.17, we
will not provide the details of the argument here.

To �nally show that those distortionary taxes �� > 0 reduce the growth rate of the
economy, we will show that there exists a BGP where the growth rate of the economy will
be given by the growth rate of capital which in turn will be reduced if the middle class faces
distortionary taxes. To see this, note �rst that total output in this economy is given by

Y (t) =

Z 1

0
Yi(t)di =

Z 1

0
F (Ki (t) ; A (t)Li (t)) di = F (1; B)K(t);

i.e. output grows at the same rate as the economy�s capital stock. Using (I22.5) it is also
clear that the consumption level of the elite is also proportional to the capital stock if taxes
are constant because Ce(t) = 1

�e �
�K(t)F (1; B). Workers are only endowed with labor, i.e.

their consumption level if given by the current wage rate. Wages however are given by

w(t) = A (t)FL (Ki (t) ; A (t)Li (t)) = A (t)FL (K (t) ; A (t)) = BK(t)FL (K (t) ; BK(t))

= BK(t)FL (1; B) ;

i.e. are also proportional to the capital stock. This shows that the consumption level of the
middle class given in (I22.1) satis�es

C(t) = (1� ��)F (K(t); A(t))�K(t+ 1)�BK(t)FL (1; B)
= (1� ��)F (1; B)K(t)�K(t+ 1)�BK(t)FL (1; B)

so that
C(t)

K(t)
= (1� ��)F (1; B)�BFL (1; B)�

K(t+ 1)

K(t)
: (I22.6)

Along the BGP, �nal output Y (t) grows at a constant rate so that K(t+1)K(t) is constant. Hence
the RHS of (I22.6) is constant which shows that entrepreneurial consumption is proportional
to capital too. Hence, along the BGP we have that

g� =
Y (t+ 1)

Y (t)
=
C(t+ 1)

C(t)
=
K(t+ 1)

K(t)
:

From (I22.3) however it is then clear that

g� = �[(1� ��)FK(1; B) + (1� �)]
and therefore

@g�

@��
= ��FK(1; B) < 0:

This shows that distortionary taxation will reduce the growth rate of the economy. The
intuition is the following: the source of growth in this economy is the endogenous labor-
augmenting technology term A(t) which is determined by the investment decisions of middle
class producers. In equilibrium, the economy will have the same structure as an AK-economy
so that capital accumulation is the only source of growth. Distortionary taxes however reduce
the return to capital so that capital accumulation will be lower as entrepreneurs will reduce
their savings. This in turn reduces the growth rate of the economy.

The most important aspect of this exercise is, that it shows that most results about
the distortionary taxation can be generalized to environments which feature (endogenous)
growth. The analysis however becomes harder (as illustrated by this exercises, where we
did not present a closed form solution) and often intractable. This is the reason why the
discussion in the book mostly focuses on economies without growth.
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Exercise 22.3

To analyze the case of the middle class deciding about the tax policies, let us �rst note that
given the policy vector pt= f� (s) ; Tw (s) ; Tm (s) ; T e (s)g1s=t the unique competitive equilib-
rium is still characterized by Proposition 22.1. In particular, the equilibrium capital ratio
k̂ (� (t)) is given by

k̂ (� (t)) �
�
f 0
��1���1 + � � 1

1� � (t)

�
(I22.7)

and equilibrium wages are given by

ŵ (� (t)) = (1� � (t))
h
f(k̂ (�))� k̂ (� (t)) f 0(k̂ (�))

i
: (I22.8)

Using this, the per period consumption level of the representative middle class agent is

Cm(t) = (1� � (t))F (Ki (t) ; Li (t))� (Ki (t+ 1)� (1� �)Ki (t))� w (t)Li (t) + Tm (t) :
Using that Li(t) = L� = 1=�m this can be written as

Cm(t) = L� (1� � (t)) f
�
k̂ (� (t))

�
� L�k̂ (� (t+ 1)) + (1� �)L�k̂ (� (t))

� (1� � (t))
h
f(k̂ (�(t)))� k̂ (� (t)) f 0(k̂ (�))

i
L� + Tm (t)

=
h
�k̂ (� (t+ 1)) + (1� �) k̂ (� (t)) + (1� � (t)) k̂ (� (t)) f 0(k̂ (�))

i 1
�m

+ Tm (t)

=
h
�k̂ (� (t+ 1)) + ��1k̂ (� (t))

i 1
�m

+ Tm (t) ;

where the last line uses that (I22.7) implies that

(1� � (t)) f 0(k̂ (�)) = ��1 � (1� �):
To solve for Tm (t) we can use the government�s budget constraint, which is given by

�mTm (t) + �eT e (t) + Tw (t) = �(t)

Z
Sm

F (Ki(t); Li(t))di = �(t)f(k̂ (�(t))):

Clearly the middle would want to set T e (t) = Tw (t) = 0. Hence we get that

Tm (t) =
1

�m
�(t)f(k̂ (� (t)));

so that the consumption level of the representative middle class agent is given by

Cm(t) =
1

�m

h
�k̂ (� (t+ 1)) + ��1k̂ (� (t)) + �(t)f(k̂ (� (t)))

i
:

Using this, we can write the policy problem of the middle class agent recursively as

V m(� ; [k̂i(�)]i2Sm)

= max
� 02[0;1]

�h
��1k̂ (�) + �f(k̂ (�))� k̂

�
� 0
�i 1
�m

+ �V m(� 0; [k̂i(�
0)]i2Sm)

�
;

where the capital stocks [k̂i(�)]i2Sm are given in (I22.7). The Envelope Condition is given by

V m
� (� ; [k̂i(�)]i2Sm) =

"
��1

@k̂ (�)

@�
+ f(k̂ (�)) + �f 0(k̂ (�))

@k̂ (�)

@�

#
1

�m
: (I22.9)

As the �rst-order condition is given by

@k̂ (� 0)

@� 0
1

�m
= �V m

� (�
0; [ki(�

0)]i2Sm); (I22.10)
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(I22.9) and (I22.10) together imply that

V m
� (� ; [k̂i(�)]i2Sm)� ��1

@k̂ (�)

@�

1

�m
=

"
f(k̂ (�)) + �f 0(k̂ (�))

@k̂ (�)

@�

#
1

�m
= 0;

so that the optimal tax rate is implicitly de�ned by

f(k̂ (�)) + �f 0(k̂ (�))
@k̂ (�)

@�
= 0: (I22.11)

From (I22.7) we get that

@k̂ (�)

@�
=
��1 � (1� �)
(1� �)2

1

f 00(k̂ (�))
;

so that (I22.11) yields

0 = f(k̂ (�)) + �f 0(k̂ (�))
��1 � (1� �)
(1� �)2

1

f 00(k̂ (�))

= f(k̂ (�)) +
�

1� �

�
��1 � (1� �)
(1� �)2

�2
1

f 00(k̂ (�))
; (I22.12)

where the second equality uses (I22.7). Hence, (I22.7) and (I22.12) provide us with two
equations in two unknowns (k; �) which we can (in principle) solve. We are only interested
if � > 0. To see that this is the case, note that

k̂ (0) =
�
f 0
��1 �

��1 + � � 1
�
> 0;

so that (I22.12) is not satis�ed for � = 0 as f(k̂ (0)) > 0. In particular note that the LHS of
(I22.12), i.e. the term

f(k̂ (�)) +
�

1� �

�
��1 � (1� �)
(1� �)2

�2
1

f 00(k̂ (�))

describes the marginal returns of setting a higher tax rate. As f(k̂ (0)) > 0, this shows that
the marginal return of a tax increase at � = 0 are positive. Hence, the middle class will indeed
want to tax themselves. Although this might seem to be a strange result at �rst sight, the
result is sensible. The intuition why the middle class would exert taxes on themselves is the
following. Given that all markets are competitive, middle class producers make zero pro�ts
beyond the competitive return on their capital which they themselves are endowed with. By
imposing a tax which middle class producers will take as given after the tax is set, perfect
competition will ensure that middle class producers earn zero pro�ts after the tax is paid
for. Hence, equilibrium wages will be lower - both via the direct tax e¤ect (see (I22.8)) and
the slowed down capital accumulation. Those tax dollars will however be distributed among
the middle class producers so that the possibility to tax themselves represents an ine¢ cient
mechanism how the middle class can transfer resources from workers to themselves. The
same intuition would also apply when the whole population are the bene�ciaries of the tax
receipts. This would tend to reduce the incentives to impose distortionary taxes, the basic
intuition however would still go through - taxes will still be a measure to reduce wages and
transfer resources to the middle class.



500 Solutions Manual for Introduction to Modern Economic Growth

Exercise 22.8

Note �rst that the assumption that power shifts permanently from the elite to the middle
class simpli�es the task of comparing V e (E) and V e (M) considerably. So let us derive
V e (M), i.e. the value of the elite when the middle class is in political power. As this value
function will be dependent on the tax policy the middle class chooses, we have to solve
the policy problem of middle class producers. As we assumed that Condition 22.1 did not
hold, wages are equal to zero. For a given policy sequences f� e(t); �m(t)g1t=0 the maximizing
capital-labor ratio as a function of the tax rate was given by (see (22.20))

k(�m) = (� (1� �m))1=(1��)Ai: (I22.13)

Together with the governments budget constraint

Tw (t) + �mTm (t) + �eT e (t) � �

Z
Sm[Se

� i (t)F (Ki (t) ; Li (t)) di+R
N (I22.14)

we can solve for the consumption level of the representative middle class agent as

Cm(t) = �L [f(k(�m(t))) + (1� �)k(�m(t))� k(�m(t+ 1))] + Tm(t): (I22.15)

As the optimal policy sequence as decided upon by the middle class will involve

Tw (t) = T e (t) = 0;

we can combine (I22.14) and (I22.15) to get

Cm(t) = �L [f(k(�m(t))) + (1� �)k(�m(t))� k(�m(t+ 1))] + RN

�m
+

�

�m
�L�m(t)f(k(�m(t))) +

�

�m
�L� e(t)f(k(� e(t)))

= �L

�
f(k(�m(t)))

�
1 +

�

�m
�m(t)

�
+ (1� �)k(�m(t))� k(�m(t+ 1))

�
+
�

�m
�L� e(t)f(k(� e(t))) +

RN

�m
:

The middle class will set f� e(t)g1t=0 to maximize their lifetime utility. But as � e(t) only
appears in the equation of Cm(t) (and not in Cm(t+1)) this is just a static problem, i.e. the
middle class will tax the elite according to

� e(t) = argmax
�

�f(k(�)):

This is intuitive as it requires that � e(t) is set to maximize the tax revenues the middle class
gets from the elite. The necessary �rst-order condition is given by

f(k(� e(t))) + �f 0(k(� e(t)))
@k(� e(t))

@�
= 0: (I22.16)

As we are still in the case of the canonical Cobb-Douglas model, (I22.16) simpli�es to
1

�
(Am)1��k� � �(Am)1��k��1k 1

(1� �)(1� �) = 0;

which yields the optimality condition ��
(1��)(1��) = 1, or rather

� e(t) = � e = 1� �:
Additionally note that �m(t) = 0. The reason is that there is excess labor supply, i.e. wages
will be zero. Recall that exercise 22.3 showed that middle class producers would want to
tax themselves if this would decrease wages (as it would represent a possibility to extract
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resources from workers). With excess labor supply wages are not dependent on the tax rate
(they are equal to zero) so that taxing themselves does not have bene�ts and taxes will be
zero. Given this policy choice by the middle class, the consumption level of the elite when
the middle class is in power is given by

Ce(t) = (1� � e)�Lf(k(� e)) + (1� �)�Lk(� e)� �Lk(� e)
= (1� � e)�Lf(k(� e))� �Lk(� e)

= �L

�
�
1

�
(Ae)1�� (��)�=(1��) (Ae)� � (��)1=(1��)Ae

�
= �LAe (��)�=(1��) (1� ��) (I22.17)

where the second line explicitly used our assumption that � = 1 and third line used (I22.13)
to arrive at

k(� e) = (� (1� � e))1=(1��)Ae = (��)1=(1��)Ae:

Using this expression for consumption, we can solve for the value of the elite when the middle
class is in power as

V e (M) = �LAe (��)�=(1��) (1� ��) + �V e(M) =
1

1� �
�LAe (��)�=(1��) (1� ��):

Note that it is precisely here where the assumption of a permanent power shift simpli�es the
analysis - otherwise we could not have solved V e (M) without knowledge of V e (E). From
here we can now show that in this model

V e (E) > V e (M) :

To do so we show that per period consumption of the elite under elite control is strictly higher
than under the control of the middle class. Let us denote the elite�s consumption level under
the control of the elite and the middle class by Ce(E) and Ce(M) respectively. The analysis
in section 22.4.2 established that

Ce(E) = ��=(1��)Ae �L=�+ [���=(1��)�m(1� �m)�=(1��)Am�m �L=�+RN ]=�e

� ��=(1��)Ae �L=�:

Using (I22.17) we therefore get that a su¢ cient condition for Ce(E) > Ce(M) is

��=(1��)Ae �L=� > �LAe (��)�=(1��) (1� ��):

This however will be satis�ed as

1 > �1=(1��)(1� ��):

As the elite gets a higher consumption level in every period when they themselves are in
power, they strictly prefer being in power, i.e.

V e (E) > V e (M)

as required.
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Exercise 22.9

Clearly the formal analysis of subsection 22.4.2 is unchanged. Hence, the optimal tax
rate for the elite (provided the solution is interior) is still characterized by the �rst-order
condition (which we reproduce here for convenience)

� (�(1� �m (t)))�=(1��)Am�m �L
��e

�
1� �

1� �
�m (t)

1� �m (t)

�
� �d� [�

m]

d�m
(V e (E)� V e (M)) = 0:

(I22.18)
Note that we de�ned

� [�m] = �(�mCm(�m))

to simplify the notation. From here we can now show that �0 (�) < 0 implies that �m < 1��.
To see this, note �rst that it still holds true that V e (E) � V e (M) > 0. For the special
case of �(�) = 0 this was shown in Exercise 22.8. The result however holds in general. The
intuition is that the elite could always have chosen the same policy as the middle class so that
V e(E) � V e(M). Additionally we will have V e(E) 6= V e(M) as the problem of the elite has
a unique solution which does not coincide with the policy the middle class chooses. Hence,
V e(E) > V e(M). Note also that �m (t) < 1 as �m(t) = 1 would imply that (see (22.20))

ki (t+ 1) = k̂i (� (t+ 1)) � (� (1� � (t+ 1)))1=(1��)Ai = 0;
which cannot be optimal as it would generate no revenues.

As �(�(1��m(t)))�=(1��)Am�m �L
��e > 0 whenever �m (t) < 1, (I22.18) shows that the marginal

return of a tax increase given in (I22.18) evaluated at �m(t) = 1� � is given by

� (��)�=(1��)Am�m �L

��e

�
1� �

1� �
1� �
�

�
� � d� [�m]

d�m

����
�m=1��

(V e (E)� V e (M))

= �� d� [�m]

d�m

����
�m=1��

(V e (E)� V e (M)) < 0;

where, recall, we have

d� [�m]

d�m

����
�m=1��

= �0(�mCm(�m))�m
dCm(�m)

d�m
> 0;

as Cm(�m) is decreasing in �m. Hence, the elite could increase its utility by decreasing the
tax rate, which implies

�m < 1� �
as required.

The intuition for this result is the following. A reduced form formulation with �0 (�) < 0
tries to capture that the middle class is more likely to start a revolution when they are taxed
more heavily, hence when their opportunity cost of staying under the rule of the elite are
higher. This seems to be a very plausible mechanism. The institutional framework that
would give rise to a formulation of �0 (�) < 0 as opposed to �0 (�) > 0 could be thought of
one, where resource accumulation is less important in starting a revolution than widespread
support among the middle class. It was already argued in subsection 22.4.2 that we could
think of �0 (�) > 0 as being caused by the middle class becoming more powerful in terms
of military power for example The case of �0 (�) < 0 rather captures a revolution caused
by the middle class being economically dominated by the elite. To �x ideas, suppose we
could model the middle class�preferences for a regime change by some disutility which is
distributed according to some continuous distribution G. Of course we should not think of
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this as a literal disutility of starting a revolution but rather as a reduced form representation
for middle class individuals bene�tting di¤erentially from a regime change. In order to
characterize the revolution decision of each middle class agent we would need to compare the
utility of staying under the rule of the elite with the utility of starting a regime change. As
the utility of staying under the rule of the elite is decreasing in taxes, a higher tax rate will
induce more people to join the revolution. And if we think that the probability of survival
is a decreasing function of the number of people heading towards the streets, we would get
exactly the reduced form e¤ect of �0 (�) < 0.

Exercise 22.16

Exercise 22.16, Part (a). If Condition 22.1 fails to hold, labor demand will fall short of
labor supply so that wages will always be equal to zero. Hence, the factor price manipulation
motive is absent. If � = 0, then it is furthermore the case that the tax revenue the elite
might extract from the middle class cannot be used as consumption of the elite. Hence the
only channel why the consumption level of the middle class matters for the utility of the
elite is via the possibility of political replacement. Recall that we assumed that probability
of political replacement was given by �(t) = �(�mCm(t)). It will still be true that the elite
will be better o¤ being in power than being governed by the middle class (see the solution
to Exercise 22.8). Hence, the only objective regarding the choice of � and g is to reduce
the consumption of the middle class to increase the probability of political survival 1� �(t)
(recall that we assumed that �0(:) > 0). As middle class consumption is increasing in g and
decreasing in � , the utility of the elite is strictly increasing in the tax rate and decreasing in
the productivity of the middle class. Therefore it is clear that g = 0 and setting the maximal
tax rate is the optimal action for the elite. This shows that any MPE will feature g = 0.
To see that this will also be true for all SPE, note that the decision to block the technology
can be taken only once at t = 0. So suppose there was a SPE where g = 1. From then on,
the unique SPE will be characterized by �(t) = �� as this yields the maximal utility the elite
can attain (in the sense that it would minimize middle class consumption). But this will also
be the unique SPE in case the elite would have set g = 0. As the utility of the elite will be
higher when the productivity of the middle class is lower, the unique SPE will involve g = 0.

Exercise 22.16, Part (b). As we restrict ourselves to MPE and the maximization
problem of the elite is stationary, the optimal tax rate will be a function of g, but constant
over time. Let us denote those optimal tax rates by �̂(1) and �̂(0) respectively. Following the
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analysis in Section 22.4.2 we can therefore write the utility of the elite as a function of g as1

V e(E; g) = ��=(1��)Ae �L(1� �a)=a+ [���=(1��)�̂(g)(1� �̂(g))�=(1��)A(g)m�m �L=�]=�e

+RN=�e + � [(1� � [�̂(1); g])V e(E; g) + � [�̂(1); g]V e (M)] ; (I22.19)

where we used that the elite�s value under the control of the middle class does not depend on
g. This is a direct consequence of our assumption that wages are equal to zero and hence will
be independent of Am(g) once the middle class gains power. The elite will therefore prefer to
block the technology of the middle class if V e(E; 0)� V e(E; 1) > 0. To make some progress
here, let us �rst determine the consumption level of middle class entrepreneurs. Taking taxes
as given and employing �L units of labor each, the after tax consumption of each entrepreneurs
as a function of g is given by

Cm(g) = (1� �̂(g)) �L 1
�
[� (1� �̂(g))]

�
1�� Am(g)� [� (1� �̂(g))]

1
1�� Am(g)

= �LAm(g) (1� �̂(g))
1

1�� �
�

1��
1� ��
�

; (I22.20)

where we used the optimal capital-labor ratio given in (22.20). To construct an example
where the elite would want to prevent the middle class from adopting the e¢ cient technology
even if they can extract taxes from them, suppose for simplicity that Am(0) = 0, i.e. the elite
can e¤ectively block the middle class from producing at all. The best way to think about
this assumption is not from a purely technological perspective but rather as a regulation
where middle class producers are prevented from entering the market in the �rst place. Let
us furthermore assume that �(0) = 0, which captures the idea that power is �rmly in the
hands of the elite as long the middle class does not have any resources. Hence, � [�̂(0); 0] = 0
so that (I22.19) implies

V e(E; 0) =
�
��=(1��)Ae �L(1� �a)=a+RN=�e

� 1

1� � : (I22.21)

Let us for expositional purposes also assume that �(�mCm(1)) = 1 whenever Cm(1) > 1, i.e.
if the middle class will consume a positive amount, then it will take over the political power
with certainty. This assumption is not crucial, it merely simpli�es some calculations. Hence,
the function �(:) takes the simple form

�(x) =

�
0 if x = 0
1 if x > 0

:

1Note that the expression is slightly di¤erent than the one given in the book (the equation after (22.30)).
This is due to the fact that there is a small typo in the book, i.e. the term (1 � �a) is missing. To derive
our expression, note that the elite would not want to tax itself given that there is excess labor supply and
equilibrium wages are zero. Recall that this will not be true if wages were not zero (see exercise 22.3). The
per-period consumption level of the elite will therefore be given by

Ce(t) = �L (f(k(t))� k(t+ 1) + (1� �)k(t)) :

As � = 1 and k(t) = [�(1� �(t)]1=(1��)Ae (see (22.20)), we get that

Ce(t) = �L

�
1

�
(Ae)1�� ��=(1��) (Ae)� � �1=(1��)Ae

�
= �LAe��=(1��)

�
1

�
� �

�
= �LAe��=(1��) (1� ��)

1

�

as given in (I22.19).
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Note in particular this this implies that �0(x) = 0 whenever x > 0.
Using this, we have to consider two cases to solve for the value function of the elite given

in (I22.19). Suppose the elite chooses �̂(1) < 1. Then it follows from (I22.20) that Cm(1) > 0,
so that the elite�s value if given by

V e(E; 1) = �
�

1��Ae �L(1��a)=a+[��
�

1�� �̂(1)(1� �̂(1))
�

1��A(1)m�m �L=�+RN ]=�e+�V e (M) ;
(I22.22)

as �(�mCm(1)) = 1. If however the elite decides to allow the technology adoption but then
decides to set �̂(1) = 1, its value is given by

V e
�=1(E; 1) = ��=(1��)Ae �L(1� �a)=a+RN=�e + �V e

�=1(E; 1)

=
��=(1��)Ae �L(1� �a)=a+RN=�e

1� � : (I22.23)

Note that we indexed the value function by � = 1 to indicate that this refers to the case where
the elite con�scates the entire output of middle class producers. But (I22.23) and (I22.21)
now show that

V e
�=0(E; 1) = V e(E; 0):

This is intuitive as both these policies do not generate any tax revenues (either the middle
class has a productivity level of zero or they do not accumulate any capital) but allow the
elite to cling to their power. Hence let us without loss of generality assume that the elite
does not consider the option of allowing technology adoption (g = 1) and then taxing the
entire returns. Hence, the two values of the elite are V e(E; 1) (given in (I22.22)) and V e(E; 0)
(given in (I22.21)).

Now note that V e(E; 1) depends on the value of the elite once the middle class has taken
over power, i.e. V e (M). In this context the only incentive of the middle class to tax the
elite once they are in power is to extract tax revenues as there is no scope for factor price
manipulation (as wages are zero) and we assume that the middle class will never get replaced
once they are in power. This implies that the middle class will set taxes to maximize tax
revenue, i.e. will set � eM = 1� � (see the solution to Exercise 22.8 for the derivation), where
� eM denotes the tax rate imposed on the elite by the middle class. The consumption level of
the elite under middle class control Ce(M) will therefore be given by

Ce(M) = (1� � eM )
1

�
�L(Ae)1��k(� eM )

� � �Lk(� eM ) + (1� �)�Lk(� eM )

= (1� � eM )
1

�
�LAe(�(1� � eM ))�=(1��) � �LAe(�(1� � eM ))1=(1��)

= �LAe(��)�=(1��)(1� ��);

where the second line used � = 1 and the fact the optimal capital-labor ratio is given in
(22.20) as

k(� eM ) = A(�(1� � eM ))1=(1��):

Note that this is of course the same expression as (I22.20) when taxes are given by � = 1��.
Hence we get that

V e (M) = Ce(M) + �V e (M) =
1

1� �
�LAe (��)�=(1��) (1� ��):
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Substituting this in (I22.22) we �nd that

V e(E; 1) = ��=(1��)Ae �L(1� �a)=a+ [��
�

1�� �̂(1)(1� �̂(1))
�

1��A(1)m�m �L=�+RN ]=�e

+
�

1� �
�LAe (��)�=(1��) (1� ��)

= ��=(1��)Ae �L
1� �a
�

�
1 +

�

1� ��
1=(1��)

�
+[���=(1��)�̂(1)(1� �̂(1))�=(1��)A(1)m�m �L=�+RN ]=�e:

Hence, the elite will block the technology whenever V e(E; 0) > V e(E; 1), i.e.

�
�

1��Ae �L1��a� +RN=�e

1� � > �
�

1��Ae �L
1� �a
�

�
1 +

�

1� ��
1

1��

�
+

[��
�

1�� �̂(1)(1� �̂(1))
�

1��A(1)m�m �L=�+RN ]=�e:

To ease the interpretation, let us rearrange this condition ash
�

�
1��Ae �L1��a�

�
1� �

1
1��
�
+RN=�e

i
�

1� � >
[��

�
1�� �̂(1)(1� �̂(1))

�
1��A(1)m �L]�m

��e
: (I22.24)

(I22.24) illustrates the basic trade-o¤ the elite is facing. Consider the �rst the LHS. By
blocking economic entry of the middle class it can capture the rents from natural rents because
it can ensure to stay in power. Furthermore they do not face the taxes which the middle
class is going to impose once entry occurs (this is captured by the term

�
1� �1=(1��)

�
).

As the elite will never be replaced, this payo¤ is multiplied by �=(1 � �). On the other
hand, the RHS incorporates that they lose the tax returns the middle class could pay if
entry was allowed. The comparative statics results are intuitive. Distortionary blocking of
economic development gets more likely the higher the rents of natural resources and the more
productive the elite (i.e. the higher Ae). On the other hand, the elite will accommodate entry
of the middle class if they are very productive (i.e. A(1)m is high), the state capacity (i.e.
the ability of the state to e¢ ciently extract resources governed by �) is higher and the more
numerous the middle class is vis-a-vis the elite.

Up to now we left the general expression �̂(1) to clearly identify the source of the bene�ts
of not blocking entry, i.e. the tax returns. However we can also solve for �̂(1) explicitly. The
optimal tax rate is given by

�� = argmax
�

�(1� �)�=(1��) = 1� �:

This is intuitive: without taxes a¤ecting the political replacement (recall that �0(x) = 0), the
elite will tax the middle class to maximize tax revenues. Using this, (I22.24) reduces toh

�
�

1��Ae �L1��a�

�
1� �

1
1��
�
+RN=�e

i
�

1� � >
[��

�
1�� (1� �)(�)

�
1��A(1)m �L=�]�m

�e
;

which is just a parametric condition as required.

Exercise 22.16, Part (c). Up to now we have stressed the fact that many distortions
arise simply because we restricted attention to a limited set of instruments. Hence, many
distortions would not exist if the elite would have access to more e¢ cient means to transfer
resources from middle class producers to themselves. For example in the baseline model
analyzed in Section 22.2 the equilibrium would feature no distortionary taxation but only
lump-sum taxes. This simply re�ects the fact that in this framework the elite is only concerned
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to redistribute resources from the middle class to itself and in equilibrium they will chose the
most e¢ cient way to do this. This intuition however is changed when other concerns like the
factor manipulation motive or the possibility of political replacement become more prominent.
To see this, let us consider the example from above but now assume that Condition 22.1 holds,
i.e. there will be full employment in this economy and wages will be positive. We will show
that it is this feature which will induce the elite to choose distortionary policies although
it has access to lump-sum taxes. Suppose for simplicity that the elite has only two �scal
instruments, namely the lump sum tax Tm and the technology choice g. This of course is
restrictive in that we do not allow the elite to distort the economy by imposing distortionary
taxes �m on the middle class. For the point we want to make here however, this is not decisive.
We just want to see if the elite would block the technology choice of the middle class (which
is of course an ine¢ cient policy choice) in spite of having lump-sum taxes available.

Again we assume that the probability of replacement �(:) is an increasing function of
the consumption level of the middle class. This immediately implies that the elite would
want to impose the highest lump-sum taxes possible, i.e. would set a lump-sum tax of
Tm = Cm(t) = Y m(g)�w(t)�L. In contrast to our analysis above however wages are not zero
but will be equal to the lowest marginal product of producers in this economy. The marginal
product of labor is given by

@Y (t)

@L
=
1� �
�

Ai(t)
1��

�
Ki(t)

L(t)

��
=
1� �
�

Ai(t)
1��

h
�1=(1��)Ai(t)

i�
=
1� �
�

��=(1��)Ai(t);

where we used the optimal capital-labor ratioKi(t)=Li(t) given in (22.20). Hence, equilibrium
wages in this economy are given by

w(t) =
1� �
�

��=(1��)minfAe; Am(g)g � w(g); (I22.25)

where we explicitly denoted the dependence of the equilibrium on the decision of the elite.
This already suggests why the ine¢ cient blocking of technological adoption might occur in
equilibrium - it is a mechanism to reduce equilibrium wages. For a given choice of g, the
receipts from the lump sum taxation are given by

Tm = Y m(g)�w(t)�L = �L
1

�
�Am(g)� �Lw(t) = �L

1

�
[Am(g)��(1��)��=(1��)minfAe; Am(g)g]:

Let us assume that
Am(1) > Ae > Am(0); (I22.26)

i.e. the elite is more productive than the middle class if and only if technology adoption is
prevented. As the entire surplus of the middle class is extracted via lump-sum taxation, i.e.
post-tax consumption of the middle class is equal to zero, the probability of replacement does
not depend on g, i.e.

�(t) = �(�mC(1)) = �(�mC(0)) = �(0) � �:

To analyze the decision to block or not block the technological adoption of the middle class
we again have to compare the values of the elite. Using (I22.19) we �nd that

V e(E; g) =
�

�
1��Ae �L(1� �a)� �Lw(g)�

�
+
�m(Y m(g)� w(g)�L) +RN

�e

+� [(1� �)V e(E; g) + �V e (M)]

=
�

�
1��Ae �L(1��a)��Lw(g)�

� + �m(Ym(g)�w(g)�L)+RN
�e + ��V e (M)

1� � (1� �) ;
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so that

V e(E; 1)� V e(E; 0) =
�L(w(0)� w(1)) + �m

�e
�
Y m(1)� Y m(0) + (w(0)� w(1)) �L

�
1� � (1� �)

=
�m+�e

�e
�L(w(0)� w(1)) + �m

�e [Y
m(1)� Y m(0)]

1� � (1� �) :

Note that the di¤erence in values V e(E; 1) � V e(E; 0) does not depend on V e (M) as the
replacement probability does not depend on g. Hence, the terms including V e (M) cancel
out. From here we can conclude that the elite would want to block the middle class from
adopting the e¢ cient technology whenever V e(E; 1)� V e(E; 0) < 0, i.e. when

0 > (�m + �e)�L(w(0)� w(1)) + �m [Y m(1)� Y m(0)]

= (�m + �e)�L
1� �
�

��=(1��)(Am(0)�Ae) + �m �L 1
�
�[Am(1)�Am(0)];

where the second line used (I22.25) and (I22.26). To facilitate the intuition, let us write this
condition as

(�m + �e)�L
1� �
�

��=(1��)(Ae �Am(0)) > �m �L
1

�
�[Am(1)�Am(0)]:

From there it is apparent that technology is blocked, when the gains from lower equilibrium
wages (on the LHS) exceed the bene�ts from higher lump-sum taxes (on the RHS). The
comparative static results are also intuitive. The higher Am(1), the higher the incentives of
the elite to not block adoption from the middle class. The reason is that given our assumption
in (I22.26), Am(1) will never determine equilibrium wages but will only increase the resources
the elite can extract. If on the other hand the elite is very productive, i.e. Ae is high, there are
bigger incentives to block technology adoption from the middle class. This is also intuitive:
if the elite does not block the technology of the middle class, it will be Ae that determines
equilibrium wages. Hence, if Ae is high it is more pro�table to block the technology adoption
by the middle class as this will reduce equilibrium wages by relatively more compared to the
case where Ae is low. This shows that if the elite has access to e¢ cient means of resource
extraction, they might still use ine¢ cient policies (like blocking technology adoption) due to
the factor price manipulation motive.

Exercise 22.17

To see that entrepreneurs�capital accumulation is characterized by (22.61) let us write
the entrepreneurs�problem recursively. The current capital stock is the state variable and
the sequence of taxes f�(t)g1t=0 is taken as given. Hence, the recursive formulation is given
by

V (k; f�(s)g1s=m) = max
fk0>0;c>0g

�
log(c) + �V (k0; f�(s)g1s=m+1)

	
s.t. c+ k0 = f(k) = (1� �(m))Ak�:

As this will be a crucial part of the solution it is worthwhile to pause for second and observe
that we parametrize the value function by the entire sequence of future taxes. Hence if today�s
taxes are �(m), tomorrow�s value function is dependent on f�(s)g1s=m+1. Substituting the
constraint we therefore get

V (k; f�(s)g1s=m) = max
k02[0;(1��(m))Ak�]

�
log((1� �(m))Ak� � k0) + �V (k0; f�(s)g1s=m+1)

	
;
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which yields the �rst-order condition
1

(1� �(m))Ak� � k0 = �V 0(k0; f�(s)g1s=m+1) (I22.27)

and the Envelope Condition

V 0(k; f�(s)g1s=m) =
�(1� �(m))Ak��1
(1� �(m))Ak� � k0 : (I22.28)

Iterating (I22.28) forward, combining it with (I22.27) and denoting the policy function by
k0 = �(k; f�(s)gm) yields

1

(1� �)Ak� � �(k; f�(s)gm)
=

(1� � 0)��A�(k; f�(s)gm)��1
(1� � 0)A�(k; f�(s)gm)� � �(�(k; f�(s)gm); f�(s)gm+1)

;

(I22.29)
where � = �(m) and � 0 = �(m + 1). To solve this problem, let us conjecture a speci�c
solution. In particular, let us conjecture that

�(k; f�(s)g1s=m) = �(1� �(m))Aka;
where � is to be determined. The most important part of this guess of the policy function is
that it is only dependent on the current tax rate �(m). With this conjecture we get that

�(�(k; f�(s)g1s=m); f�(s)g1s=m+1) = �(1� �(m+ 1))A (�(1� �(m))Aka)� :
To simplify the notation let �(m) = � and �(m+ 1) = � 0. Using this, (I22.29) yields

1

(1� �)Ak�(1� �) =
(1� � 0)��A [�(1� �)Aka]��1

(1� � 0)A [�(1� �)Aka]� � �(1� � 0)A (�(1� �)Aka)� ;

from which it can be veri�ed that
� = ��:

Hence, the capital accumulation policy function is indeed given by

�(k(t); �(t)) = k(t+ 1) = ��(1� �(t))Ak(t)a (I22.30)

as required in (22.61). Note especially that we in principle allowed for capital accumulation
to depend on the entire sequence of future taxes. However it turns out that the solution
conveniently takes the easy form that future tax rates do not matter for current decisions
once current taxes are controlled for. The reason for this is deeply rooted in the combination
of log preferences and full depreciation. We know that with those preferences the income and
the substitution e¤ect exactly cancels out, i.e. controlling for lifetime wealth, an increase in
the price of future consumption versus current consumption would leave current consump-
tion (and savings) unchanged. With full depreciation however, lifetime wealth is just given
by current output (1 � �(t))Ak(t)�, i.e. does not depend on future taxes either. Hence,
future taxes do neither a¤ect the saving rate nor lifetime wealth, so that current savings
are not dependent on future taxes. Current savings however are equal to tomorrow�s capital
stock as there is full depreciation. Hence, it is only the current tax rate that a¤ects capital
accumulation.

Let us now turn to the problem of the elite. Their per period consumption level is equal
to the tax proceeds, i.e. it is given by

ce(t) = �(t)y(t) = �(t)Ak(t)�:

Writing the problem of the elite recursively, yields the formulation

V e(k) = max
�2[0;1]

�
log(�Ak�) + �V e(k0(�))

	
: (I22.31)
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Note that � is of course not a state variable for the elite. Along the equilibrium path however,
we know exactly how the future capital stock k0 depends on current taxes - it is exactly given
by (I22.30). Substituting this into (I22.31) yields the required formulation

V e(k) = max
�2[0;1]

flog(�Ak�) + �V e(��(1� �)Aka)g : (I22.32)

That the endogenous value function V e is di¤erentiable for k > 0 and strictly concave follows
from Theorem 6.4 in Chapter 6. To see this, let us check that the assumptions in Theorem
6.4 are satis�ed. That the instantaneous utility function is strictly concave and continuous
is obvious. Furthermore, the correspondence G is simply given by G(k) = [0; Ak�]; which is
compact-valued, continuous and nonempty. That the limit condition required in Assumption
6.1 also holds follows from the following observation. Consider the capital accumulation of
entrepreneurs if taxes were zero. This would be given by

k(t+ 1) = ��Ak(t)a:

By the usual argument, this process has a �nite steady state k� starting from any k(0). But
then it is clear that in this taxless economy we would have

k(t) � maxfk(0); k�g:
With taxes there will of course be less capital for all t > 0 so that per period consumption
by the elite is bounded from above by

�(t)Ak(t)� � Ak(t)� � A (maxfk(0); k�g)� ;
which is the consumption level they would get if capital accumulation was given as in the
taxless economy but the elite could extract all the resources. Hence we get that

lim
T!1

TX
t=0

�t log(ce(t)) < lim
T!1

TX
t=0

�t log(Amaxfk(0); k�g�) = log(Amaxfk(0); k�g�)
1� � <1;

which veri�es that the limit exists and is �nite as required in Assumption 6.1. This proves the
strict concavity of V e. To prove di¤erentiability of the value function, simply apply Theorem
6.6 and note that the instantaneous utility function is di¤erentiable.

Using this result, we can use (I22.32) to get the Euler equation of the elite. The �rst-order
condition is given by

1

�
� �(V e)0(k0)��Aka = 0:

Using that from (I22.30) we know that k0 = ��(1� �(t))Ak�, the above simpli�es to
1

�
= �2(V e)0(k0)�Aka = �(V e)0(k0)

k0

1� � (I22.33)

as required. The Envelope Condition reads

(V e)0(k) =
�

k
+ �(V e)0(k0)�2�(1� �)Aka 1

k
=
�

k

�
1 + �(V e)0(k0)��(1� �)Aka

�
=

�

k

�
1 + �(V e)0(k0)k0

�
: (I22.34)

Using the conjecture V e(k) = � +  log k; it is clear that (V e)0(k) =  1k so that (I22.34)
reduces to


1

k
=
�

k

�
1 + �

1

k0
k0
�
;

which can be solved for
 =

�

1� ��
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as required. The policy function for the elite can then be solved from (I22.33). Using the
expression for (V e)0(k0) and , (I22.33) simpli�es to

1

�
=

��

1� ��
1

k0
k0

1� � =
��

1� ��
1

1� � ;

so that indeed

� = 1� ��:

Hence, the optimal tax rate is independent of the state variable, i.e. the capital stock in
the economy. Again this constancy of the optimal tax rate is heavily dependent on the
logarithmic preferences. To see this more clearly, note that we can write the elite�s problem
as.

V e(k) = max
(1��)02[0;1]

flog(Ak� � (1� �)Ak�) + �V e(��(1� �)Aka)g :

This problem however is isomorphic to the problem of a consumer with a current level of
resources Ak� having to decide on consumption and saving. In this context, (1 � �) would
be the saving rate. Savings earn a gross return of ��. But with log preferences we know that
the saving rate will be constant and so are taxes in this example.

To �nally study the dynamics of capital in this economy, (I22.30) and � = 1� �� imply
that

k(t+ 1) = ��(1� �(t))Ak(t)a = (��)2Ak(t)a:

Clearly this economy will have a unique steady state given by

k� =
�
(��)2A

�1=(1��)
:

Furthermore, it can be shown by the usual arguments that convergence to this steady state
will be monotone and that the system will be globally stable, i.e. k(t) will converge to k�

for any initial condition k(0). Hence the dynamics of the capital stock will qualitatively be
similar to the dynamics of the standard neoclassical growth model.

Exercise 22.18*

First note that, in the Condorcet paradox example, we can represent preference orderings
of all individuals on the same circle that has fa; c; bg in clockwise order. Each individual�s
preference vector starts with her bliss point and decreases as one moves clockwise around the
circle. Note also that each individual has a separate bliss point. Next, consider any ordering
x � y � z of fa; b; cg. We claim that one individual�s preferences in the Condorcet paradox
example is not single peaked with respect to this ordering. There exists one individual whose
bliss point is equal to x. If the preferences of this individual is x � z � y, then we are done
since these preferences are not single peaked with respect to the given ordering x � y � z.
If not, then her preferences must be given by x � y � z, which implies that x; y; z are lined
up in this order on the common circle of preferences. Then, the individual whose bliss point
is z has preferences given by z � x � y which is not single peaked with respect to ordering
x � y � z, completing the proof.
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Exercise 22.19*

We �rst slightly relax the de�nition of a Condorcet winner so that a policy p� is a
Condorcet winner if it weakly beats (or, equivalently, at least ties) any other policy in a
pairwise vote. Without this relaxation, a Condorcet winner might fail to exist with even
number of individuals since two most favorable policies may tie. For example, when there
are two individuals with di¤erent bliss points, their bliss points tie and a strict Condorcet
winner does not exist. With our relaxed de�nition, both of these bliss points are Condorcet
winners. We next formulate and prove the analogue of Theorem 22.1 when H is even.

Theorem I22.1. Suppose that H is an even number, that A1 and A2 (from Section
22.7.2) hold, and that all voters have single-peaked policy preferences over a given ordering of
policy alternatives, R. Consider the ordering of the bliss points of the voters p1 � p2 � :: �
p(H�1)=2 � p(H+1)=2 � :: � pH . There exists at least one Condorcet winner, in particular, any
policy p that satis�es p(H�1)=2 � p � p(H+1)=2 is a Condorcet winner. Moreover, any such p
is an equilibrium policy (stable point) under the open agenda majoritarian rule (i.e. under
A1-A3).

Proof. First, we claim that any p =2
�
p(H�1)=2; p(H+1)=2

�
cannot be a Condorcet winner.

If p < p(H�1)=2, then p loses a pairwise vote to p(H�1)=2 since all individuals with bliss points
weakly greater than p(H�1)=2 vote for p(H�1)=2 and there are at least H=2+1 such individuals,
which is a majority. Similarly, if p > p(H+1)=2, then p loses a pairwise vote to p(H+1)=2 and
hence is not a Condorcet winner. Second, we claim that any p 2

�
p(H�1)=2; p(H+1)=2

�
is a

Condorcet winner. Suppose that there is a pairwise vote between p and some other policy
p0 6= p. If p0 < p, then all individuals with bliss points weakly greater than p(H+1)=2 vote
for p and there are at least H=2 such individuals, which shows that p0 either ties or beats p.
Similarly, if p0 > p, then all individuals with bliss points weakly less than p(H�1)=2 vote for p
hence p0 either ties or beats p. Hence p is a Condorcet winner, as desired. �

Exercise 22.20*

Exercise 22.20, Part (a). Let us �rst show that preferences are single peaked as de�ned
in Section 22.7. Using the notation introduced there, we have that

p (�1) = a; p (�2) = b; p (�3) = c:

As

U(aj�1) > U(bj�1) > U(cj�1) and U(aj�3) < U(bj�3) < U(cj�3);

the preferences of voters 1 and 3 satisfy single-peakedness. Furthermore, the preferences
of individual 2 are automatically single-peaked as there are only 3 policy choices and voter
2 prefers the "middle" choice. Let us now show that sincere voting is not an equilibrium.
Suppose players 1 and 2 are voting sincerely. If player 3 votes sincerely, then b will win the
�rst round (as players 2 and 3 prefer b over a). In the second round, b will win over c as
players 1 and 2 vote for b. Hence, if player 3 votes sincerely, b will be implemented. Now
suppose player 3 votes for a in the �rst round. As a gets two votes, a will win over b. In the
second round, a competes against c. With players 1 and 2 voting sincerely, c will win as player
3 and player 2 will vote for c. Hence, if player 3 votes strategically, c will be implemented
instead of b. As player 3 prefers c over b, sincere voting is not an equilibrium.
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Exercise 22.20, Part (b). To characterize the SPE, we have to specify a strategy for
every subgame such that those strategies represent a Nash equilibrium in every subgame.
Strategies are just functions si : Hi ! Si, where Hi denotes the space of histories and Si
is the strategy set of player i. In this game we have Si = S = fa; b; cg and Hi = H =
ff?g; f?; ag; f?; bgg where f?g refers to the �rst stage and the two other ones to the case
where a or b won in the �rst stage. Let us solve this game using backwards induction. Doing
so, note �rst that equilibrium strategies satisfy

s1(?; a) = a; s2(?; a) = c; s3(?; a) = c (I22.35)

s1(?; b) = b; s2(?; b) = b; s3(?; b) = c:

To prove that this is the case, we just have to show that those strategies are Nash equilibria
in the respective subgame. Consider �rst the subgame where a won the �rst round. With
the strategies given in (I22.35), players 2 and 3 would not want to vote di¤erently (i.e. for a)
as they strictly prefer c. Furthermore, given that c will be implemented irrespective of what
player 1 votes for, voting for a is (weakly) optimal. Note that s1(?; a) = c would also be an
equilibrium strategy, but s1(?; a) = a is weakly-dominant. Now consider the subgame where
b won. Given the strategies of player 1 and 2, b will be implemented so that player 3�s voting
behavior is (weakly) optimal. As players 1 and 2 prefer b over c, they behave optimally too.
Hence, (I22.35) represent equilibrium strategies in the respective subgame. This shows that
if a wins in the �rst round, c will be implemented and if b wins in the �rst round b will be
implemented.

Let us now turn to the �rst round. The unique subgame perfect equilibrium strategy is
characterized by

s1(?) = b; s2(?) = b; s3(?) = a,
so that b wins in the �rst round. To see why, note again that player 3 is indi¤erent so
s3(?) = a is weakly optimal. Furthermore, players 1 and 2 behave optimally too. Given
(I22.35), they know that c will be implemented if one of them would vote for a. As both
prefer b over c, their voting behavior is optimal. Hence the equilibrium strategy pro�le
s = [s1; s2; s3] with si = (si(?); si(?; a); si(?; b)) is given by

s = [(b; a; b); (b; c; b); (a; c; c)]:

The equilibrium outcome is given by b, i.e. on the equilibrium path b will be implemented.

Exercise 22.20, Part (c). We can prove this result by induction on M . To reduce the
notational burden, let us assume that the median voter med(H) is never indi¤erent between
any two alternatives, i.e.

for all qi; qj : U(qijmed(H)) 6= U(qj jmed(H)):
Then it follows from the single-peakedness of preferences that the median voter strictly
prefers a unique alternative qj when having to choose from any subset fqi1 ; qi1 ; :::; qiKg �
fq1; q2; :::; qMg, i.e.

for all qi1 ; qi1 ; :::; qiK : 9qj : U(qj jmed(H)) > U(qsjmed(H)); s 2 fi1; ::; iKgnj:
Under this assumptions we can the de�ne the median voter�s preferred alternative when
choosing from fqi1 ; qi1 ; :::; qiKg by �(qi1 ; qi1 ; :::; qiK ), i.e.

�(qi1 ; qi1 ; :::; qiK ) = qj () U(qj jmed(H)) > U(qsjmed(H)); s 2 fi1; ::; iKgnj:
Furthermore let G(fq1; :::; qMg) be the equilibrium outcome of the game. Let M = 2, i.e.
there is the choice between two platforms q1 and q2. By Theorem 22.2, sincere voting is a
weakly-dominant strategy and in the unique weakly-dominant equilibrium the median voter�s
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preferred policy choice �(q1; q2) 2 fq1; q2g will be implemented. To show that this is also the
unique SPE we would have to add the quali�er "in weakly-dominant strategies". To see
this, �rst note that sincere voting is a SPE in this game. To show that it is not unique,
suppose that �(q1; q2) = q1. Then consider the strategy pro�le, where all individuals vote for
q2. Clearly this is an equilibrium, because taken as given that everyone else votes for q2, no
voter is pivotal so that everyone is indi¤erent between voting for q1 and q2. Hence, by not
restricting attention to weakly-dominant strategies, SPE does not have strong predictions.
So let us focus on SPE in weakly-dominant strategies. In that case, the unique SPE for the
case of M = 2 is characterized by

si(q1; q2) = q2 for all i � med(H) if �(q1; q2) = q2 (I22.36)

si(q1; q2) = q1 for all i � med(H) if �(q1; q2) = q1

G(fq1; q2g) = �(q1; q2);

where si(:) is the voting function (strategy) for individual i. Intuitively, (I22.36) just states
that if �(q1; q2) = q2, all voters to the right of the median voter will also vote for q2, whereas
if �(q1; q2) = q1, all voters to the left will vote for q1. Hence in any case, the median voter�s
preferred option has the majority. This shows that for M = 2, the conjecture is true. Now
suppose that the conjecture holds for M � 1 voting rounds. We want to show that it then
also hold for M voting rounds. So consider the game with M voting rounds. After the �rst
vote, there will be M � 1 rounds left. Let us denote the voting outcome in period 1 by
v(q1; q2). By our inductive hypothesis, the unique SPE in weakly-dominant strategies will be
characterized by

G(fv(q1; q2); q3; :::qMg) = �(v(q1; q2); q3; :::qM ):

Hence, in the �rst stage, voters face a decision between �(q1; q3; :::qM ) � �1 and
�(q2; q3; :::qM ) � �2. As preferences are single-peaked, we can again apply Theorem 22.2
to conclude that there is a unique equilibrium in weakly-dominant strategies, which imple-
ments the median voter�s preferred choice, i.e.

G(f�1; �2g) = �(�1; �2): (I22.37)

But now note that

�(�1; �2) = � (�(q1; q3; :::qM ); �(q2; q3; :::qM )) = �(q1; q2;q3; :::qM ):

To see this, note that

�(q1; q2; q3; :::qM ) = q1 =) q1 �med(H) qk ; k = 2; 3; :::;M; (I22.38)

where
q1 �med(H) qk () the median voter prefers q1 over qk:

But as �(q3; :::qM ) 2 fq3; :::qMg and �(q2; q3; :::qM ) 2 fq2; :::qMg, (I22.38) in particular implies
that

q1 �med(H) �(q3; :::qM ) and q1 �med(H) �(q2; :::qM )
so that

� (�(q1; q3; :::qM ); �(q2; q3; :::qM )) = � (q1; �(q2; :::qM )) = q1:

Hence,
�(q1; q3; :::qM ) = q1 =) �(�1; �2) = �(q1; q2;q3; :::qM ):

The case for �(q1; q2; q3; :::qM ) = q2 can be shown analogously. But for all k � 3 we also have
that

�(q1; q2; q3; :::qM ) = qk =) qk �med(H) qj ; j 2 f1; 2; ::;Mgnk;
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so that

� (�(q1; q3; :::qM ); �(q2; q3; :::qM )) = �(qk; qk) = qk;

which shows that also

�(q1; q3; :::qM ) = qk =) �(�1; �2) = �(q1; q2;q3; :::qM ) for all k � 3:

Hence

8q 2 fq1; q2; :::; qMg : �(�1; �2) = �(q1; q2;q3; :::qM )

as required. Then however we get from (I22.37) that

G (fq1; q2;q3; :::qMg) = �(�1; �2) = �(q1; q2;q3; :::qM ):

Hence, in the game with M rounds the median voter�s preferred bundle will be implemented.
This completes the proof.

Exercise 22.21*

To formulate and prove the theorem without the randomization Assumption A4, we
�rst describe a voting equilibrium in which the votes and outcomes are deterministic. Sup-
pose that there are two parties competing for o¢ ce and a continuum of voters � 2 N with
measure 1 that have single-peaked policy preferences over a given ordering of policy al-
ternatives P. We denote the votes cast by [� (�)]�2N . The outcome is represented by a
function VM

�
[� (�)]�2N

�
! fA;Bg and corresponds to majoritarian voting in the sense that

VM
�
[� (�)]�2N

�
equals to A (resp. B) if the measure of the votes cast for A (resp. B) is

greater than 1=2, and either A or B if both parties get a measure 1=2 of votes. An optimal vot-
ing strategy for a voter �, represented by the function f (~pA; ~pB j �) : P�P !� (�) 2 fA;Bg,
picks A (resp. B) whenever the voter strictly prefers respectively A (resp. B), but picks ei-
ther A or B whenever the voter is indi¤erent between A and B. A voting equilibrium is a
pro�le of optimal voting strategies for voters [f (~pA; ~pB j �)]�2N and policy platforms by the
parties (pA; pB) that maximize each party�s probability of coming to power given the voters�
strategies and the other party�s platform.

We next formulate and prove the analogue of Theorem 22.3 which shows that the median-
ranked bliss point is implemented in any equilibrium. Di¤erent than Theorem 22.3, in the
present deterministic setup, it is no longer necessary that both parties choose the median-
ranked bliss point as their policy platform.

Theorem I22.2. In the environment described above, for any majoritarian voting process,
the median-ranked bliss point, pM , is the equilibrium outcome.

Proof. Consider an equilibrium
�
f (~pA; ~pB;v)�2N ; (pA; pB)

�
. Note that the outcome of

the election is deterministic, that is, the parties either win or lose the election and they
know the outcome. Suppose, without loss of generality, that party B wins the election in
this equilibrium. Suppose, to reach a contradiction, that the outcome is di¤erent than pM ,
that is, pB 6= pM . Then party A could deviate to pB � " (resp. pB + ") if pB > pM (resp.
if pB < pM ) for su¢ ciently small " > 0 and win the election, since for any optimal voting
strategy pro�le after this deviation party A receives more than 1=2 of the vote. This provides
a contradiction and shows that the outcome of any equilibrium must be pM . �
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Exercise 22.22*

Exercise 22.22, Part (a). Consider the game with two parties. Let us assume that
individuals�preferences are symmetric, i.e. for individual i with bliss point �i, we assume
that p � p0, whenever j�i� pj < j�i� p0j. Note that this assumption is not innocuous but for
the purpose of this exercise no intuition is lost by just considering this case. Let pA(qA; qB)
be the probability that party A wins, when it o¤ers platform qA and party B o¤ers qB. For
simplicity we assume that voters randomize whenever they are indi¤erent between qA and
qB. Then, pA(qA; qB) is given by

pA(qA; qB) =

8><>:
1 if j12 � qAj < j

1
2 � qBj

0 if j12 � qAj > j
1
2 � qBj

1
2 if j12 � qAj = j

1
2 � qBj

;

i.e. party A wins the election, when it is closer to the midpoint 1
2 . Obviously we have

pB(qA; qB) = 1 � pA(qA; qB). To characterize the equilibrium of this game, let us derive
the best response function of both parties. Let BRi(qj) the best response function of party
i when party j o¤ers platform qj . As parties are assumed to maximize the probability of
winning, BRi(qj), is given by

BRi(qj) =

(
fq 2 [0; 1] j j12 � qj < j

1
2 � qj jg if qj 6= 1

2
1
2 if qj = 1

2

; (I22.39)

i.e. for any qj party i just wants to get closer to the midpoint (but she is indi¤erent among
all platforms conditional on being closer). From there we can conclude that the unique
equilibrium in this game is given by (qA; qB) =

�
1
2 ;
1
2

�
. To see this, note that an equilib-

rium corresponds to a �xed point of the best responses. Hence, the median voter outcome
(qA; qB) =

�
1
2 ;
1
2

�
is an equilibrium because it is a �xed point of the best response functions,

i.e.

BRA

�
1

2

�
=
1

2
= BRB

�
1

2

�
:

To prove that the equilibrium is also unique, suppose there was another equilibrium for
example involving qB > 1

2 . From (I22.39) we get that

qA 2 (1� qB; qB): (I22.40)

But given qA in (I22.40), (I22.39) implies

BRB(qA) 6= qB:

Hence, there is no equilibrium involving policies which are not equal to 1
2 .

Now suppose the parties try to maximize their vote share. In that case, the analysis is a
little di¤erent, as the best response functions are discontinuous. The best response functions
is given by

BRA(qB) =

8><>:
; if qB < 1

2

; if qB > 1
2

1
2 if qB = 1

2

(I22.41)

To see why BRA(qB) = ; whenever qB 6= 1=2, consider qB < 1=2. First of all note that

q < qB =) q 62 BRA(qB)
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as proposing q would give a vote share smaller than 1=2 whereas proposing qB + " would
deliver a vote share which is strictly higher than 1=2 as long as " is su¢ ciently small (i.e.
satis�es qB + " < 1=2). Similarly we get that

q = qB =) q 62 BRA(qB);
as qB + " would yield a higher vote share by the same argument as above. Finally suppose
q > qB. Then consider ~q = q � 1=2(q � qB) < q. Clearly, ~q is closer to qB so that ~q will yield
a higher vote share than q. As q > qB was arbitrary, this shows that

q > qB =) q 62 BRA(qB);
so that indeed

BRA(qB) = ;:
the case for qB > 1=2 is analogous. Although the best response function looks di¤erent than
the one in the �maximize the probability of winning�-case, the equilibrium outcome is the
same, i.e. both parties will o¤er the bliss point of the median voter, i.e. qA = qB =

1
2 . To

see this, note that (qA; qB) is an equilibrium whenever

BRA(qB) = qA and BRB(qA) = qB;

where BRi(:) is given in (I22.41). But the only �xed point of these mappings is given by
qA = qB =

1
2 . Hence, with two parties, both the outcome and the intuition of the game is

the same regardless if parties maximize their vote share or the probability of winning - each
party wants to be closer to the median voter as the competing party.

Exercise 22.22, Part (b). Consider the case of three parties trying to maximize the
probability of winning. As this game has a continuum of equilibria in pure strategies, let us
characterize their structure. To do so, let us show which policy choices cannot be equilibria.
Without loss of generality let us suppose that pA � pB � pC .

� There is no equilibrium with pA = pB = pC = p. Suppose there was such an equilib-
rium. If p < 1=2 (p > 1=2), each party could win with probability one by proposing
p+" (p�"). If p = 1=2, each party could also win with probability one by proposing
p + ", as the other parties share (roughly) 1=2 of the votes, whereas the deviating
party gets 1=2 of the votes alone.

� There is no equilibrium with pA = pB = p < pC and party A or B wins. Again,
party C could win with probability one by o¤ering p+" (p�") if p < 1=2 (p > 1=2).
By the same argument there does not exist an equilibrium with pA < pB = pC = p
and party B or C winning with probability one.

� There is no equilibrium with pA < pB < pC and some parties are tying. Party A (C)
could move to pB � " (pB + ") and win with probability one.

� There is no equilibrium with pA < pB < pC and party B winning with probability
one. If qB � 1=2 (qB � 1=2), party A (C) could move to 1=2� " (1=2 + ") and win
with probability one.

This leaves us with two potential equilibrium con�gurations. Either we can have pA =
pB = p < pC and party C winning with probability one (or similarly we could have pA <
pB = pC = p and party A winning with probability one). Or we can have pA < pB < pC and
either party A or party C winning with probability one. The intuition why there are equilibria
with these con�gurations is, that there are no pro�table unilateral deviations. Consider the
�rst case. Clearly there is no incentive for party C to change its behavior. But party A and
B cannot improve their winning probability either, because once, one of the parties moves
to get closer to C, the party �left behind� attracts more voters. Hence, if party A moves
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towards C, it will be party B who will win (and vice versa). Hence, there are equilibria
which such con�gurations. The intuition for the other case is the same. Suppose party A
wins. Whenever B moves su¢ ciently to the left for A not to win, it will be party C who wins
and vice versa. It can be veri�ed that there is a continuum of those equilibria, i.e. there are
various choices for qA; qB and qC which are consistent with equilibrium.

Exercise 22.22, Part (c). Consider now the case where the parties maximize their vote
share. To show that there is no equilibrium in pure strategies, suppose �rst there was an
equilibrium where all the parties chose the same platform q. By randomization, each party
would get a third of the votes. This cannot be an equilibrium as there is an incentive to
deviate to q + " if q � 1

2 and q � " if q � 1
2 . Such a deviation would give the deviating

party a vote share of at least 12 � ". Hence, there is no equilibrium where all parties propose
the same platform. So suppose there is an equilibrium where the policies are di¤erent (not
necessarily all of them). Without loss of generality assume that pA < pB � pC . Then there
is a pro�table deviation for party A, to propose the platform ~q = pB � " > pA. By doing
so, the party would increase its vote share, so that pA < pB � pC could not have been an
equilibrium. Hence, there are also no equilibria, where parties o¤er di¤erent platforms. This
proves the claim, that the game does not have any equilibrium in pure strategies.

Exercise 22.22, Part (d). Let us now consider a mixed strategy equilibrium. A mixed
strategy f is a probability distribution on [0; 1] (not necessarily with full support). Hence let
fC and fB be given and consider party A. We conjecture that all parties play a symmetric
mixed strategy on the support [�; 1 � �], with � < 1=2. To characterize the equilibrium we
need to �nd f and �. The vote share of party A when proposing a policy qA is given by

SA(qA) = 2

Z qA

�
f(x)F (x)

�
1� qA + x

2

�
dx+ 2

Z 1��

qA
f(x)(1� F (x))

�
qA + x

2

�
dx

+2

Z qA

�

Z 1��

qA
f(x)f(y)

y � x
2

dydx: (I22.42)

where F denotes the cdf corresponding to the density f . To understand this equation,
note that there are 3 scenarios that can happen. First of all we can have that qA � x =

maxfqB; qCg. If so, party A gets 1 � qA + qA�x
2 = 1 � qA+x

2 of the votes. What is the
probability that this happens? Suppose �rst that qB � qC , i.e. x = qB. The probability that

x � qC is given by F (x) as party C mixes according to f . Hence,
R qA
a f(x)F (x)

�
1� qA+x

2

�
dx

gives exactly party A0s expected vote share conditional on qA � qB � qC . As the case of

qC � qB is entirely symmetric,
R qA
a f(x)F (x)

�
1� qA+x

2

�
dx appears twice in the expression

of the expected votes share of party A. The second term in (I22.42) has exactly the same
interpretation for the case of qA � minfqB; qCg. Finally, we could have qB � qA � qC

or qC � qA � qB. This is captured in the second line. The vote share for party A if
qB = x < qA < qC = y is given by

qA � x
2

+
y � qA
2

=
y � x
2

:

The probability for qB = x and qC = y is given by f(x)f(y). Again there are two con�gura-
tions how this case can occur.

For party A to be willing to mix over the support, she has to be indi¤erent between all
policies in the support. In particular she has to be indi¤erent between qA = � and qA = 1��.
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Using (I22.42) we get that

SA(�) = 2

Z 1��

�
f(x)(1� F (x))

�
�+ x

2

�
dx

= �

Z 1��

�
f(x)(1� F (x))dx+

Z 1��

�
f(x)(1� F (x))xdx

= �� �
Z 1��

�
f(x)F (x)dx+

1

2
�
Z 1��

�
f(x)F (x)xdx;

where we used that
R 1��
� f(x)dx = 1 and

R 1��
� f(x)xdx = 1

2 . Similarly we have that

SA(1� �) = 2

Z 1��

�
f(x)F (x)

�
1� 1� �+ x

2

�
dx

=

Z 1��

�
f(x)F (x)(1 + �� x)dx

= (1 + �)

Z 1��

�
f(x)F (x)dx�

Z 1��

�
f(x)F (x)xdx:

Combining these two equations we get that

SA(1� �)� SA(�) = (1 + 2�)
Z 1��

a
f(x)F (x)dx� �� 1

2
:

As party A has to be indi¤erent, we need that f and � has to be such that SA(1��) = SA(�),
i.e.

(1 + 2�)

Z 1��

�
f(x)F (x)dx� �� 1

2
= 0: (I22.43)

Let us conjecture that parties play uniform strategies on [�; 1 � �]. We will come back to
this conjecture below. If f is a uniform density on [�; 1� �] it is clear that

f(x) =

�
1

1�2� if x 2 [�; 1� �]
0 otherwise

.

Then we get that Z 1��

a
f(x)F (x)dx =

1

1� 2�

Z 1��

a

x� �
1� 2�dx

=

�
1

1� 2�

�2 Z 1�2�

0
xdx =

1

2
;

so that (I22.43) is clearly satis�ed. Hence, if the other two parties play according to a uniform
strategy on [�; 1��], party A is indeed indi¤erent between playing the upper and lower policy
of the common support. This shows that our conjecture of parties playing uniform strategies
is at least a potential solution. For it to be an equilibrium we further have to show two
things. First of all we need to show that party A is indeed indi¤erent between all policies in
the support. Formally this means that

@SA(qA)

@qA
= 0; for all qA 2 [�; 1� �]: (I22.44)

Secondly we have to show that it could not do better to propose a policy outside the support,
i.e.

SA(q) � S(�); for all q 62 [�; 1� �]:
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Let us �rst consider the �rst requirement, which will determine the parameter a (which, recall
is still an endogenous variable). Di¤erentiating (I22.42) yields

@SA(qA)

@qA
= 2f(qA)F (qA)

�
1� qA

�
�
Z qA

�
f(x)F (x)dx (I22.45)

+

Z 1��

qA
f(x)(1� F (x))dx� 2f(qA)(1� F (qA))qA

+f(qA)

Z 1��

qA
f(x)

�
qA � x

�
dx� f(qA)

Z qA

�
f(x)

�
x� qA

�
dx:

De�ning f(x) = 1
1�2� � �f , (I22.44) and (I22.45) imply that

0 = 2F (qA)
�
1� qA

�
�
Z qA

�
F (x)dx+

Z 1��

qA
(1� F (x))dx

�2(1� F (qA))qA + �f

"Z 1��

qA

�
x� qA

�
dx�

Z qA

�

�
qA � x

�
dx

#

= 2
�
F (qA)� qA

�
+
�
1� �� qA

�
�
Z 1��

�
F (x)dx (I22.46)

+

�Z 1��

�

�fxdx� qA
Z 1��

�

�fdx

�
:

Now note thatZ 1��

�

�fdx =

Z 1��

�
f(x)dx = 1 and

Z 1��

�

�fxdx =

Z 1��

�
f(x)xdx = E[x] = 1=2

and Z 1��

�
F (x)dx =

Z 1��

�
(x� �)f(x)dx = 1=2� �

so that (I22.46) reduces to

0 = 2

�
qA � �
1� 2� � q

A

�
+ 1� �� qA � 1=2 + �+ 1=2� qA

= 2�
2qA � 1
1� 2� + 1� 2qA:

Hence,

2�

1� 2� = 1

which requires that � = 1=4.
This shows that if parties B and C play uniform strategies with support [1=4; 3=4], party

A is indi¤erent between all policies on [1=4; 3=4], i.e. party A�s best response is also a uniform
distribution on [1=4; 3=4]. Note in particular that the support [1=4; 3=4] is the unique solution
under the conjecture that the distribution played is indeed uniform.
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Finally we also have to show that party A would not want to propose a policy outside
the support. So consider some qA < �. From (I22.42) we get that for qA < �

SA(qA) =

Z 1��

�
f(x)(1� F (x))

�
qA + x

�
dx

= �f2
Z 1��

�
(1� �� x)

�
qA + x

�
dx

= �f

�
(1� �)qA

Z 1��

�
f(x)dx+ (1� �� qA)

Z 1��

�
xf(x)dx�

Z 1��

�
x2f(x)dx

�
= 2

�
qA

4
+
3

8
�
Z 1��

�
x2f(x)dx

�
;

where the last lines uses that � = 1=4 and �f = 2. This however shows that SA(qA) is strictly
increasing for all qA � �, so that

SA(qA) � SA(�) = SA(z); qA � � and z 2 [�; 1� �]

as required. Similarly we can also show that SA(qA) � SA(1� �) whenever qA � 1� �.
This establishes that there is a unique symmetric equilibrium where all parties play

uniform strategies. It is given by a uniform mix over the support [1=4; 3=4]. Note that we did
not establish that there do not exist other symmetric, i.e. not necessarily uniform equilibria.
This however is the case as shown in Shaked (1982).

Exercise 22.25*

We will directly show that there exists no Condorcet winner, which also shows that there
is no ordering in which the preferences satisfy the single crossing property or the conditions
in Exercise 22.24. Otherwise would be a contradiction to Theorem 22.4 or Exercise 22.24.
Suppose, to get a contradiction, that (x1; x2; x3) is a Condorcet winner. First, consider the
possibility that one person receives all of the pie and the others nothing. This policy cannot
be a Condorcet winner, since it loses a pairwise vote against (1=3; 1=3; 1=3). Next, consider
the case in which at least two people receive positive shares and suppose x1; x2 > 0 without
loss of generality. Let " 2 (0;min (x1; x2)) and note that (x1; x2; x3) would lose a pairwise
vote against (x1 + x2 � "; 0; x3 + ") since individuals 1 and 3 would prefer the latter. This
concludes that there is no Condorcet winner.

Next, suppose that two parties compete to come to o¢ ce by committing to policy plat-
forms. Suppose, to get a contradiction, that there is a pure-strategy equilibrium, where the
parties o¤er policy platforms

�
xA;xB

�
. The equilibrium probability of winning the election

for the two parties, which we denote by pA
�
xA;xB

�
and pB

�
xA;xB

�
; must sum to 1. Since

there is no Condorcet winner, there exists a policy ~xB that strictly beats xB in a pairwise
vote. By switching to ~xB, party B can guarantee to win the election, that is pA

�
xA; ~xB

�
= 1.

Since party B chooses to o¤er xB in equilibrium, it must win the election with probability
1 also in equilibrium, that is pA

�
xA;xB

�
� pA

�
xA; ~xB

�
= 1. Similar argument shows that

pA
�
xA;xB

�
must be at least 1, which yields a contradiction to the fact that the probabil-

ities pA
�
xA;xB

�
and pB

�
xA;xB

�
must sum to 1. Hence, the game has no pure-strategy

equilibrium.
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Exercise 22.26*

Exercise 22.26, Part (a). Suppose that a pure strategy symmetric equilibrium, with
pA = pB = p� exists. Recall that party A chooses pA 2 R to maximize (22:39) while
party B chooses pB to minimize the same expression. The �rst-order condition, evaluated at
pA = pB = p�, is identical for both parties and is given by (22:40). There are also second
order conditions that need to be satis�ed in equilibrium. Since pA maximizes (22:39), the

Jacobianr2pA
hPG

g=1 �
gHg(Ug(pA)� Ug(pB))

i
evaluated at pA = pB = p� should be negative

semide�nite. The Jacobian can be calculated as

rpA

24 GX
g=1

�ghg(Ug(pA)� Ug(pB))DUg (pA)

35������
pA=pB=p�

=
GX
g=1

�ghg(Ug(pA)� Ug(pB))D2Ug (pA)

+
GX
g=1

�g
@hg(Ug(pA)� Ug(pB))

@�
(DUg (pA)) � (DUg (pA))T (I22.47)

=
GX
g=1

�ghg(0)D2Ug (pA) +
GX
g=1

�g
@hg(0)

@�
(DUg (p�)) � (DUg (p�))T , (I22.48)

hence this matrix must be negative semide�nite. On the other hand, since pB mini-
mizes (22:39), the Jacobian of this expression with respect to pA, evaluated at pA =
pB = p�, must be positive semide�nite. Equivalently the negation of the Jacobian,

�r2pB
hPG

g=1 �
gHg(Ug(pA)� Ug(pB))

i
jpA=pB=p� , calculated as

GX
g=1

�ghg(Ug(pA)� Ug(pB))D2Ug (pB)

+
GX
g=1

�g
�
�@h

g(Ug(pA)� Ug(pB))
@�

�
(DUg (pB)) � (DUg (pB))T

=
GX
g=1

�ghg(0)D2Ug (pA) +
GX
g=1

�g
�
�@h

g(0)

@�

�
(DUg (p�)) � (DUg (p�))T , (I22.49)

must be negative semide�nite.

Next we claim that the matrix given in the exercise statement with
���@hg(0)@�

��� must be
negative semide�nite. When @hg(0)

@� > 0, the matrix is negative semide�nite from Eq. (I22:48).
Otherwise it is negative semide�nite from Eq. (I22:49), completing the proof. Intuitively,
@hg(0)
@� is in absolute value because it represents the e¤ect of policy on the marginal voters,

and the two parties�policies a¤ect the marginal voters in opposing directions.

Exercise 22.26, Part (b). To establish su¢ cient conditions for a symmetric equilib-
rium to exist, we need to ensure that pA = pB = p� are globally optimal for the respective
optimization problems of parties A and B. Assumptions (I22:48) and (I22:49) will not be
su¢ cient because they ensure local concavity of the objective functions and hence local op-
timality, but not necessarily global optimality. A su¢ cient condition for optimality is the
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global concavity of the respective objective functions of the parties. Plugging in pB = p� in
the expression for the Hessian in (I22:47), a su¢ cient condition for the global concavity of
A�s objective function is that the matrix

GX
g=1

�ghg(Ug(pA)� Ug(p�))D2Ug (pA) +

GX
g=1

�g
�
@hg(Ug(pA)� Ug(p�))

@�

�
(DUg (pA)) � (DUg (pA))T (I22.50)

is negative semide�nite for all pA 2 R. Similarly, a su¢ cient condition for the global concavity
of B�s objective function is that the matrix

GX
g=1

�ghg(Ug(p�)� Ug(pB))D2Ug (pB) +

GX
g=1

�g
�
�@h

g(Ug(p�)� Ug(pB))
@�

�
(DUg (pB)) � (DUg (pB))T (I22.51)

is negative semide�nite for all pB 2 R.

Exercise 22.26, Part (c). Suppose Ug is concave and Hg is uniform for all g, that
is hg (�) is constant for all � and hence @hg (�) =@� = 0. Then the expression in (I22:50)
reduces to

PG
g=1 �

ghg(Ug(pA)� Ug(p�))D2Ug (pA) which is negative semide�nite for any pA
since it is a weighted average of negative semide�nite matrices D2Ug (pA). Similarly, these
conditions are su¢ cient to ensure that the matrix in (I22:51) is negative semide�nite so that
a symmetric equilibrium exists.

Next suppose Ug is concave and Hg is not uniform for all g. Consider some g and � 2 R
such that @hg (�) =@� 6= 0. First consider the case that @hg (�) =@� > 0. Let pA be chosen such
that Ug(pA)�Ug(p�) = �. For this choice of pA, the term �g @h

g(�)
@� (DUg (pA)) � (DUg (pA))T

that features in Eq. (I22:50) is a positive semide�nite matrix. while the �rst term in Eq.
(I22:50) is still negative semide�nite. Since the sum of positive and negative semide�nite
matrices do not have to be negative semide�nite, we can no longer guarantee that the matrix
in (I22:50) is negative semide�nite without further assumptions on Ug. Second, suppose
@hg (�) =@� < 0. Then a similar argument can be made with respect to the matrix in
(I22:51). It follows that, without further assumptions on Ug, both su¢ ciency conditions
(I22:50) and (I22:51) can be satis�ed only if Hg�s are uniform.

Exercise 22.27

Exercise 22.27, Part (a). To �nd the preferred tax rate for each agent, we have to
derive the indirect utility function as a function of the policy variable (here the tax rate �).
Hence we have to solve for individuals�(equilibrium) income as a function of the tax rate.
Equilibrium wages and interest rates are given by

r = (1� �)K��H� = (1� �)(�k)��
�
(1� �)

Z
hd�(h)

��
= Y

1� �
�k

(I22.52)

w = �(�k)�
�
(1� �)

Z
hd�(h)

���1
= �(�k)�((1� �)�h)��1 =

Y �

(1� �)�h
;(I22.53)
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where the mean level of human capital is denoted by �h =
R
hd�(h). Using this, we can

derive individual income. Let IK(� ; k) and IH(� ; h) denote the income of capitalists with
capital k and workers with human capital h as a function of the tax rate and the respective
endowment. Substituting (I22.52) and (I22.53), we get that

IK(� ; k) = (1� �)rk + (� � v(�))(�rk + (1� �)w�h)

= Y [
1� �
�

(1� �) + � � v(�)]

IH(� ; k) = (1� �)wh+ (� � v(�))(�rk + (1� �)w�h)

= Y [
�

1� �(1� �)
h

�h
+ � � v(�)]:

The optimal tax rate is the one that maximizes individual income. Let �K(k) and �H(h)
denote the preferred tax rate of capitalists and workers, when the respective individual has
a factor endowment of k and h respectively. Consider �rst the capitalists. Let us �rst look
for an interior solution. The FOC for capitalists is given by

@IK(�K(k); k)

@�
= Y [�1� �

�
+ 1� v0(�K(k))] = 0;

which implies

v0(�K(k)) = v0(�K) = 1� 1� �
�

:

Note that the capitalists� preferred tax rate does not depend on k (and hence we write
�K(k) = �K). By the Inada condition v0(1) = 1 and the fact that v is increasing, this
implies that �K < 1. By the convexity of v it is also clear that if there is an interior solution
it is unique. The necessary and su¢ cient condition for the existence of an interior solution
is then just, that v0(0) < 1� 1��

� which (by the fact that v0(0) = 0) implies that

�K > 0 , 1 >
1� �
�

, � > 1� �: (I22.54)

(I22.54) contains a very intuitive condition. As taxes are given back lump sum, capitalists get
a fraction � of the tax bill. As taxes are proportional to the factor payments and (given the
Cobb-Douglas structure) capital earnings amount to a fraction (1� �) of output, capitalists
are net receivers of taxes if � > 1��. Hence, the preferred tax rate by capitalists is given by

�K =

(
0 if � < 1� �
(v0�1(1� 1��

� ) if � � 1� �
: (I22.55)

Consider now the workers. By the same reasoning as above, if the preferred tax rate of a
worker indexed by h is interior, it is given by

�H(h) = v0�1(1� �

1� �
h

�h
):

Note that in contrast to �K , the preferred tax rate of worker h does depend on his level of
human capital h. Again the Inada conditions ensure that �H(h) < 1. The solution is interior
if 1 > �

1��
h
�h
. This is also intuitive: for the worker with h = �h, there is no gain from

redistribution within the group of workers so he prefers positive taxes if and only if workers
get more of the tax receipts than their share of factor payments (i.e. if (1 � �) > �). If
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h < �h, the respective worker even gains from redistribution within the group of workers so
that poorer workers favor higher taxes. This is also true for interior solutions as

@�H(h)

@h
= � �

�h(1� �)
1

v00(�H(h)))
< 0 (I22.56)

i.e. the preferred tax rate is decreasing in h. Hence, the preferred tax rate is given by

�H(h) =

(
0 if 1��� < h

�h

(v0�1(1� �
1��

h
�h
) if 1��� � h

�h

: (I22.57)

For the preferences over tax rates to be single peaked, a su¢ cient condition is that the
indirect utility function is concave. From above we get that

@2IH(� ; h)

@�2
=
@2IK(� ; k)

@�2
= �Y v00(�);

so that single peakedness is satis�ed as v is convex, i.e. v00 > 0.
Let us now characterize the equilibrium tax rate. Given the single-peakedness of prefer-

ences over policies we can apply the MVT to determine the equilibrium tax rate ��. Note that
we do allow voters to vote strategically but sincere voting is still weakly dominant so that the
unique equilibrium outcome in weakly dominant strategies features the median ranked bliss
point. To characterize the equilibrium tax rate we therefore just have to determine who will
be median voter. Doing so shows that there exists a unique equilibrium tax rate ��, which is
given by

�� =

8>><>>:
�K if � � 1

2
�H(hP ) if � < 1

2 and �
H(hP ) > �K

�H(hR) if � < 1
2 and �

H(hR) < �K

�K if � < 1
2 and �

H(hP ) � �K � �H(hR)

; (I22.58)

where

hP =

(
h j (1� �)

Z hP

�1
d�(h) =

1

2

)
= F�1

�
1

2(1� �)

�
(I22.59)

hR =

�
h j (1� �)

Z 1

hR
d�(h) =

1

2

�
= F�1

�
1� 1

2(1� �)

�
; (I22.60)

and we de�ned

F (x) =

Z x

�1
d�(h):

To see why equilibrium taxes are given in (I22.58), let us go through the di¤erent cases.
Case 1, � � 1

2 . In this case, the median voter will be a capitalist so that equilibrium
taxes will be the preferred tax rate of capitalists �K(k) as given in (I22.55).

Case 2, � < 1
2 . In this case, capitalists alone are not in the majority. So consider

a coalition of poor (i.e. low human capital) workers. hP as de�ned in (I22.59) is exactly
the worker such that all the workers to the left of hP would have a measure of 1/2 in
the population. Note that all workers to the left of hP have a preferred tax rate which is
higher than �H(hP ). So if �H(hP ) > �K , hP will indeed be the median voter as one half
of the population will prefer higher taxes than �H(hP ) and one half of the population (�
capitalists and the (1� �)

R1
hP d�(h) rich workers) will prefer lower taxes. Hence, �

H(hP ) is
the equilibrium tax rate if �H(hP ) > �K and � � 1=2.

Case 3. Similar to Case 2, let us now consider a coalition of rich (i.e. high human capital
workers). In this case hR is de�ned to be the workers such that workers to the right represent
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exactly one half of the population. Recall that all workers with h > hR, would prefer a lower
tax rate. Hence, �H(hR) is the equilibrium outcome if the rest of the population prefers higher
taxes than �H(hR). We clearly have that �H(h) > �H(hR) whenever h < hR. Additionally
we also need that the capitalists would want to see higher taxes, i.e. �K > �H(hR). This
shows that �H(hR) is the equilibrium outcome if �K > �H(hR) and � � 1=2.

Case 4. This case comprises the situations where Cases 2 and 3 fail because the preferred
tax rate of the capitalists is on the �wrong�side of the threshold. To see this, consider Case
2 but let �K > �H(hP ). In this case the size of the population that prefers (weakly) higher
tax rates than �H(hP ) is given by

(1� �)
Z hP

�1
d�(h) + � =

1

2
+ � >

1

2

so that hP is not the median voter. Intuitively, hP is already so rich that the capitalists could
form a coalition with some of the poorer agents (speci�cally, with a measure 1

2 � � of them)
to get a majority of the population voting for higher taxes. So what will the equilibrium in
this case look like? Clearly equilibrium taxes cannot be lower than �H(hP ) as a majority of
the population prefers higher taxes. Hence there are two possibilities. Either a measure 12��
and the capitalists prefer taxes which are weakly higher than �K in which case 12 ��+� =

1
2

of the population would prefer tax rates which are weakly higher than �K so that �K will be
the equilibrium outcome. On the other hand it could also be the case that there are no 1

2 ��
workers who would prefer (weakly) higher taxes than �K . Formally, de�ne ~h as

(1� �)
Z ~h

�1
d�(h) =

1

2
� �

and let �H(~h) < �K . By construction there is then more than one half of the population
which prefers taxes lower than �K and all of these are workers. Hence, the rich workers with
h 2 [hR;1] would be in the majority if �H(hR) < �K in case the equilibrium would be as
in Case 3. This shows that the equilibrium is given by �K if � < 1=2 and �H(hP ) � �K �
�H(hR):

Having derived the equilibrium taxes we can now consider the comparative statics exer-
cises. First of all note, that none of the equilibrium tax rates depend on the level of capital
k. This is both due to the Cobb-Douglas structure in that individual capital earnings rk are
proportional to output Y and due to the homogeneity among capitalists (i.e. the distribution
of capital is degenerate - note that �H is dependent on �h). To determine the consequences
of an increase in the number of capitalists � we have to recognize that there are two e¤ects.
First of all the preferred tax rate of any voter changes as �K and �H(h) are functions of �.
But secondly, an increase in � will also change the decisive voter itself. From (I22.55) we see
that �K is weakly increasing in � as (in the case of � � 1� �) we have that

@�K

@�
=

1

v00(�K)

1� �
�2

> 0: (I22.61)

This is intuitive: the capitalists as a class get 1� � from the wage bill but a fraction � from
the tax payments. Hence, the bigger � the higher the rents they can extract from the workers
so they will prefer higher taxes.

Given this reasoning it is also intuitive that workers will tend to prefer lower taxes if
they are in the minority. This is seen from the preferred tax rate of worker h in (I22.57). If
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1��
� > h

�h
(so that the solution is interior), the change in her preferred tax rate is given by

@�H(h)

@�
= � 1

v00H(h))

�

(1� �)2
h

�h
< 0: (I22.62)

If 1��� � h
�h
, @�

H(h)
@� = 0 as �H(h) = 0 for those workers.

However, a change in � does not leave the median voter unchanged. If � � 1
2 , the

distinction does not matter, as all capitalists are homogenous in their preferred tax policies.
If � < 1

2 however, the human capital (and therefore the preferred tax rate) of the median
voter changes. Upon totally di¤erentiating (I22.59) and (I22.60) we get that

dhP

d�
=

R hP
�1 dF (h)

(1� �)�(hP ) > 0; (I22.63)

and

dhR

d�
= �

R1
hR dF (h)

(1� �)f(hR) < 0: (I22.64)

These results are intuitive. If the share of capitalists � increases, a bigger share of workers is
needed account for one half of the population. Hence the decisive agent of the poor coalition
hP needs to be richer and the decisive agent of the rich coalition hR needs to be poorer.
As workers�preferred taxes are (for given �) decreasing in h (see (I22.56)), the e¤ect of an
increase in � on the equilibrium tax rate is ambiguous. If �� = �K , equilibrium taxes will
increase as seen from (I22.61). If on the other hand �� = �H(hP ) or �� = �H(hR) we get
that

d��

d�
=

@�H(hP )

@�
+
@�H(h)

@h

����
h=hP

� dhP

d�
< 0 (I22.65)

and
d��

d�
=

@�H(hR)

@�
+
@�H(h)

@h

����
h=hR

� dhR

d�
? 0 (I22.66)

as @�H(h)
@� < 0 (see (I22.62)), @�

H(h)
@h < 0 (see (I22.56)) and dhR

d� < 0 and dhP

d� > 0 as shown
in (I22.63) and (I22.64). Hence the e¤ect of an increase in � on the equilibrium tax rate
depends crucially on the identity of the median voter. Intuitively, if the median voter is a
poor worker (see (I22.65)) equilibrium taxes will decrease because the median voter will have
to be richer (and hence prefers lower taxes) and will furthermore prefer lower taxes because
he is a worker whose share of the population decreased. If on the other hand the median
voter is a rich worker (see (I22.66)) the e¤ect is ambiguous. By being a worker, he prefers

lower taxes (this is the @�H(h)
@� term). But as the decisive voter will get poorer (as dhR

d� < 0),
he will prefer higher taxes. Hence, an increase in the share of capitalists might increase or
decrease taxes depending on who is the median voter.

Exercise 22.27, Part (b). Now consider the case of two-dimensional taxes. As interest
rates and wages are still given by the expressions in (I22.52) and (I22.53), individual incomes
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are given by

IK(�k; �h; k) = (1� �k)rk + (�k � v(�k)�rk + (�h � v(�h)(1� �)w�h
= (1� �k)Y

1� �
�

+ (�k � v(�k))(1� �)Y + (�h � v(�h))�Y

IH(�k; �h; h) = (1� �h)wh+ (�k � v(�k)�rk + (�h � v(�h)(1� �)w�h

= (1� �h)Y
�

1� �
h

�h
+ (�k � v(�k))(1� �)Y + (�h � v(�h))�Y;

where �k and �h denotes the tax on capital and labor income respectively. To determine
the optimal tax rates, let us again �rst look for interior solutions. Again it is clear that the
convexity of v will ensure that those solutions are unique (if they exist). The FOC for the
capitalists are given by

@IK(�Kk (k); �
K
h (k); k)

@�k
= Y (1� �)[� 1

�
+ 1� v0(�Kk ))] = 0 (I22.67)

@IK(�Kk (k); �
K
h (k); k)

@�h
= Y �(1� v0(�Kh ))) = 0: (I22.68)

Note that again neither the capitalists�preferred tax rate on capital �Kk or labor income �Kh
depends on k or �h. The solutions for these optimality conditions are intuitive. (I22.68)
directly implies that �Kh = v0�1(1) � ��, i.e. the capitalists�optimal tax rate for workers
equates the marginal transfer to the marginal distortion. (I22.67) then shows that �Kk will
be equal to zero. To see this, note that the marginal utility of a higher tax rate is negative
at �Kk (k) = 0, as

� 1
�
+ 1� v0(0) = �1� �

�
< 0:

This is also intuitive: as there is no inequality among the capitalists, they value taxes only if
they induce transfers from the workers to themselves. But capital taxes are not paid by the
workers.

The situation for the workers is slightly di¤erent. First of all it is obvious that the
preferred tax rate on capital will also be given by �Hk (h) = v0�1(1) = ��, i.e. they will also
equate the marginal value of taxes with the marginal distortion. To determine the optimal
tax rate on wage income however, inequality among the workers will play a role. The FOC
is given by

@IH(�Hk (h); �
H
h (h); h)

@�h
= Y �(� 1

1� �
h

�h
+ 1� v0(�Hh (h))) = 0;

so that worker h�s optimal tax rate on human capital income is given by �Hh (h) =

maxf0; ~�Hh (h)g, where ~�Hh (h) solves the equation

v0(~�Hh (h)) = 1�
h

(1� �)�h
:

Again we see that for h small enough (i.e. for h < (1 � �)�h), worker will prefer to tax
themselves as they will gain from tax payments made by the richer workers. Hence the
optimal tax rates are given by

(�Kk (k); �
K
h (k); �

H
k (h); �

H
h (h)) = (0; ��; ��; �Hh (h)); (I22.69)

where �Hh (h) =

(
0 if h � (1� �)�h
v0�1

�
1� h

(1��)�h

�
if h < (1� �)�h

:
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Let us now turn to the voting equilibrium.

Proposition I22.1. Suppose that � < 1
2 . Then there exists a voting equilibrium

(�EQk ; �EQh ) if and only if �Hh (h
R) = 0, where hR is de�ned in (I22.60) and �Hh (h) is given in

(I22.69). If the equilibrium exists, it is given by

(�EQk ; �EQh ) = (��; 0)

where �� = v0�1(1).

Proof. We will �rst show that �EQk = ��. Suppose this is not the case, i.e. there is
equilibrium (~�k; ~�h) with ~�k 6= ��. Then consider the platform (��; ~�h). This platform will
be preferred by all workers so that it will win the pairwise competition against (~�k; ~�h) as
workers are in the majority. Hence (~�k; ~�h) could not have been an equilibrium. As ~�h
was arbitrary, this proves that �EQk = �� if an equilibrium exists. Let us now prove that
there is no equilibrium whenever �Hh (h

R) > 0. We �rst show that there is no equilibrium
with �EQh 6= �Hh (h

R). Suppose there is an equilibrium (��; ~�h) and ~�h 6= �Hh (h
R). Then

consider the platform (��; �Hh (h
R)). If ~�h < �Hh (h

R), all capitalists and all workers with
�Hh (h) > ~�h will vote for (��; �Hh (h

R)). Hence (��; �Hh (h
R)) will get a measure of votes

larger than � + (1 � �)
R hR
�1 d�(h) = 1=2. Hence ~�h > �Hh (h

R). But if ~�h > �Hh (h
R),

the platform (��; �Hh (h
R)) will get a measure of votes larger than (1 � �)

R1
hR d�(h) = 1=2.

Hence ~�h > 0 and ~�h 6= �Hh (h
R) cannot be an equilibrium. But now suppose there is an

equilibrium (��; �Hh (h
R)) with �Hh (h

R) > 0. Then consider the platform (��� "; �Hh (hR)� �).
For � = 0 this will make capitalists strictly better o¤ but does not have any �rst-order e¤ect

on workers, as @IH(�k;�h;h)
@�k

���
�k=��

= 0. Hence there exists � and " small enough such that

(�� � "; �Hh (h
R) � �) will get the votes of the capitalists and all the workers with h > hR.

This population has a mass of �+ (1� �)
R1
hR d�(h) > 1=2 so that (�

� � "; �Hh (h
R)� �) will

win the pairwise competition and (��; �Hh (h
R) > 0) could not have been an equilibrium. This

shows that there is no equilibrium if �Hh (h
R) > 0. Finally consider the platform (��; 0) if

�Hh (h
R) = 0. As (1 � �)

R1
hR d�(h) = 1=2 prefers (��; 0) over all available policies, (��; 0) is

an equilibrium. This proves the proposition. �
The intuition for this result is the following. With workers representing the majority

of the population, capital taxes will always be high in equilibrium. A potential contender
platform can therefore always win the capitalists�approval by proposing lower capital taxes.
For a small decrease, this will leave the workers indi¤erent up to second order e¤ects. To
win a majority, this contender platform will have to change the taxes on labor income. By
decreasing labor taxes, the platform will get all the rich agents with h > hR. This group has
a measure of 1=2 so that new platform will surely win a pairwise competition. By increasing
taxes however, the new platform will not win a majority as all agents with h > hR will prefer
the old platform for both reasons that capital taxes are higher and that labor taxes are lower.
Hence, if the platform (��; �Hh (h

R)) can be beaten, then only via a decrease in the tax rate
on labor income. The case of �Hh (h

R) = 0 then exactly ensures that such a variation is not
possible so that an equilibrium exists.

This potential non-existence of equilibrium follows from the fact that once we introduce
a second dimension, the preferences do not satisfy single-crossing over the two-dimensional
policy space anymore. They are single peaked in both dimensions individually but not once
we consider the (�k; �h) space. Hence there are situations in which a Condorcet winner (and
hence a voting equilibrium) does not exist in this economy.
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To sensibly talk about comparative statics in �, we have to assume that parameters (and
the distribution of human capital F ) is such that a Condorcet winner exists. As above we
have to consider the intensive margin (worker h�s preferred policy changes) and the extensive
margin (where the identity of the decisive voter changes). Let us �rst consider the equilibrium
tax on capital income �EQk = ��. As �� does not depend on �, the capital tax remains
unchanged if the share of capitalists increases. To analyze the e¤ect on the equilibrium tax on
labor, note that we have seen above that a Condorcet winner will involve �EQh = �Hh (h

R) = 0.

Although (I22.64) above showed that dh
R

d� < 0, i.e. the median voter changes, this shows that
the voting equilibrium in this economy requires that the new median voter hR will still satisfy
hR � (1 � �)�h so that his preferred tax rate is still equal to zero. Hence, if a Condorcet
winner exists, neither equilibrium tax rate will change if the share of capitalists � increases.

Exercise 22.27, Part (c). Let us now consider the case of sequential voting. We will
see that in this case existence of equilibrium is guaranteed as those simultaneous changes
of tax rates that were responsible for breaking the equilibrium in Part (b) are infeasible.
Let solve the game using backwards induction. We still assume that � < 1=2.2 Taking
�k as given, the vote about the labor income tax rate will be a standard problem where
the median voter theorem applies: the policy variable is one-dimensional and voters have
single peaked preferences by the convexity of v. Furthermore we saw above (see (I22.69)),
that �Kh = �� > �Hh (h); 8h, i.e. the capitalists favor the highest labor income taxes in the
population. Hence, the equilibrium tax rate on labor income �EQh is given by �Hh (h

R) as
de�ned above. Given that the unique equilibrium outcome in the second stage is �Hh (h

R) and
is independent of �k, the �rst stage will also feature an equilibrium determined by the median
voter theorem. As workers are in the absolute majority and all agree on the �k dimension,
the equilibrium capital tax rate will be given by �EQk = ��. Hence, in the case of sequential
voting there is a unique equilibrium given by (��; �Hh (h

R)). Note that this equilibrium exists
irrespective of �Hh (h

R) = 0 or �Hh (h
R) > 0.

The equilibrium in independent of k (as both �� and �Hh (h) and the determination of h
R

is). The comparative statics with respect to � are again similar to above. As

d��

d�
= 0

the equilibrium tax on capital does not change. The change in the equilibrium labor tax is
again (see (I22.66)) given by

d��

d�
=
@�Hh (h

R)

@�
+
@�Hh (h)

@h

����
h=hR

� dhR

d�
? 0;

i.e. the change in the labor tax is ambiguous as dhR

d� < 0;
@�Hh (h

R)
@� > 0 and @�H(h)

@h < 0.
The intuition is the same as above: as the human capital of the median voter declines, i.e.
the decisive voter gets poorer, the extensive margin calls for a higher equilibrium tax rate.
The intensive margin however, still implies that the preferred tax rate will decrease as only
workers pay the labor tax but capitalists get a share of the receipts. If the share of capitalists
increases, workers will therefore prefer lower taxes. Hence, the e¤ect of an increase in the
capitalist population on equilibrium labor taxes is ambiguous.

2The case of � > 1=2 would of course be trivial. With capitalists being in the majority, the equilibrium
tax rate will be given (�EQk ; �EQh ) = (0; ��) as there is no con�ict if interest among the capitalists. An increase
in � would not change the equilibrium at all, as �� is not dependent on � (see (I22.68)).
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Exercise 22.30

Exercise 22.30, Part (a). Let us denote the respective income levels after the income
change by y0i for i = p;m; r. To be precise about that we mean by a mean preserving spread,
let G and F be two distribution functions. We say F is a mean preserving spread of G if both
distributions have the same mean but the tails of F carry more mass, i.e. F and G cross only
once. For the �rst case let us assume that mean income is bigger than median income. Let
us keep the income of the rich constant, i.e. y0r = yr.Then reduce the income of the middle
class, i.e. y0m = ym �� and increase the income of the poor by y0p = yp +

�m

�p �. As long as

y0m � y0p = ym � yp �
�p + �m

�p
� > 0;

it is clear that the median income after the change will still be the income of the middle class
agent so that median income decreased. The mean income in this economy will be constant
by construction as

�ry0r + �
my0m + �

py0p = �ryr + �
mym � �m�+ �pyp + �p

�m

�p
� = �ryr + �

mym + �
pyp:

Hence the spread between mean and median income in this economy will increase. This
change however does not represent a mean preserving spread as the lower tail of the income
distribution carries less mass (in particular the new distribution has zero mass for y < y0p,
whereas the old distribution had mass of �p in this area).

Exercise 22.30, Part (b). Now suppose that median income is higher than mean
income. Then let us reduce the income of the middle class and increase the income of the
rich in a way to keep the mean constant. This distributional change represents a mean
preserving spread and the median is reduced, i.e. the gap between the median and mean
narrows.
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Exercise 23.4

We can prove this result by construction. Let the value functions V H
�
qt
�
and V L

�
qt
�

be given. They are implicitly de�ned by solving the equation

V z(qt) = w(t) + T (t) + �z(�(t); w(t)) + �CV z(qt+1); (I23.1)

where

W z(qt) = w(t) + T (t) + �CW z(qt+1)

CV z(qt) = �zmaxfWH(qt); V H(qt)g+ (1� �z)maxfWL(qt); V L(qt)g
CW z(qt) = �zmaxfWH(qt); V H(qt)g+ (1� �z)maxfWL(qt); V L(qt)g � b(t)�L:

Now recall that the state variable q is just given by the vector of future policies and wages,
i.e.

qt = (pt; wt) = f�(s); b(s+ 1); w(s)g1s=t:
As want to show that V H(:) and V L(:) are strictly increasing in current wages, transfers and
pro�ts, we have to show that

V z(qt) = V z((p(t); w(t)); qt+1) > V z((p̂(t); ŵ(t)); qt+1);

where p(t) and p̂(t) are such that T (t) > T̂ (t) or w(t) > ŵ(t). But using (I23.1) we get that

�V (qt) = V z((p(t); w(t)); qt+1)� V z((p̂(t); ŵ(t)); qt+1) (I23.2)

= w(t) + T (t) + �z(�(t); w(t))�
h
ŵ(t) + T̂ (t) + �z(�̂(t); ŵ(t))

i
:

From (I23.2) we can now conclude that V z is increasing in T (t); w(t) and �z(�(t); w(t)) as
(holding the other variables �xed)

�V (qt)w=ŵ;�=�̂ = T (t)� T̂ (t)
�V (qt)�=�̂;T=T̂ = w(t)� ŵ(t)

�V (qt)w=ŵ;T=T̂ = �z � �̂z:

This shows that V z(:) is strictly increasing in current wages, transfers and pro�ts as required.
This shows in particular that

V H(qt) > V L(qt)

as (23.9) showed that

�z(w(t); �(t)) =
1� �
�

��=(1��) (1� � (t)))1=(1��)Az �L� w (t) �L;

so that
�H(w(t); �(t)) > �L(w(t); �(t)):

533
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Exercise 23.5

Let us �rst show that the equilibrium will be uninteresting if li (t) is unbounded above.
In particular there will be no entry barriers in either one of the political systems and taxes
will be given by �� if the system is democratic and zero if the system is oligarchic. To see
this, recall that the pro�t function of an entrepreneur as a function of his capital and labor
choice is given by

� (ki (t) ; li(t) j ai (t) ; w (t) ; � (t)) =
1

�
(1� � (t)) ki (t)� (ai (t) li(t))1�� � w (t) li(t)�

1

�
ki (t) :

(I23.3)
The optimal level of entrepreneurial capital is given by

(1� � (t)) ki (t)��1 (ai (t) li(t))1�� �
1

�
= 0;

so that
ki(t) = (� (1� � (t)))1=(1��)ai (t) li(t):

Substituting back into (I23.3), shows that pro�ts are given by

� (li(t) j ai (t) ; w (t) ; � (t))

=
1

�
(1� � (t)) (� (1� � (t)))�=(1��) (ai (t) li(t))

�w (t) li(t)�
1

�
(� (1� � (t)))1=(1��)ai (t) li(t)

=

�
1

�
�1=(1��) (1� � (t))�=(1��) ai(t)� w(t)

�
li(t);

i.e. pro�ts are linear in li(t). As labor supply is �nite, this implies that in equilibrium we
need that

w(t) =
1

�
�1=(1��) (1� � (t))�=(1��)AH (I23.4)

>
1

�
�1=(1��) (1� � (t))�=(1��)AL;

as otherwise, high ability entrepreneurs would make in�nite pro�ts by demanding in�nitely
many workers. This implies two things: �rst of all, there can be no low ability entrepreneurs as
they would make negative pro�ts. Secondly, in every equilibrium, high ability entrepreneurs
make zero pro�ts. But now consider the occupational choice decision. As we assumed that
initially nobody starts out as an entrepreneur, i.e. ei(�1) = 0, there will be no entry into
entrepreneurship as long as B(0) 6= 0, i.e. as long as there are any entry barriers. This is
intuitive: given that competition ex post will drive pro�ts down to zero, there is no incentive
to pay the �xed costs of entry. But this cannot be an equilibrium as entrepreneurs are needed
to employ the workers and to pay wages w(t). Hence, there is no equilibrium with B(0) 6= 0.
If there are no entry barriers, i.e. B(0) = 0, high ability entrepreneurs are indi¤erent between
entering and not, so that there is an economic equilibrium where wages are given by (I23.4)
and labor markets clear.

To consider now the political decision process, note that in either political system the
equilibrium might involve B(t) > 0 for all t for a given distribution of individuals across
occupations and skill levels. The reason is the following. Given that wages are given by
(I23.4), all high skill entrepreneurs make zero pro�t and their labor demand is given by
li(t) 2 [0;1), i.e. is indeterminate. Due to the imperfect persistence of ability and the fact
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that there will be no entry if B(t) > 0, the number of entrepreneurs declines continuously
as existing entrepreneurs exit entrepreneurship with probability 1��H (the probability that
they are of low ability tomorrow) and being a worker is an absorbing state. However, if the
remaining entrepreneurs increase their labor demand at the same rate, the labor market will
still clear in spite of entrepreneurs exiting. Intuitively, without labor demand being bounded,
a single entrepreneur is enough to employ the entire labor force. Note however that if there
is an equilibrium with B(t) > 0, there is also an equilibrium with B(t) = 0. The reason is
that all entrepreneurs make zero pro�ts so they are indi¤erent between all possible choices
for B(t). Hence, we can without loss of generality assume that B(t) = 0 for all t. To see
the e¤ect on taxes, note that in a democracy, taxes will be set to � = �̂ , as wages are paid
already and the transfer T (t) is increasing in the tax rate. In the case of oligarchical rule,
taxes are set to zero, as entrepreneurs are net tax payers.

Now suppose that li(t) could be arbitrarily small. If this was the case, in equilibrium
no �rm would ever want to leave entrepreneurship. To see this, note that the fundamental
dynamic trade-o¤ of closing the �rm is, that a low ability entrepreneur might make losses
(because the wage rate is higher than the production), but that exiting entrepreneurship
will make entering in the future (when ability is high again) more expensive as the entry
costs have to be paid for. If li(t) could be arbitrarily small, a low ability entrepreneur would
just lay o¤ all the workers, thereby avoid the current losses and keep the option of starting
entrepreneurship again without having to pay the �xed costs. Hence the equilibrium will take
the form, that all individuals are formally entrepreneurs but that low-ability entrepreneurs
will employ li(t)! 0 people. This of course masks the political economy elements of ine¢ cient
entry or exit which we set out to explain.

If we restrict the labor choice to some compact set li (t) 2
�
L; �L

�
, the main results of

the analysis would go through. Consider an entry equilibrium. As pro�ts are increasing in
the amount of labor employed, high ability entrepreneurs will always set li(t) = �L as long as
w(t) < wH(t), where recall wH(t) denotes the wage rate that makes high ability entrepreneurs
entrants between entering or not. As

M �L > 1;

i.e., supply would fall short of labor demand of high skill entrepreneurs, wages would need
to be given by w(t) = wH(t) and entrepreneurs chose some li(t) 2 [L; �L]. Hence it does not
make any di¤erence if we allow �rms to choose their labor demand from the set

�
L; �L

�
as

long as L is high enough such that low ability incumbents would actually want to exit at a
wage rate of wH(t) and given entry barriers of fB(s)g1s=t. To see this e¤ect formally, recall
that wL(t) was given in (23.16) as

wL (t) � max
(
1� �
�

��=(1��) (1� � (t)))1=(1��)AL +
�
�
CV L

�
qt+1

�
� CWL

�
qt+1

��
�L

; 0

)
:

If we allow for a free labor choice li (t) 2
�
L; �L

�
, the last term is given by

�(CV L(qt+1)�CWL(qt+1))
li(t)

, which already shows that by reducing li(t), the reservation wage
could be made arbitrarily large. Hence, we will need a restriction on L, for low ability
entrepreneurs actually to be willing to exit. This lower bound is given by

L = fL : wL(t) = wH(t) = w(t)g;

i.e. if li(t) could be chosen lower than L, low ability entrepreneurs would not be willing to
exit which cannot happen in an entry equilibrium. For the upper bound �L, note that the
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bound itself is not that important as long as it is �nite, because in equilibrium we will have
w(t) = wH(t) so that high ability entrepreneurs are indi¤erent to enter or not.

For the sclerotic equilibrium, the intuition is similar. First note that in the sclerotic
equilibrium we have wL(t) > wH(t). To characterize the equilibrium we have to distinguish
two cases. If there are more than 1

�L
incumbents, labor demand exceeds labor supply if all

incumbents employ �L workers. Hence in this case, equilibrium wages are given by w(t) =
wL(t), low skill incumbents are indi¤erent between entering and exiting and labor demand is
given by li(t) = �L for the high-skill entrepreneurs and li(t) 2 [L; �L] for low-skill entrepreneurs.
If there fewer than 1

�L
incumbents all incumbents will employ �L workers, wages are given by

w(t) < wL(t) and all entrepreneurs make pro�ts. Hence, in this case the lower bound is of
no relevance, as no active �rm makes losses while producing. To the contrary: production
conditional on being an entrepreneur is pro�table and the only thing which prevents entry
from non-entrepreneurs are the entry barriers B(t).

This shows that restricting the labor "choice" to be trivially given by the requirement
�L instead of allowing a choice from some compact set

�
L; �L

�
is not crucial as long as L is

high enough. Otherwise the entry equilibrium might not exist. In contrast, in the case of a
democracy, the equilibrium is likely to feature sclerosis because low ability entrepreneurs can
reduce losses su¢ ciently to never have to exit.

Exercise 23.12

Exercise 23.12, Part (a). In order the characterize the Markov Perfect Equilibrium of
this game, let us be precise about the timing. In every period the rich �rst decide if they want
to extend the franchise. If the franchise is extended, the poor will set the tax rate forever and
there will be no revolution as the poor cannot revolt against a democracy. If the franchise is
not extended, the rich set the tax rate and it is implemented. It is only after taxes are set,
that the poor decide if they want to start a revolution. If no revolution is started, the game
will commence with the next period. If on the other hand the poor do start a revolution,
no future actions will be taken and the poor get their payment of �(t) in all future periods.
Given this timing, we are now in the position to de�ne the MPE of this game.

Before doing so, let us make the following observation which will simplify the notation.
Given that individuals have the option to hide their money from taxation at a cost of �, we
would in principle have to consider this decision as a part of the agents�strategy. Such a
strategy will however be trivial. In particular, the optimal strategy will involve individuals
hiding their money whenever the taxes they face exceed �. Given that it will never be optimal
for any party deciding about the taxes to set higher taxes, we can without loss of generality
analyze this game by just imposing � as an upper bound on the tax rate.

Following the de�nition given in Appendix C, a Markovian strategy is a mapping from
the space of payo¤-relevant states Ki to the action space Ai, i.e. a pure Markovian strategy
is given by �̂i : Ki ! Ai, where i = 1; 2; :::; N denotes the respective player. A MPE
in this economy is therefore a pro�le of Markovian strategies �̂� = (�̂�1; :::; �̂

�
N ) such that

there does not exist i who has any (not necessarily Markovian) pro�table deviation taking
�̂��i = (�̂

�
1; :::; �̂

�
i�1; �̂

�
i+1; ::; �̂

�
N ) as given. Hence in order to de�ne a MPE in this economy we

�rst have to de�ne the set of payo¤ relevant states and the actions available.
Given the timing above, the payo¤-relevant states are di¤erent for the poor and the rich.

For the rich, we could take the payo¤ relevant state as given by �(t) 2 fR;Pg which denotes
which party is in power. However, given our timing above, the rich do not have any actions
once the poor are in power, i.e. once �(t) = P . Hence we will de�ne the actions for the rich
only in case �(t) = R, so that the state variable for the rich is trivially be given by �(t) = R.
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For the poor the situation is slightly more complicated. For them, the typical element of
their payo¤ relevant state space is given by (�(t); p(t); �(t)), where p(t) is the policy vector
in t if the rich are in power, i.e. it consists of the tax rate and of the franchise o¤er. Hence
in contrast to the rich, current policies are part of the payo¤-relevant state as the poor will
make their decision to seek a revolution dependent on those policies.

The action spaces for the two groups R and P (i.e. for all individuals in those groups)
are then given by

AR = f(E; (NE; �)) where � 2 [0; �]g

AP =

�
� 2 [0; �] if �(t) = P or p(t) = E
fNR;Rg otherwise

;

where E and NE denote the decision to either extend or not extend the franchise respectively
and R and NR refers to the decision to start a revolution or keep the rich in power. Note that
we de�ne the action space of the rich in a way such that there is no further tax setting decision
when the franchise is extended. Similarly, AP incorporates already that if the franchise is
extended or the poor are in power, the only choice the poor have is the tax rate � . This
being said, a Markov Perfect Equilibrium in this economy is a strategy pro�le �̂� = (�̂�R; �̂

�
P )

with a typical element �̂�R 2 AR and �̂�P (�(t); p(t); �(t)) 2 AP such that there does not exist
a pro�table deviation.

Exercise 23.12, Part (b). To show the required results we have to derive the optimal
strategies for the rich and the poor. The fact that �(t) = �l simpli�es the problem consid-
erably as the strategies will be stationary. Characterizing the optimal strategy of group i
means of course �nding the function �i which maximizes groups i�s utility for any realization
in their state space. Let us analyze the poor �rst and consider the decision whether or not to
start a revolution. Clearly this decision will be dependent on current and future taxes. It is
here where the restriction to Markovian strategies simpli�es the discussion a lot. As the state
variable for the rich does not change as long as there is no revolution, the tax rate chosen
by the rich �R will also be constant. Hence the decision of the poor can be characterized by
simply comparing the per-period utilities starting next period (note that current taxes have
to be paid regardless of the revolution decision). By starting a revolution each individual
gets �l=(1� �) in all future periods. By keeping the rich in power, each poor individual gets

UP (�
R) = (1� �R) 1� �

1� � + �
R =

1� � + �R(� � �)
1� � ; (I23.5)

where �R is the tax rate, the rich set and we used the fact that the lump sum transfer from
taxation is just given by

T = (1� �)�R 1� �
1� � + ��

R �

�
= �R:

(I23.5) shows that the per period utility of the poor is increasing in �R so that the worst
outcome the poor can get by keeping the rich in power will involve �R = 0. This however
would imply UP (0) = 1��

1�� which would still exceed the payo¤ from starting a revolution as
we assumed �l < 1 � �. In case the poor are in power, (I23.5) shows that they prefer the
maximum amount of taxation, i.e. � = �. Hence the optimal strategy of the poor is given by

�P (�(t); p(t); �l) =

�
� if �(t) = P or p(t) = E
NR if �(t) = R and NE 2 p(t) :
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The decision problem of the rich is simpler. For the rich we have

UR(�) = (1� �)
�

�
+ � =

� � �(� � �)
�

;

so that the rich favor low taxes (as UR(�) is decreasing in �). Given that the poor will
never start a revolution, there are also no bene�ts of o¤ering a higher tax rate. What about
extending the franchise? We showed above that the poor will press for higher taxes once
they have the chance. Hence, the rich would very much prefer to stay in power. The optimal
strategy of the rich is therefore given by

�R = (NE; 0)

As the rich hold power initially, it is clear that along the equilibrium path the franchise will
never be extended and taxes will always be equal to zero.

Exercise 23.12, Part (c). Let us again characterize the optimal strategies. From the
analysis above it is clear that the behavior of the poor once they are in power is exactly the
same as above - they will impose the maximum amount of taxation given by �. What about
their decision to start a revolution? As now �l

1�� > 1��
1�� ; they would prefer a revolution if

the rich still set taxes to zero (recall that (I23.5) showed that Up(0) = 1��
1��). So let �

R be
the optimal strategy of the rich. As the strategy is Markovian it will be characterized by a
constant tax rate �R as the payo¤ relevant state variable �(t) does not change as long as the
rich are in power. The poor will be (weakly) better o¤ keeping the rich in power and not
seeking a revolution as long as the per-period payo¤s (as of tomorrow) of not revolting will
be (weakly) higher, i.e. as long as

(1� �R) 1� �
1� � + �

R � �l

1� �: (I23.6)

As the LHS of (I23.6) is increasing in �R and

1� �
1� � �

�l

1� � �
(1� �) (1� �) + �(1� �)

1� � (I23.7)

by assumption, there is a unique level of taxes �̂R such that (I23.6) holds with equality. In
particular, (I23.7) implies that �̂R will satisfy

0 < �̂R < �: (I23.8)

The optimal strategy of the poor is therefore given by

�P (�(t); p(t); �l) =

8<:
� if �(t) = P or p(t) = E

NR if �(t) = R and p(t) = (NE; �R � �̂R)

R if �(t) = R and p(t) = (NE; �R < �̂R)
:

Now consider the rich when they are in power. Taking �P as given (in particular that taxes
will be given by � in case �(t) = P ), their future per-period payo¤ when extending the
franchise is given by

UR(Ej�P ) = (1� �)
�

�
+ �:

What about staying in power and setting a tax rate �? Using �P and the fact that the rich
will lose everything if a revolution takes place, their future payo¤ is given by

UR((NE; �)j�P ) =
�
(1� �) �� + � if � � �̂R

0 if � < �̂R
:
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As (1 � �) �� + � is decreasing in � , the rich will set exactly � = �̂R. This will prevent a
revolution and the franchise does not have to be extended. As �̂R < � (see (I23.8)) it is also
clear that

UR((NE; �̂
R)j�P ) = (1� �̂R) �

�
+ �̂R > (1� �) �

�
+ � = UR(Ej�P );

so that the optimal strategy of the rich is given by

�R = (NE; �̂R):

Along the equilibrium path the franchise is never extended and taxes are given by �̂R. The
condition on �l was crucial to ensure that �̂R � �. If that condition does not hold, there
do not exist high enough taxes such that a revolution is prevented without extending the
franchise.

Exercise 23.12, Part (d). There is the possibility of the franchise being extended once
we do not restrict ourselves to Markovian strategies. To see this we have to introduce some
additional notation. Once we allow for non-Markovian strategies, a strategy �i is a map from
the set of histories to the sets of actions. The actions in each period are still the same as
above. So what is a history? As all past actions are observable, a history for the rich in time
t is given by

hRt = [f� sgt�1s=0; fsg
t�1
s=0];

where s 2 fNE;Eg. Hence, in every period t the rich �observe�(recall) all past tax rates
and their extension o¤ers. The histories for the poor are slightly di¤erent. They are given by

hRt = [f� sgt�1s=0; fsg
t�1
s=0; p(t)];

i.e. in addition to the information the rich base their decision on the poor also observe the tax
rate and the extension decision (i.e. the policy vector p(t)), which the rich are proposing at
t. To construct an equilibrium which features franchise extension if �l > 1� � (i.e. especially
if 1� � < �l < (1� �)(1� �) + �(1� �) where we saw that there was no franchise extension
in the MPE), suppose that the poor were expecting the rich to set zero taxes in the future
and to not o¤er a franchise extension. Today, the poor face a tax rate of �R and no franchise
extension was o¤ered. The value (as of tomorrow) of starting a revolution is given by

V P (R) =

1X
s=0

�s
�l

1� � =
1

1� �
�l

1� �; (I23.9)

as each poor agent gets �l

1�� in all periods in the future. The value (as of tomorrow) of not
starting a revolution today but only in the next period is given by

V P (NR) =
1� �
1� � + �

1X
s=0

�s
�l

1� � =
1� �
1� � +

�

1� �
�l

1� �; (I23.10)

where the �rst term 1��
1�� is the expected payo¤ conditional on believing that the rich will

set a tax rate of zero in the future. As long as �l > 1 � �, (I23.9) and (I23.10) therefore
show that V P (R) > V P (NR), i.e. the poor prefer to start a revolution today if they expect
that the rich will set zero taxes in the future. Hence, whenever they have these expectations
and are faced with a situation where no franchise extension is o¤ered, the poor will start a
revolution.



540 Solutions Manual for Introduction to Modern Economic Growth

Taking this strategy as given, the rich have to decide on their tax rate and franchise
decision. By o¤ering the franchise extension, they will get a payo¤

V R(E) =
1X
s=0

�s
� � �(� � �)

�
=

1

1� �
� � �(� � �)

�
; (I23.11)

where ���(���)
� denotes the per-period payo¤ of being governed by the poor, who will set a

tax rate of � in all periods. By not o¤ering the franchise extension and setting a tax rate �R,
the value of the elite will be given by

V R(NE; �R) =
� � �R(� � �)

�
; (I23.12)

where we used that the poor will start a revolution when the franchise is not extended so the
the rich will only get the current payo¤ and zero in all future periods. Comparing (I23.11)
and (I23.12) we see that

V R(E) > V R(NE; �R) for � su¢ ciently close to 1.

This intuitive. By not extending the franchise the rich generate bene�ts in the present (i.e.
they do not face the high taxes �) but it is costly in the future as they get zero instead
of ���(���)

� in all future periods. Hence, when the rich are patient enough, the costs will
outweigh the bene�ts so that extending the franchise will indeed be optimal for the rich.
Hence, there is an equilibrium where the franchise is extended as long as the poor expect the
rich not to extend the franchise and to set zero taxes in all future periods. So now we have
to argue why this can occur in equilibrium. To see this, consider the situation of the rich.
We have to show that in this equilibrium, the rich would actually want to set zero taxes.
We have seen above that the decision to start a revolution will only depend on the franchise
o¤er. If the franchise extension is o¤ered, the poor will be in power in the future, if it is
not o¤ered, a revolution will occur. Hence, the rich will set taxes to maximize their current
payo¤. But as the rich are net payers, they strictly prefer zero taxes. Intuitively, in the
proposed equilibrium, whenever the rich are in power it will be the last period. As there are
no long-term bene�ts of setting higher taxes, setting zero taxes is optimal. The poor should
therefore expect that in equilibrium the rich will set zero taxes in the future. This shows
that there is an extension of the franchise now, although the MPE did not feature franchise
extension (for the same parameters).

To see that there will never be an extension of the franchise if the revolutionary threat is
low enough (in particular if �l < 1 � �), note that in every equilibrium the future utility of
the poor by not starting a revolution today is bounded from below by

V P (NR) � V P (f�Rt g1t=0);

where V P (f�Rg1t=0) is the value of the poor if they will never start a revolution in the future
and just face the taxes the rich set. As this is always an option, the equilibrium value of the
poor has to be higher. And as the value of the poor is increasing in the tax rate, it is also
clear that

V P (f�Rt g1t=0) � V P (f�Rt = 0g1t=0) =
1

1� �
1� �
1� �:

The value of starting a revolution is given by

V (R) =
1

1� �
�l

1� �:
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Hence as long as �l < 1��, the threat of a revolution is never credible as in every equilibrium
that poor will get at least 1�� per period. But given that the poor will never start a revolution
and that the rich prefer to stay in power, the franchise will never be extended if �l < 1� �:

Exercise 23.12, Part (e). The reason why the predictions between the MPE and SPE
di¤er is the following: if we restrict ourselves to Markovian strategies, the policies set by the
rich will have to be constant over time because they are functions of the payo¤-relevant state
variables which do not change as long as the rich are in power (in fact this is the only payo¤-
relevant state variable for the rich as argued above). Hence, we simply can not construct an
equilibrium like the one here, where even though the rich o¤er a franchise extension today
and set taxes �R, in the future the poor expect the rich to never extend the franchise again
and set zero taxes. This would clearly be a non-stationary strategy which is ruled once we
restrict ourselves to MPE. From a more economic perspective, the more permissible concept
of SPE (recall that every MPE is subgame-perfect, but not every SPE is also an equilibrium
in Markovian strategies) can be interpreted as allowing for equilibria where there is less
commitment on the side of the rich. The MPE can be seen as an equilibrium where the rich
set taxes today and commit to set the same taxes tomorrow. In the SPE this commitment
device is not necessarily available. We can construct equilibria where the poor expect the rich
to set zero taxes in the future and in those equilibria these expectations are correct. Note in
particular that this possibility of commitment is valuable for the rich. In the MPE analyzed
in Part (c), the payo¤ of the rich was given by

V R(MPE) =
1

1� �
� � �̂R(� � �)

�
;

where �̂R was de�ned in (I23.6) and satis�ed 0 < �̂R < �. In the SPE the payo¤ of the rich
is given by

V R(SPE) =
1

1� �
� � �(� � �)

�
;

as the franchise is extended immediately. As �̂R < �, it is clear that

V R(MPE) > V R(SPE):

Hence, the possibility of commitment is valuable for the rich. Note however, that this does not
mean that the MPE is better than every SPE. In particular this cannot be true as the MPE
is of course a SPE. Hence, we simply showed that some equilibria (which can be interpreted
as not featuring commitment) are sustainable in the SPE and cannot occur as MPE.

Which of these concepts is more satisfactory depends a lot on the speci�c context, to
which this model is applied, in particular on the information structure and the coordination
possibilities within the groups. To make this statement clear, observe �rst that the poor are
doing better in the SPE characterized in Part (d) than in the MPE of Part (b) as

V P (SPE) =
1

1� �
1� � + �(� � �)

�
>

1

1� �
1� � + �̂R(� � �)

�
= V P (MPE):

So suppose we want to model the interaction between the poor and the rich and allow that
within the poor there is an organization trying to in�uence the decision-making of the poor.
This organization can do the math and realize that this particular SPE yields a higher value
for the poor. In particular, this organization knows that all it has to do for this equilibrium
to emerge, is to convince people that tomorrow (whatever the rich were doing in the past) the
rich will set zero taxes and never o¤er an franchise extension again. Once the poor hold those
expectations, the franchise will be extended in the SPE. So if we think that organizations



542 Solutions Manual for Introduction to Modern Economic Growth

determining opinions or expectations in their constituency are important, the SPE might be
a better framework as it gives those expectations a bigger role. If on the other hand we think
of the political arena as a more anonymous place, the MPE might be a better model as it
captures the idea that people might presume that if conditions (i.e. the state variables) do
not change, the policies should not change either.

Exercise 23.12, Part (f). Before we characterize the equilibrium, let us be precise
about the timing of events. We presume here that the value of �(t) is realized at the beginning
of the period, i.e. in particular before the rich decide about extending the franchise. Hence
the current state �(t) now has to be part of the state space of each party. Let us �rst consider
the strategy of the poor. Again it is clear from the discussion above that in case they are in
power, they will set a tax rate of �P = �. What about the decision to start a revolution?
Let us construct a MPE where the poor start a revolution if and only if �(t) = �h and the
franchise is not extended. Hence let us conjecture the following strategies and con�rm that
those strategies (under appropriate parametric restrictions) are a MPE. Let

�P (�(t); p(t); �(t)) =

8<:
� if �(t) = P or E 2 p(t)
R if �(t) = R;NE 2 p(t) and �(t) = �h

NR if �(t) = R;NE 2 p(t) and �(t) = �l
(I23.13)

and

�R(�(t)) =

�
E if �(t) = �h

(NE; 0) if �(t) = �l
: (I23.14)

To show that these strategies constitute a MPE, we have to show that there are no pro�table
deviations. In order to study the incentives of the poor to stick tho their proposed strategy,
let us �rst introduce some notation. Let V P (NR;�) and V P (R;�) be the value of the poor
agents if the current state is �, the franchise was not extended and they do or do not start a
revolution respectively. Additionally let V P (E) be the value of the poor when the franchise
extension is o¤ered. What are those objects? Clearly we have that

V P (E) =
1

1� �
1� � + �(� � �)

1� � ; (I23.15)

as once the franchise is extended, the poor set a tax rate of � = � in all future periods. The
value to start a revolution is given by

V P (R;�) =
1� �
1� � +

�

1� �
�

1� �; (I23.16)

where the �rst term 1��
1�� is the payo¤ of the poor given that the rich set taxes of zero and the

second term is the (discounted) value of receiving � 2 f�l; �hg in all periods of the future.
Finally consider the value of the poor to not start a revolution. It is given by

V (NR;�) =
1� �
1� � + �

�
(1� q)V (NR;�l) + qV (E)

�
: (I23.17)

To understand (I23.17), note that by not starting a revolution, the poor agent gets 1��1�� today
(as equilibrium taxes are zero). In the next period we will either have �(t + 1) = �l, which
happens with probability 1 � q and in which case in equilibrium neither the franchise will
be extended nor a revolution will take place so that the future value is equal V (NR;�l). If
the state �(t+1) = �h occurs (which happens with probability q), the equilibrium strategies
prescribe that the franchise will be extended so that poor get a value of V (E). Having
de�ned these objects we are in the position to prove that the strategies in (I23.13) and
(I23.14) constitute a MPE.
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Let us �rst consider the poor. We have to check that not starting a revolution if � = �l

is (weakly) preferred to starting a revolution, i.e. that

V (NR;�l) � V P (R;�l): (I23.18)

Using (I23.17) and (I23.15) we get that

V (NR;�l) =
1� �
1� � + �

�
(1� q)V (NR;�l) + qV (E)

�
=

1

1� �(1� q)

�
1� �
1� � +

�q

1� �
1� � + �(� � �)

1� �

�
=

1

1� �
1� �
1� � +

1

1� �(1� q)
�q

1� �
�(� � �)
1� � : (I23.19)

From (I23.16) we get that

V P (R;�l) =
1� �
1� � +

�

1� �
�l

1� �:

Hence for (I23.18) to be satis�ed, we need that

1� � + q

1� �(1� q)�(� � �) � �l: (I23.20)

Note that for q = 1 this is just the condition

�l � 1� � + �(� � �) = (1� �)(1� �) + �(1� �)
which we encountered already in Part (c). Hence if (I23.20) holds true, the poor would not
want to start a revolution if � = �l.

Now consider � = �h. We have to show that the poor would actually want to start a
revolution, i.e. we have to show that the threat is credible. From (I23.16) we get that

V P (R;�h) =
1� �
1� � +

�

1� �
�h

1� �:

The value of not starting a revolution is again given by (I23.19) where we used that in
accordance with the single deviation principle both parties play their equilibrium strategies
in the future. Hence, in the MPE we need that

V P (R;�h) � V P (NR;�h)

which is the case if
1� � + q

1� �(1� q)�(� � �) � �h: (I23.21)

Again note that for q = 0 we get that (I23.21) reduces to �h > 1 � �, which was necessary
for there to exist an equilibrium where franchise extension takes place. So given the strategy
of the rich, (I23.20) and (I23.21) are the two conditions we need to verify that the strategy
of the poor is indeed a best response.

Let us now turn to the analysis of the strategy of the rich. To check that the rich are
behaving optimally is considerably easier. Setting a tax rate of � = 0 is optimal as the rich
prefer low taxes and the revolution decision of the poor is not dependent on the tax rate.
What about the franchise decision? Clearly the rich would prefer the franchise extension
to the revolution but would rather stay in power themselves. Hence, �(t) = �h triggers the
extension of the franchise as otherwise the poor would start a revolution and the the franchise
is not extended when �(t) = �l as there is no revolutionary threat by the poor.
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This shows that the strategies above constitute an MPE as long as (I23.20) and (I23.21)
are satis�ed. In particular note that there is the extension of the franchise on the equilibrium
path because as long as q < 1 the state �(t) = �h will be reached with probability one so
that the franchise will be extended at some point. Note that the option of franchise extension
is useful for the rich. The reason is that at some point the revolutionary potential of the
poor will be high enough (i.e. whenever �(t) = �h) so that only the possibility of franchise
extension can save the rich from a revolution.

Exercise 23.12, Part (g). By construction such an equilibrium will have to have the
feature that the strategy of the rich will be such that the extension of the franchise is never
o¤ered (on the equilibrium path) and the poor will never start a revolution (in equilibrium)
as in this case there would be a pro�table deviation - the rich could simply o¤er the extension
of franchise. Also, as we assume that the unique MPE does not feature franchise extension,
the SPE we need to construct has to feature non-Markovian strategies. The additional degree
of freedom non-Markovian provide us with is the possibility to condition current actions on
past variables. As these are not payo¤ relevant, Markovian strategies were restricted to not
use this information. We now show that we can construct a SPE without extension in cases
where the unique MPE features franchise extension on the equilibrium path. Consider the
following construction. Recall that in Part (d) we showed that there is a SPE with franchise
extension if the poor expect zero taxes in the future. So consider the following equilibrium.
Let the rich set some tax rate �� < � and the franchise extension is not o¤ered. The poor also
expect that taxes will be �� in the future as long as �� was set in the past. By not starting a
revolution the poor will have a future value of

V P (NR) =
�

1� �U
P (��):

By starting a revolution when �(t) = �, the poor will have a future value of

V P (R;�) =
�

1� ��:

Hence the poor will abstain from a revolution if

UP (��) � UP (�): (I23.22)

As we assumed that UP (�) > �h, i.e. the utility when taxes are at their maximum value is
higher than the expected value of starting a revolution, we can �nd �� close enough to � such
that (I23.22) will be satis�ed for �h. Then it is also satis�ed for �l < �h. Hence, as long as
the poor expect that taxes will be equal to �� , no revolution will be triggered. Once � 6= �� is
observed however, the poor expect that taxes will be equal to zero in the future. We showed
above that this can occur in an SPE, i.e. that those expectations yield a SPE where the poor
start a revolution whenever no franchise extension is made and that those expectation are
consistent with SPE in that setting zero taxes is actually a best response for the rich. By
sticking to the equilibrium strategy, the rich get a future payo¤ of

V R(�� ;NE) =
1

1� �
� � ��(� � �)

�
:

By deviating, the rich get

V R(� ;NE) =
� � �(� � �)

�
for � 6= ��

V R(E) =
1

1� �
� � �(� � �)

�
:
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Note that V R(� ;NE) only consists of the current payo¤ ���(���)
� as in equilibrium the poor

will start a revolution whenever (� ;NE) 6= (�� ;NE) is observed. As �� < �, it is clear that

V R(�� ;NE) > V R(E):

Furthermore we also see that

V R(�� ;NE) � V R(� ;NE) for � su¢ ciently high.

Hence the equilibrium strategies characterized above constitute a SPE in this game. This
shows that in this equilibrium there will be no franchise extension along the equilibrium path
but taxes will be equal to �� and the rich will stay in power. The non-Markovian nature of
this equilibrium comes from the fact that the poor are allowed to have history-dependent
punishment strategies, i.e. once � 6= �� is observed, the rich are punished by a revolution
in equilibrium. The crucial point of course is that this threat is credible if the poor believe
that future taxes will be equal to zero. Hence, a one-shot deviation from the rich alters the
expectations of the poor entirely. This is not possible in a MPE. Such a response by the
poor will impose discipline on the rich to set high taxes throughout which in turn will make
an extension of the franchise unnecessary. Therefore, similar to our discussion in Part (e),
once we consider SPE, there are many ways to sustain diligent behavior via choosing history-
dependent punishments to o¤-the-equilibrium-path observations. In the example here, this
possibility actually helps the elite (recall that in the example in Part (d), the rich were worse
o¤) because it e¤ectively represents a commitment device to high taxes in the future which
in turn make revolutions not pro�table. This however eliminates the threat for the rich to
extend the franchise so that they can cling to the political power on the equilibrium path
forever.
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